Decentralized-Output Feedback Sampled-Data Disturbance Rejection Control for Dual-Drive H-Gantry System
Abstract
1. Introduction
- 1.
- This paper is the first work to address the decentralized-output feedback sampled-data disturbance rejection control problem for the DDHG system.
- 2.
- Due to the limited system output information (i.e., the system output information can be used at the sampling points) and the presence of disturbance, the existing control approaches for the DDHG system cannot be used. Inspired by [19,24,28], a high-gain linear discrete-time generalized-proportional-integral observer (GPIO) is constructed based on the position information and reference trajectory of DDHG at the sampling points such that unmeasured states and disturbance could be estimated simultaneously.
- 3.
- Based on the output feedback domination approach [19,24] and estimation of disturbance, a decentralized-output feedback sampled-data disturbance rejection controller with simple form is proposed for the DDHG system. A rigorous theoretical analysis based on Lyapunov theory is conducted for the closed-loop system, which demonstrates that the desired trajectory could be tracked by choosing the appropriate scaling gain and sampling period.
2. Model Description
3. Main Results
3.1. Design of Sampled-Data Disturbance Observer
3.2. Construction of Decentralized-Output Feedback Sampled-Data Controller
4. Parameters Selection
5. Simulation Examples
6. Conclusions
7. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Li, C.; Chen, Z.; Yao, B. Advanced synchronization control of a dual-linear-motor-driven gantry with rotational dynamics. IEEE Trans. Ind. Electron. 2018, 65, 7526–7535. [Google Scholar] [CrossRef]
- Chu, B.; Kim, S.; Hong, D.; Park, H.K.; Park, J. Optimal cross-coupled synchronizing control of dual-drive gantry system for a smd assembly machine. JSME Int. J. 2004, 47, 939–945. [Google Scholar] [CrossRef]
- Cuong, H.M.; Dong, H.Q.; Trieu, P.V.; Le, A.T. Adaptive fractional order terminal sliding mode control of rubber-tired gantry cranes with uncertainties and unknown disturbances. Mech. Syst. Signal Process. 2021, 154, 107601. [Google Scholar] [CrossRef]
- Li, P. Research on Synchronization Motion Control of Dual-Drive System in Gantry-Type Stage. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2019. [Google Scholar]
- Li, C.; Chen, Z.; Yao, B. Adaptive robust synchronization control of a dual-linear-motor-driven gantry with rotational dynamics and accurate online parameter estimation. IEEE Trans. Ind. Inform. 2018, 14, 3013–3022. [Google Scholar] [CrossRef]
- Hu, C.X.; Hu, Z.P.; Zhu, Y.; Wang, Z. Advanced gtcf-larc contouring motion controller design for an industrial x-y linear motor stage with experimental investigation. IEEE Trans. Ind. Electron. 2017, 64, 3308–3318. [Google Scholar] [CrossRef]
- Du, Y.W.; Cao, W.H.; She, J.H. Analysis and design of active disturbance rejection control with an improved extended state observer for systems with measurement noise. IEEE Trans. Ind. Electron. 2023, 70, 855–865. [Google Scholar] [CrossRef]
- Shen, M.Q.; Zhang, H.N.; Nguang, S.K.; Ahn, C.K. H∞ output anti-disturbance control of stochastic markov jump systems with multiple disturbances. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 7633–7643. [Google Scholar] [CrossRef]
- Shen, M.Q.; Wang, X.M.; Park, J.H.; Yi, Y.; Che, W.W. Extended disturbance-observer-based data-driven control of networked nonlinear systems with event-triggered output. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 3129–3140. [Google Scholar] [CrossRef]
- Lan, Q.X.; Ding, S.H.; Li, S.H. Global decentralised stabilisation for a class of uncertain large-scale feedforward nonlinear systems. Int. J. Control 2014, 87, 1282–1296. [Google Scholar] [CrossRef]
- Li, C. MIMO Precision Motion Control of Redundantly Driven Gantry Systems with Direct Actuators. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Jiang, C. Design and Modeling of Dual-Drive H-Gantry Platform with Locally Exchangeable Flexible Joint. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2017. [Google Scholar]
- Ma, J.; Chen, S.; Kamaldin, N.; Teo, C.S.; Tan, K.K. Integrated mechatronics design in the flexure-linked dual-drive gantry by constrained linear quadratic optimization. IEEE Trans. Ind. Electron. 2018, 65, 2408–2418. [Google Scholar] [CrossRef]
- Kamaldin, N.; Chen, S.L.; Teo, C.S.; Lin, W.; Tan, K.K. A novel adaptive jerk control with application to large workspace tracking on a flexure-linked dual-drive gantry. IEEE Trans. Ind. Electron. 2019, 66, 5353–5363. [Google Scholar] [CrossRef]
- Ma, J.; Chen, S.L.; Liang, W.; Teo, C.S.; Tay, A.; Al Mamun, A. Robust decentralized controller synthesis in flexure-linked h-gantry by iterative linear programming. IEEE Trans. Ind. Inform. 2019, 15, 1698–1708. [Google Scholar] [CrossRef]
- Li, P.; Zhu, G.; Gong, S.; Yue, L. Synchronous control of dual-drive system in gantry-type machine tools based on disturbance observer. China Mech. Eng. 2016, 27, 2630–2635. [Google Scholar]
- Nei, D.; Teel, A.R.; Kokotovi, P.V. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Syst. Control Lett. 1999, 38, 259–270. [Google Scholar]
- Ahmet, S.; Kocaolan, E. Backstepping designs for the stabilisation of nonlinear sampled-data systems via approximate discrete-time model. Int. J. Control 2013, 86, 893–911. [Google Scholar]
- Qian, C.J.; Du, H.B. Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. IEEE Trans. Autom. Control 2012, 57, 2934–2939. [Google Scholar] [CrossRef]
- Du, H.; Qian, C.; He, Y. Global sampled-data output feedback stabilisation of a class of upper-triangular systems with input delay. Control Theory Appl. IET 2013, 7, 1437–1446. [Google Scholar] [CrossRef]
- Meng, Q.; Qian, C.; Liu, R. Dual-rate sampled data stabilization for active suspension system of electric vehicle. Int. J. Robust Nonlinear Control 2018, 28, 1610–1623. [Google Scholar] [CrossRef]
- Zhai, J.; Du, H.; Fei, S. Global sampled-data output feedback stabilisation for a class of nonlinear systems with unknown output function. Int. J. Control 2016, 89, 469–480. [Google Scholar] [CrossRef]
- Wang, Z.; Zhai, J. Global sampled-data output feedback control for a class of feedforward nonlinear systems. Control Theory Technol. 2014, 12, 147–153. [Google Scholar] [CrossRef]
- Lan, Q.X.; Sun, L.Y.; Liang, J.R.; Li, Y.J.; Wang, X.F.; Wang, Z. Sampled-data stabilization of a class of nonlinear differential algebraic systems via partial-state and output feedback. J. Frankl. Inst. 2020, 357, 4742–4758. [Google Scholar] [CrossRef]
- Zheng, W.; Sun, J. Sampled-data-based event-triggered active disturbance rejection control for disturbed systems in networked environment. IEEE Trans. Cybern. 2019, 49, 556–566. [Google Scholar]
- Rsetam, K.; Mohammad, A.R.; Man, Z.H. Robust continuous sliding mode controller for uncertain canonical brunovsky systems using reduced order extended state observer. In Proceedings of the IEEE 20th International Conference on Industrial Informatics (INDIN), Perth, Australia, 25–28 July 2022; pp. 407–412. [Google Scholar]
- Rsetam, K.; Raja, F.A.; Cao, Z.W.; Man, Z.H. Performance analysis of finite-time generalized proportional integral observer for uncertain brunovsky systems. In Proceedings of the 2023 International Conference on Advanced Mechatronic Systems, Melbourne, Australia, 4–7 September 2023; pp. 153–158. [Google Scholar]
- Sun, J.; Yang, J.; Zheng, W. GPIO-based robust control of nonlinear uncertain systems under time-varying disturbance with application to dc-dc converter. IEEE Trans. Circuits Syst.-II Express Briefs 2016, 63, 1074–1078. [Google Scholar] [CrossRef]
- Gutierra-giles, A.; Arteaga-peprez, M.A. GPI based velocity/force observer design for robot manipulators. ISA Trans. 2014, 53, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Rsetam, K.; Cao, Z.W.; Man, Z.H. Cascaded-extended-state-observer-based sliding-mode control for underactuated flexible Joint robot. IEEE Trans. Ind. Electron. 2020, 67, 10822–10832. [Google Scholar] [CrossRef]
- Rsetam, K.; Cao, Z.W.; Man, Z.H. Design of robust terminal sliding mode control for underactuated flexible joint robot. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 4272–4285. [Google Scholar] [CrossRef]
- Wang, J.X.; Chen, L.J.; Xu, Q.S. Disturbance Estimation-Based Robust Model Predictive Position Tracking Control for Magnetic Levitation System. IEEE/ASME Trans. Mechatron. 2021, 27, 81–92. [Google Scholar] [CrossRef]
Name | Description | Unit |
---|---|---|
Force constant | N/A | |
Mass of carriage i | kg | |
Mass of end-effector | kg | |
Mass of cross-arm | kg | |
Position of carriage i | m | |
Control current of carriage i | A | |
Coulomb friction in carriage i | N | |
Stiffness of flexure | N/m | |
Damping coefficient in each carriage | Ns/m |
Name | Description | Value |
---|---|---|
Force constant | 62.8 N/A | |
Mass of carriage 1 | 16.5 kg | |
Mass of carriage 2 | 18.4 kg | |
Stiffness of flexure | 4887.3 N/m | |
Damping coefficient | 172.7 Ns/m |
Test Type | Control Approach | ITAE | RMSE |
---|---|---|---|
Case I | GPIO-DOFSC | 0.1068 | 0.0021 |
ESO-DOFSC | 1.9825 | 0.0116 | |
Case II | GPIO-DOFSC | 0.0202 | 0.0009 |
ESO-DOFSC | 0.2041 | 0.0021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, J.; Lan, Q.; Li, Y.; Niu, H. Decentralized-Output Feedback Sampled-Data Disturbance Rejection Control for Dual-Drive H-Gantry System. Symmetry 2025, 17, 1068. https://doi.org/10.3390/sym17071068
Mu J, Lan Q, Li Y, Niu H. Decentralized-Output Feedback Sampled-Data Disturbance Rejection Control for Dual-Drive H-Gantry System. Symmetry. 2025; 17(7):1068. https://doi.org/10.3390/sym17071068
Chicago/Turabian StyleMu, Jingjing, Qixun Lan, Yajie Li, and Huawei Niu. 2025. "Decentralized-Output Feedback Sampled-Data Disturbance Rejection Control for Dual-Drive H-Gantry System" Symmetry 17, no. 7: 1068. https://doi.org/10.3390/sym17071068
APA StyleMu, J., Lan, Q., Li, Y., & Niu, H. (2025). Decentralized-Output Feedback Sampled-Data Disturbance Rejection Control for Dual-Drive H-Gantry System. Symmetry, 17(7), 1068. https://doi.org/10.3390/sym17071068