Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group
Abstract
:1. Introduction
2. Main Theorems and Proof Methods
Proof Architecture and Methodological Innovations
3. Preliminaries
3.1. Heisenberg Group
3.2. Horizontal Sobolev Space
3.3. Notation
4. Crucial Caccioppli-Type Estimate
Summary of This Section
5. Proof of Theorem 1
6. Proof of Theorem 2
7. Conclusions
- (i)
- Establish the corresponding regularity results, by improving the above methods and techniques, when the non-homogeneous term does not satisfy condition (2).
- (ii)
- Extend the above regularity results to more general sub-Riemannian manifolds by improving the above methods and techniques.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ural’ceva, N.N. Degenerate quasilinear elliptic systems. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 1968, 7, 184–222. [Google Scholar]
- Uhlenbeck, K.K. Regularity for a class of non-linear elliptic systems. Acta Math. 1977, 138, 219–240. [Google Scholar] [CrossRef]
- Evans, L.C. A new proof of local C1,α-regularity for solutions of certain degenerate elliptic p.d.e. J. Differ. Equ. 1982, 45, 356–373. [Google Scholar] [CrossRef]
- Lewis, J.L. Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 1983, 32, 849–858. [Google Scholar] [CrossRef]
- Manfredi, J.J.; Weitsman, A. On the Fatou theorem for p-harmonic functions. Commun. Partial Differ. Equ. 1988, 13, 651–668. [Google Scholar] [CrossRef]
- Cordes, H.O. Zero order a priori estimates for solutions of elliptic differential equations. Proc. Sympos. Pure Math. 1961, 4, 157–166. [Google Scholar]
- Talenti, G. Sopra una classe di equazioni ellittiche a coefficienti misurabili. Ann. Mat. Pura Appl. 1965, 69, 285–304. [Google Scholar] [CrossRef]
- Maugeri, A.; Palagachev, D.K.; Softova, L.G. Elliptic and Parabolic Equations with Discontinuous Coefficients; Mathematical Research; Wiley-VCH: Berlin, Germany, 2000; Volume 109. [Google Scholar]
- Dong, H.; Peng, F.; Zhang, Y.; Zhou, Y. Hessian estimates for equations involving p-Laplacian via a fundamental inequality. Adv. Math. 2020, 370, 107212. [Google Scholar] [CrossRef]
- Lu, G. Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications. Rev. Mat. Iberoam. 1992, 8, 367–439. [Google Scholar] [CrossRef]
- Lu, G. Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations. Publ. Mat. 1996, 40, 301–329. [Google Scholar] [CrossRef]
- Domokos, A.; Manfredi, J.J. C1,α-regularity for p-harmonic functions in the Heisenberg group for p near 2. Contemp. Math. 2005, 370, 17–23. [Google Scholar]
- Domokos, A.; Manfredi, J.J. Subelliptic cordes estimates. Proc. Am. Math. Soc. 2005, 133, 1047–1056. [Google Scholar] [CrossRef]
- Manfredi, J.J.; Mingione, G. Regularity results for quasilinear elliptic equations in the Heisenberg group. Math. Ann. 2007, 339, 485–544. [Google Scholar] [CrossRef]
- Mingione, G.; Zatorska-Goldstein, A.; Zhong, X. Gradient regularity for elliptic equations in the Heisenberg group. Adv. Math. 2009, 222, 62–129. [Google Scholar] [CrossRef]
- Ricciotti, D. p-Laplace Equation in the Heisenberg Group; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Zhong, X. Regularity for variational problems in the Heisenberg group. arXiv 2017, arXiv:1711.03284. Available online: https://arxiv.org/abs/1711.03284 (accessed on 7 March 2018).
- Mukherjee, S.; Zhong, X. C1,α-regularity for variational problems in the Heisenberg group. Anal. PDE 2021, 14, 567–594. [Google Scholar] [CrossRef]
- Domokos, A. W2,2 estimates for solutions to non-uniformly elliptic PDE’s with measurable coefficients. J. Inequal. Pure Appl. Math. 2005, 6, 69. [Google Scholar]
- Liu, J.; Peng, F.; Zhou, Y. HWloc2,2-regularity for p-harmonic functions in Heisenberg groups. Adv. Calc. Var. 2023, 16, 379–390. [Google Scholar] [CrossRef]
- Domokos, A.; Manfredi, J.J. Nonlinear subelliptic equations. Manuscripta Math. 2009, 130, 251–271. [Google Scholar] [CrossRef]
- Domokos, A.; Manfredi, J.J. C1,α-subelliptic regularity on SU(3) and compact, semi-simple Lie groups. Anal. Math. Phys. 2020, 10, 4. [Google Scholar] [CrossRef]
- Yu, C. Second order Sobolev regularity for p-harmonic functions in SU(3). Electron. J. Differ. Equ. 2022, 2022, 27. [Google Scholar] [CrossRef]
- Citti, G.; Mukherjee, S. Regularity of quasi-linear equations with Hörmander vector fields of step two. Adv. Math. 2022, 408, 108593. [Google Scholar] [CrossRef]
- Capogna, L.; Citti, G.; Garofalo, N. Regularity for a class of quasilinear degenerate parabolic equations in the Heisenberg group. Math. Eng. 2021, 3, 1–31. [Google Scholar] [CrossRef]
- Capogna, L.; Citti, G.; Zhong, X. Lipschitz regularity for solutions of the parabolic p-Laplacian in the Heisenberg group. Ann. Fenn. Math. 2023, 48, 411–428. [Google Scholar] [CrossRef]
- Islam, S.; Alam, M.N.; Al-Asad, M.F.; Tunç, C. An analytical technique for solving new computational solutions of the modified Zakharov-Kuznetsov equation arising in electrical engineering. J. Appl. Comput. Mech. 2021, 7, 715–726. [Google Scholar]
- Alam, M.N.; Tunç, C. New solitary wave structures to the (2+1)-dimensional KD and KP equations with spatio-temporal dispersion. J. King Saud Univ. Sci. 2020, 32, 3400–3409. [Google Scholar] [CrossRef]
- DiBenedetto, E.; Friedman, A. Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 1985, 357, 1–22. [Google Scholar]
- Wiegner, M. On Cα-regularity of the gradient of solutions of degenerate parabolic systems. Ann. Mat. Pura Appl. 1986, 145, 385–405. [Google Scholar] [CrossRef]
- Lindqvist, P. On the time derivative in a quasilinear equation. Skr. K. Nor. Vidensk. Selsk. 2008, 2, 1–7. [Google Scholar]
- Attouchi, A.; Ruosteenoja, E. Remarks on regularity for p-laplacian type equations in non-divergence form. J. Diff. Equ. 2018, 265, 1922–1961. [Google Scholar] [CrossRef]
- DiBenedetto, E. Degenerate Parabolic Equations. In Universitext; Springer: New York, NY, USA, 1993. [Google Scholar]
- Capogna, L.; Citti, G.; Zhong, X. Regularity theory of quasilinear elliptic and parabolic equations in the Heisenberg group. Vietnam J. Math. 2024, 52, 807–827. [Google Scholar] [CrossRef]
- Yu, C.; Wang, H.; Cui, K.; Zhao, Z. Second-Order Regularity for Degenerate Parabolic Quasi-Linear Equations in the Heisenberg Group. Mathematics 2024, 12, 3494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yu, C.; Zhang, Z.; Zeng, Y. Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group. Symmetry 2025, 17, 799. https://doi.org/10.3390/sym17050799
Wang H, Yu C, Zhang Z, Zeng Y. Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group. Symmetry. 2025; 17(5):799. https://doi.org/10.3390/sym17050799
Chicago/Turabian StyleWang, Huiying, Chengwei Yu, Zhiqiang Zhang, and Yue Zeng. 2025. "Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group" Symmetry 17, no. 5: 799. https://doi.org/10.3390/sym17050799
APA StyleWang, H., Yu, C., Zhang, Z., & Zeng, Y. (2025). Lipschitz and Second-Order Regularities for Non-Homogeneous Degenerate Nonlinear Parabolic Equations in the Heisenberg Group. Symmetry, 17(5), 799. https://doi.org/10.3390/sym17050799