Neural Network-Based Estimation of Gear Safety Factors from ISO-Based Simulations
Abstract
1. Introduction
2. Dataset Generation
- Oil characteristics: “Shell Omala S2 G 68” with the properties presented in Table 2.
- The specific parameters to represent their effects on the lifetime or safety factors.
3. Safety Factors
3.1. Safety Factors to Protect Against Scuffing
- Minimum safety for scuffing (integral temperature): 1.8.
- Minimum safety for scuffing (flash temperature): 2.
3.2. Safety Factors to Protect Against Micropitting
3.3. Safety Factors to Protect the Hardened Layer
3.4. Flank Fracture Safety Factors
3.5. Flank and Root Safety Factors
4. Data-Driven Neural Network Model
5. Neural Network Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Error Analysis of Neural Network Predictions and Influence of Parameters on Safety Factors
References
- Randall, R.B. The application of fault simulation to machine diagnostics and prognostics. Int. J. Acoust. Vib. 2009, 14, 81–89. [Google Scholar] [CrossRef]
- Molaie, M.; Samani, F.S.; Zippo, A.; Iarriccio, G.; Pellicano, F. Spiral bevel gears: Bifurcation and chaos analyses of pure torsional system. Chaos Solitons Fractals 2023, 177, 114179. [Google Scholar] [CrossRef]
- Zippo, A.; Iarriccio, G.; Bergamini, L.; Colombini, E.; Veronesi, P.; Pellicano, F. Fluid–Structure Interaction of a thin cylindrical shell filled with a non-Newtonian fluid. J. Fluids Struct. 2023, 117, 103829. [Google Scholar] [CrossRef]
- Pellicano, F.; Zippo, A.; Iarriccio, G.; Barbieri, M. Experimental study on nonlinear random excitation. In Proceedings of the International Conference of the Italian Association of Design Methods and Tools for Industrial Engineering, Modena, Italy, 9–10 September 2019; pp. 637–648. [Google Scholar] [CrossRef]
- Iarriccio, G.; Zippo, A.; Pellicano, F.; Barbieri, M. Resonances and nonlinear vibrations of circular cylindrical shells, effects of thermal gradients. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 4818–4832. [Google Scholar] [CrossRef]
- Iarriccio, G.; Zippo, A.; Pellicano, F. Asymmetric vibrations and chaos in spherical caps under uniform time-varying pressure fields. Nonlinear Dyn. 2022, 107, 313–329. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4, p. 738. Available online: https://link.springer.com/book/9780387310732 (accessed on 30 July 2025).
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Shigley, J.E.; Mischke, C.R. Standard Handbook of Machine Design; McGraw-Hill: New York, NY, USA, 1996; Available online: https://lccn.loc.gov/95050600 (accessed on 30 July 2025).
- Molaie, M.; Zippo, A.; Pellicano, F. Chaotic dynamics of spiral bevel gears. Int. J. Non-Linear Mech. 2025, 175, 105098. [Google Scholar] [CrossRef]
- Zippo, A.; Molaie, M.; Pellicano, F. Nonlinear Dynamics of a Coupled Electromechanical Transmission. Vibration 2025, 8, 34. [Google Scholar] [CrossRef]
- Radzevich, S.P.; Dudley, D.W. Handbook of Practical Gear Design; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- He, B.; Liu, L.; Zhang, D. Digital twin-driven remaining useful life prediction for gear performance degradation: A review. J. Comput. Inf. Sci. Eng. 2021, 21, 030801. [Google Scholar] [CrossRef]
- Bühler, M.; Steiner, B.; Bednar, T. November. Digital Twin applications using the SIMULTAN data model and Python. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1101, p. 082015. [Google Scholar] [CrossRef]
- Lehner, D.; Pfeiffer, J.; Tinsel, E.F.; Strljic, M.M.; Sint, S.; Vierhauser, M.; Wortmann, A.; Wimmer, M. Digital twin platforms: Requirements, capabilities, and future prospects. IEEE Softw. 2021, 39, 53–61. [Google Scholar] [CrossRef]
- Alonso, R.; Borras, M.; Koppelaar, R.H.; Lodigiani, A.; Loscos, E.; Yöntem, E. SPHERE: BIM digital twin platform. Proceedings 2019, 20, 9. [Google Scholar] [CrossRef]
- Ashtari Talkhestani, B.; Jung, T.; Lindemann, B.; Sahlab, N.; Jazdi, N.; Schloegl, W.; Weyrich, M. An architecture of an intelligent digital twin in a cyber-physical production system. at-Automatisierungstechnik 2019, 67, 762–782. [Google Scholar] [CrossRef]
- Liu, C.; Sun, S.; Li, Q. The Impact of Gear Meshing in High-Speed EMU Gearboxes on Fatigue Strength of the Gearbox Housing. Technologies 2025, 13, 311. [Google Scholar] [CrossRef]
- Yoo, K.H.; Leung, C.K.; Nasridinov, A. Big Data Analysis and Visualization: Challenges and Solutions. Appl. Sci. 2022, 12, 8248. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Kim, H. A Study on Gear Defect Detection via Frequency Analysis Based on DNN. Machines 2022, 10, 659. [Google Scholar] [CrossRef]
- Thakkar, U.; Chaoui, H. Remaining Useful Life Prediction of an Aircraft Turbofan Engine Using Deep Layer Recurrent Neural Networks. Actuators 2022, 11, 67. [Google Scholar] [CrossRef]
- Qu, Y.; He, M.; Deutsch, J.; He, D. Detection of Pitting in Gears Using a Deep Sparse Autoencoder. Appl Sci. 2017, 7, 515. [Google Scholar] [CrossRef]
- Xiao, D.; Ding, J.; Li, X.; Huang, L. Gear Fault Diagnosis Based on Kurtosis Criterion VMD and SOM Neural Network. Appl. Sci. 2019, 9, 5424. [Google Scholar] [CrossRef]
- Kim, K.I.; Lee, K.M. Convolutional Neural Network-Based Gear Type Identification from Automatic Identification System Trajectory Data. Appl. Sci. 2020, 10, 4010. [Google Scholar] [CrossRef]
- Chen, L.; Yan, N.; Yang, H.; Zhu, L.; Zheng, Z.; Yang, X.; Zhang, X. A Data Augmentation Method for Deep Learning Based on Multi-Degree of Freedom (DOF) Automatic Image Acquisition. Appl. Sci. 2020, 10, 7755. [Google Scholar] [CrossRef]
- Lin, S.L. Application of Machine Learning to a Medium Gaussian Support Vector Machine in the Diagnosis of Motor Bearing Faults. Electronics 2021, 10, 2266. [Google Scholar] [CrossRef]
- Ham, S.; Han, S.Y.; Kim, S.; Park, H.J.; Park, K.J.; Choi, J.H. A Comparative Study of Fault Diagnosis for Train Door System: Traditional Versus Deep Learning Approaches. Sensors 2019, 19, 5160. [Google Scholar] [CrossRef] [PubMed]
- The MathWorks, Inc. MATLAB Version: 9.13.0 (R2022b). 2022. Available online: https://www.mathworks.com (accessed on 30 July 2025).
- DIN 3962-1:1978-08; Tolerances for Cylindrical Gear Teeth; Tolerances for Deviations of Individual Parameters. DIN (Deutsches Institut für Normung), Deutsches Institut Fur Normung: Berlin, Germany, 1978.
- DIN 3962-2:1978-08; Tolerances for Cylindrical Gear Teeth; Tolerances for Tooth Trace Deviations. DIN (Deutsches Institut für Normung), Deutsches Institut Fur Normung: Berlin, Germany, 1978.
- DIN 3962-3:1978-08; Tolerances for Cylindrical Gear Teeth; Tolerances for Pitch-span Deviations. DIN (Deutsches Institut für Normung), Deutsches Institut Fur Normung: Berlin, Germany, 1978.
- ISO 3448:1992; Industrial Liquid Lubricants—ISO Viscosity Classification. International Organization for Standardization: Geneva, Switzerland, 1992.
- ISO 3104:2023; Petroleum Products—Transparent and Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 2909:2002; Petroleum Products—Calculation of Viscosity Index from Kinematic Viscosity. International Organization for Standardization: Geneva, Switzerland, 2002.
- ISO 12185:2024; Crude Petroleum, Petroleum Products and Related Products—Determination of Density—Laboratory Density Meter with an Oscillating U-Tube Sensor. International Organization for Standardization: Geneva, Switzerland, 2024.
- ISO 2592:2017; Petroleum and Related Products—Determination of Flash and Fire Points—Cleveland Open Cup Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 3016:2019; Petroleum and Related Products from Natural or Synthetic Sources—Determination of Pour Point. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 53:1998; Cylindrical Gears for General and Heavy Engineering—Standard Basic Rack Tooth Profile. International Organization for Standardization: Geneva, Switzerland, 1998.
- Vullo, V. Gears: Analysis of Load Carrying Capacity and Strength Design; Springer Nature: London, UK, 2020; Volume 2. [Google Scholar] [CrossRef]
- ISO/TS 6336-20; Calculation of Load Capacity of Spur and Helical Gears—Part 20: Calculation of Scuffing Load Capacity—Flash Temperature Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO/TS 6336-21; Calculation of Load Capacity of Spur and Helical Gears Part 21: Calculation of Scuffing Load Capacity—Integral Temperature Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO/TR 13989-1; Calculation of Scuffing Load Capacity of Cylindrical, Bevel and Hypoid Gears Part 1: Flash Temperature Method. International Organization for Standardization: Geneva, Switzerland, 2000.
- ISO/TR 13989-2; Calculation of Scuffing Load Capacity of Cylindrical, Bevel and Hypoid Gears Part 2: Integral Temperature Method. International Organization for Standardization: Geneva, Switzerland, 2000.
- DIN 3990-41; Calculation of Load Capacity of Cylindrical Gears; Application Standard for Vehicle Gears. Deutsches Institut Fur Normung: Berlin, Germany, 1990.
- KISSsoft Manual, KISSsoft AG, Version 2022. Available online: https://www.kisssoft.com/en/products/technical-description (accessed on 3 July 2025).
- ISO/TS 6336-22:2018; Calculation of Load Capacity of Spur and Helical Gears. Part 22: Calculation of Micropitting Load Capacity. International Organization for Standardization: Geneva, Switzerland, 2018.
- Olson, R.; Michaud, M.; Keller, J. Case Study of ISO/TS 6336-22 Micropitting Method (No. NREL/CP-5000-76776); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2020. [Google Scholar]
- DNVGL-CG-0036; Calculation of Gear Rating for Marine Transmissions, Classification Note. Det Norske Veritas: Høvik, Norway, 2015.
- ISO/TS 6336-4; Calculation of Load Capacity of Spur and Helical Gears Part 4: Calculation of Tooth Flank Fracture Load Capacity. International Organization for Standardization: Geneva, Switzerland, 2024.
- DIN 3990-11; Calculation of Load Capacity of Cylindrical Gears—Application Standard for Industrial Gears. Deutsches Institut Fur Normung: Berlin, Germany, 1989.
- AGMA 6006; Standard for Design and Specifications of Gearboxes for Wind Turbines. American Gear Manufacturers Association: Alexandria, VA, USA, 2020.
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Technical Report; Institute for Cognitive Science, California University of San Diego: La Jolla, CA, USA, 1985. [Google Scholar]
Content | Pinion | Gear |
---|---|---|
Number of teeth | 62 | 62 |
Profile correction factor | 0.5 | 0.5 |
Module [mm] | 2.0 | |
Face width [mm] | 12 | |
Pressure angle [deg] | 20 | |
Material | 20MnCr5 | |
Crowning CB | 0.1 mm on both sides | |
Mounting distance [mm] | 125.9 | |
Quality | DIN 3962 [29,30,31] | |
Pinion torque for pitting safety factor [Nm] | 180 | |
Power [kW] | 11.31 | |
Pinion revolution [rev/min] | 600 |
Properties | Method | Shell Omala S2 G |
---|---|---|
ISO viscosity grade | ISO 3448 [32] | 68 |
Kinematic viscosity at 40 °C, [mm2/s] | ISO 3104 [33] | 68 |
Kinematic viscosity at 100 °C, [mm2/s] | ISO 3104 [33] | 8.7 |
Viscosity index | ISO 2909 [34] | 99 |
Density at 15 °C [kgm3] | ISO 12185 [35] | 887 |
Flashpoint (COC) [°C] | ISO 2592 [36] | 236 |
Pour point [°C] | ISO 3016 [37] | −24 |
High scuffing risk | |
Critical range with moderate scuffing | |
Low scuffing risk |
High micropitting risk | |
Moderate micropitting | |
Low micropitting risk |
Command Line Frequency | 25 | Function parameters | ‘trainbfg’ |
Maximum Epochs | 50,000 | Activation function | ‘tansig’ |
Minimum Gradient | 10−6 | Line search function | ‘srchbac’ |
Maximum Validation Checks | 6 | ||
Scale Tolerance | 20 |
No. | Parameters | Nominal Values | Range of Specific Parameters in Each Case | Step Size |
---|---|---|---|---|
1 | Torque of pinion [Nm] | 100 | Case 1: 100–300 | 1 |
2 | Speed of pinion [rpm] | 500 | Case 2: 500–1500 | 5 |
3 | Lifetime [h] | 1000 | Case 3: 1000–19000 | 50 |
4 | Center distance [mm] | 125.1 | Case 4: 125.1–127.1 | 0.01 |
5 | Viscosity at 100 °C [mm2/s] | 16 | Case 5: 16–45 | 0.25 |
6 | Core hardening for pinion (HBW) | 166 | Case 6: 166–566 | 2.5 |
7 | Mean roughness value flank (Pinion) [µm] | 0.5 | Case 7: 0.5–1.3 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molaie, M.; Zippo, A.; Pellicano, F. Neural Network-Based Estimation of Gear Safety Factors from ISO-Based Simulations. Symmetry 2025, 17, 1312. https://doi.org/10.3390/sym17081312
Molaie M, Zippo A, Pellicano F. Neural Network-Based Estimation of Gear Safety Factors from ISO-Based Simulations. Symmetry. 2025; 17(8):1312. https://doi.org/10.3390/sym17081312
Chicago/Turabian StyleMolaie, Moslem, Antonio Zippo, and Francesco Pellicano. 2025. "Neural Network-Based Estimation of Gear Safety Factors from ISO-Based Simulations" Symmetry 17, no. 8: 1312. https://doi.org/10.3390/sym17081312
APA StyleMolaie, M., Zippo, A., & Pellicano, F. (2025). Neural Network-Based Estimation of Gear Safety Factors from ISO-Based Simulations. Symmetry, 17(8), 1312. https://doi.org/10.3390/sym17081312