Harmonic Functions with Montel’s Normalization
Abstract
:1. Introduction
2. Coefficients Conditions
3. Distortion Theorems
4. Partial Sums
5. Convexity and Extreme Points
6. The Radii of Starlikeness and Convexity
7. Conclusions and Declarations
Funding
Data Availability Statement
Conflicts of Interest
References
- Choquet, G. Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques. Bull. Sci. Math. 1945, 89, 156–165. [Google Scholar]
- Kneser, H. Losung der Aufgabe 41. Jahresber. Deutsch. Math.-Verein. 1926, 36, 123–124. [Google Scholar]
- Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 1936, 42, 689–692. [Google Scholar] [CrossRef]
- Rado, T. Aufgabe 41. Jahresber. Deutsch. Math.-Vermin. 1926, 35, 49. [Google Scholar]
- Clunie, J.; Small, T.S. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Aydogan, M.; Bshouty, D.; Lyzzaik, A.; Sakar, F.M. On the shears of univalent harmonic mappings. Complex Anal. Oper. Theory 2019, 13, 2853–2862. [Google Scholar] [CrossRef]
- Bshouty, D.; Lyzzaik, A.; Sakar, F.M. Harmonic mappings of bounded boundary rotation. Proc. Am. Math. Soc. 2018, 146, 1113–1121. [Google Scholar] [CrossRef]
- Montel, P. Leçons sur les Fonctions Univalentes ou Multivalentes; Gauthier–Villars: Paris, France, 1933. [Google Scholar]
- Dubinin, V.N.; Kim, V.Y. Covering theorem for p-valent functions with Montel’s normalization. J. Math. Anal. Appl. 2015, 428, 502–507. [Google Scholar] [CrossRef]
- Dziok, J. The Hohlov operator on the space of harmonic functions. 2015; submitted. [Google Scholar]
- Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar] [CrossRef]
- Al-Kharsani, H.A.; Al-Khal, R.A. Univalent harmonic functions. JIPAM J. Inequal. Pure Appl. Math. 2007, 8, 59. [Google Scholar]
- Al-Khal, R.A. Goodman-Rřnning-type harmonic univalent functions based on Dziok-Srivastava operator. Appl. Math. Sci. 2011, 5, 573–584. [Google Scholar]
- Murugusundaramoorthy, G.; Vijaya, K.; Raina, R.K. A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator. Arch. Math. 2009, 45, 37–46. [Google Scholar]
- Dziok, J. Classes of harmonic functions associated with Ruscheweyh derivatives. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2019, 113, 1315–1329. [Google Scholar] [CrossRef]
- Sălăgean, G.S. Subclasses of univalent functions. Lecture Notes Math. 1983, 1013, 362–372. [Google Scholar]
- Al-Shaqsi, K.; Darus, M.; Fadipe-Joseph, O.A. A new subclass of Salagean-type harmonic univalent functions. Abstr. Appl. Anal. 2010, 2010, 821531. [Google Scholar] [CrossRef]
- Mauir, S. Weak subordination for convex univalent harmonic functions. J. Math. Anal. Appl. 2008, 348, 862–871. [Google Scholar] [CrossRef]
- Silvia, E.M. Partial sums of convex functions of order α. Houston. J. Math. 1985, 11, 397–404. [Google Scholar]
- Jahangiri, J.M. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef]
- Silverman, H. Harmonic univalent functions with negative coefficients. J. Math. Anal. Appl. 1998, 220, 283–289. [Google Scholar] [CrossRef]
- Dziok, J.; Trojnar-Spelina, L. On a class of functions with negative coefficients. J. Math. Appl. 2006, 28, 41–48. [Google Scholar]
- Seoudy, T.M. Classes of p-valent harmonic functions defined by q-derivative operator. Afr. Mat. 2023, 34, 91. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziok, J. Harmonic Functions with Montel’s Normalization. Symmetry 2025, 17, 720. https://doi.org/10.3390/sym17050720
Dziok J. Harmonic Functions with Montel’s Normalization. Symmetry. 2025; 17(5):720. https://doi.org/10.3390/sym17050720
Chicago/Turabian StyleDziok, Jacek. 2025. "Harmonic Functions with Montel’s Normalization" Symmetry 17, no. 5: 720. https://doi.org/10.3390/sym17050720
APA StyleDziok, J. (2025). Harmonic Functions with Montel’s Normalization. Symmetry, 17(5), 720. https://doi.org/10.3390/sym17050720