A New Subclass of Bi-Univalent Functions Defined by Subordination to Laguerre Polynomials and the (p,q)-Derivative Operator
Abstract
1. Introduction
- Quantum Mechanics: Generalized Laguerre polynomials appear in the solution of the radial part of the Schrödinger equation for the hydrogen atom. The radial wavefunctions are expressed as
- Laser Physics and Optics: Laguerre–Gaussian beams, which are solutions to the paraxial wave equation in cylindrical coordinates, involve Laguerre polynomials. These beams carry orbital angular momentum and are used in optical tweezers, communications, and quantum information.
- Statistical Physics and Thermodynamics: Laguerre polynomials are used to evaluate partition functions and model energy distributions in quantum gases.
- Signal Processing: In computational signal analysis, Laguerre functions based on Laguerre polynomials serve as a basis for approximating functions with exponential decay characteristics and are useful in modeling biological and electrical systems.
- Control Theory and Engineering: Laguerre polynomial-based orthogonal functions are applied in system identification and control system design to represent dynamic systems with memory.
2. Coefficient Estimates for the Class
3. Fekete–Szegö Inequality for the Class
4. Corollaries and Consequences
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum. J. Phys. A Math. Gen. 1991, 24, L711. [Google Scholar] [CrossRef]
- Wachs, M.; White, D. (p,q)-Stirling numbers and set partition statistics. J. Comb. Theory Ser. A 1991, 56, 27–46. [Google Scholar] [CrossRef]
- Arik, M.; Demircan, T.; Turgut, O.; Ekinci, L.; Mungan, M. Fibonacci oscillators. Z. Phys. C Part. Fields 1992, 55, 89–95. [Google Scholar] [CrossRef]
- Brodimas, G.; Jannussis, A.; Mignani, R. Two-Parameter Quantum Groups; Dipartimento di Fisica, Università di Roma “La Sapienza”, INFN-Sezione di Roma: Rome, Italy, 1991. [Google Scholar]
- El-Ityan, M.; Shakir, Q.A.; Al-Hawary, T.; Buti, R.; Breaz, D.; Cotîrlă, L.-I. On the Third Hankel Determinant of a Certain Subclass of Bi-Univalent Functions Defined by (p,q)-Derivative Operator. Mathematics 2025, 13, 1269. [Google Scholar] [CrossRef]
- Jagannathan, R.; Rao, K.S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In Proceedings of the International Conference on Number Theory and Mathematical Physics, Srinivasa Ramanujan Centre, Kumbakonam, India, 20–21 December 2005. [Google Scholar]
- Araci, S.; Duran, U.; Acikgoz, M.; Srivastava, H.M. A certain (p,q)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 301, 1–8. [Google Scholar] [CrossRef]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv 2013, arXiv:1309.3934v1. [Google Scholar]
- Duran, U.; Acikgoz, M.; Araci, S. A study on some new results arising from (p,q)-calculus. TWMS J. Pure Appl. Math. 2020, 11, 57–71. [Google Scholar]
- Bukweli-Kyemba, J.D.; Hounkonnou, M.N. Quantum deformed algebras: Coherent states and special functions. arXiv 2013, arXiv:1301.0116. [Google Scholar]
- Tuncer, A.; Ali, A.; Syed Abdul, M. On Kantorovich modification of (p, q)-Baskakov operators. J. Inequal. Appl. 2016, 98, 1–8. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Tayyah, A.S.; Atshan, W.G. A class of bi-Bazilevič and bi-pseudo-starlike functions involving Tremblay fractional derivative operator. Probl. Anal. Issues Anal 2025, 14, 2. [Google Scholar] [CrossRef]
- El-Ityan, M.; Al-Hawary, T.; Hammad, S.; Frasin, B. A New Subclass of Bi-Univalent Functions of Complex Order Defined by the Symmetric q-Derivative and Subordination. Gulf J. Math. 2025, 19, 111–120. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete–Szegö inequality for classes of (p, q)-Starlike and (p, q)-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. C. R. Acad. Sci. Paris, Sér. I 2014, 352, 479–484. [Google Scholar] [CrossRef]
- El-Ityan, M.; Cotîrlă, L.-I.; Al-Hawary, T.; Hammad, S.; Breaz, D.; Buti, R. New Subclass of Meromorphic Functions Defined via Mittag–Leffler Function on Hilbert Space. Symmetry 2025, 17, 728. [Google Scholar] [CrossRef]
- Amourah, A.A.; Yousef, F.; Al-Hawary, T.; Darus, M. A certain fractional derivative operator for p-valent functions and new class of analytic functions with negative coefficients. Far East J. Math. Sci. 2016, 99, 75. [Google Scholar]
- Tayyah, A.S.; Atshan, W.G. Starlikeness and bi-starlikeness associated with a new Carathéodory function. J. Math. Sci. 2025, 1, 1–25. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Frasin, B.A. Fekete-Szegö inequality for bi-univalent functions by means of Horadam polynomials. Bol. Soc. Mat. Mex. 2021, 79, 1–12. [Google Scholar] [CrossRef]
- Altinkaya, Ş.; Yalçın, S. Certain classes of bi-univalent functions of complex order associated with quasi-subordination involving (p,q)-derivative operator. Kragujevac J. Math. 2020, 44, 639–649. [Google Scholar] [CrossRef]
- Motamednezhad, A.; Salehian, S. New subclasses of Bi-univalent functions by (p; q)-derivative operator. Honam Math. J. 2019, 41, 381–390. [Google Scholar]
- Muthaiyan, E.; Wanas, A.K. Coefficient Estimates for Two New Subclasses of Bi-univalent Functions Involving Laguerre Polynomials. Earthline J. Math. Sci. 2024, 15, 187–199. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.P.; Sudharsan, T.V.; Bulboac, T. Symmetric Toeplitz determinants for classes defined by post-quantum operators subordinated to the limacon function. Stud. Univ. Babeș-Bolyai Math. 2024, 69, 299–316. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Abbott, P.C. Generalized Laguerre polynomials and quantum mechanics. J. Phys. A Math. Gen. 2000, 33, 7659–7660. [Google Scholar] [CrossRef]
- Greenwood, R.E. On Laguerre Series. Proc. Natl. Acad. Sci. USA 1940, 26, 466–471. [Google Scholar] [CrossRef]
- Saad, N.; Hall, R.L.; Ciftci, H. Criterion for polynomial solutions to a class of linear differential equations of second order. J. Phys. A Math. Gen. 2006, 39, 13445–13454. [Google Scholar] [CrossRef]
- Babusci, D.; Dattoli, G.; Licciardi, S.; Sabia, E. Mathematical Methods for Physicists; World Scientific: Singapore, 2019. [Google Scholar]
- Alhaidari, A.D. Series solutions of Laguerre- and Jacobi-type differential equations in terms of orthogonal polynomials and physical applications. J. Math. Phys. 2018, 59, 063506. [Google Scholar] [CrossRef]
- Zhukovsky, K.V. Operational solution for some types of second order differential equations and for relevant physical problems. J. Math. Anal. Appl. 2017, 446, 628–647. [Google Scholar] [CrossRef]
- Messina, A.; Paladino, E. An operator approach to the construction of generating functions for products of associated Laguerre polynomials. J. Phys. A Math. Gen. 1996, 29, L263–L269. [Google Scholar] [CrossRef]
- Liu, F.J.; Li, H.Y.; Wang, Z.Q. Spectral methods using generalized Laguerre functions for second and fourth order problems. Numer. Algorithms 2017, 75, 1005–1040. [Google Scholar] [CrossRef]
- Kavoosi, Z.; Ghanbari, K.; Mirzaei, H. New form of Laguerre fractional differential equation and applications. Turk. J. Math. 2022, 46, 2998–3010. [Google Scholar] [CrossRef]
- Wang, Z.G.; Gao, C.Y.; Yuan, S.M. On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points. J. Math. Anal. Appl. 2006, 322, 97–106. [Google Scholar] [CrossRef]
- Crisan, O. Coefficient estimates for certain subclasses of bi-univalent functions. Gen. Math. Notes 2013, 16, 93–102. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ityan, M.; Al-Hawary, T.; Frasin, B.A.; Aldawish, I. A New Subclass of Bi-Univalent Functions Defined by Subordination to Laguerre Polynomials and the (p,q)-Derivative Operator. Symmetry 2025, 17, 982. https://doi.org/10.3390/sym17070982
El-Ityan M, Al-Hawary T, Frasin BA, Aldawish I. A New Subclass of Bi-Univalent Functions Defined by Subordination to Laguerre Polynomials and the (p,q)-Derivative Operator. Symmetry. 2025; 17(7):982. https://doi.org/10.3390/sym17070982
Chicago/Turabian StyleEl-Ityan, Mohammad, Tariq Al-Hawary, Basem Aref Frasin, and Ibtisam Aldawish. 2025. "A New Subclass of Bi-Univalent Functions Defined by Subordination to Laguerre Polynomials and the (p,q)-Derivative Operator" Symmetry 17, no. 7: 982. https://doi.org/10.3390/sym17070982
APA StyleEl-Ityan, M., Al-Hawary, T., Frasin, B. A., & Aldawish, I. (2025). A New Subclass of Bi-Univalent Functions Defined by Subordination to Laguerre Polynomials and the (p,q)-Derivative Operator. Symmetry, 17(7), 982. https://doi.org/10.3390/sym17070982