The Circle Group Heuristic to Improve the Efficiency of the Discrete Bacterial Memetic Evolutionary Algorithm Applied for TSP, TRP, and TSPTW
Abstract
1. Introduction
2. Various NP-Hard Graph Optimization Problems in the TSP Family
2.1. The Traveling Salesman Problem
2.2. Traveling Repairman Problem
2.3. Traveling Salesman Problem with Time Windows
- Ready time = ;
- Due time = ;
- is the set of customers;
- is the depot.
- It is subject to for all customers;
- = max ;
- ;
- is departure time at customer Pk;
- is arrival time at customer Pk.
3. The Discrete Bacterial Memetic Evolutionary Algorithm
3.1. Initial Population
3.1.1. Nearest Neighbor Heuristic
3.1.2. Secondary Nearest Neighbor Heuristic
3.1.3. Alternating Nearest Neighbor Heuristic
3.2. Bacterial Mutation
3.3. Local Search
3.3.1. A 2-OPT Local Search
3.3.2. A 3-OPT Local Search
- Candidate list: For each vertex, a candidate list is generated containing the indices of its closest neighboring vertices, ordered in ascending distance. During local search, only a predefined number of the nearest vertices (from the candidate list) are considered for edge exchanges. This approach exploits the fact that shorter edges are more likely to be part of high-quality solutions.
- Don’t look back bits: Each vertex is associated with a don’t look back bit. If no improvement is found for a particular vertex during a local search iteration, that vertex is temporarily excluded from consideration (its don’t look back bit is set to 1). The vertex remains inactive until one of its incident edges is modified, at which point its don’t look back bit is reset, and it becomes eligible for further consideration.
- Fixed radius search: For a given vertex , the new neighbor vertex is searched within a fixed radius. The radius is defined as , which is the distance between the vertex and , one of the two neighboring vertices in the current tour. This strategy restricts the search to spatially proximate vertices, thereby reducing computational overhead. The concept can be extended to 3-OPT local search by performing two fixed-radius searches for each examined vertex pair.
3.4. Gene Transfer
4. Initial Population Strategies in Metaheuristic Algorithms
4.1. The Importance of the Initial Population
4.2. Circle Group Heuristic Algorithm
5. Results of the DBMEA with CGH Applied for Three NP- Hard Metaheuristics
5.1. Results of Traveling Salesman Problem
- The number of bacteria in the population is ;
- The number of clones in the bacterial mutations ;
- The number of infections in the gene transfer is ;
- The length of the chromosomes is ;
- The length of the transferred segment is ;
- The length of the candidate lists (square root of the number of cities).
5.2. Results of Traveling Repairman Problem
- The number of bacteria in the population is ;
- The number of clones in the bacterial mutations ;
- The number of infections in the gene transfer is ;
- The length of the chromosomes is ;
- The length of the transferred segment is ;
- The length of the candidate lists (square root of the number of cities).
5.3. Results of Traveling Salesman Problem with Time Window
- The number of bacteria in the population is ;
- The number of clones in the bacterial mutations ;
- The number of infections in the gene transfer is ;
- The length of the chromosomes is ;
- The length of the transferred segment is ;
- The length of the candidate lists (square root of the number of cities).
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Artificial Bee Colony |
ACO | Ant Colony Optimization |
ANN | Alternating Nearest Neighbor |
ATSP | Asymmetric Traveling Repairman Problem |
BEA | Bacterial Evolutionary Algorithm |
BFO | Bacterial Foraging Optimization |
CGH | Circle Group Heuristic |
CS | Cuckoo Search |
DBMEA | Discrete Bacterial Memetic Evolutionary Algorithm |
DE | Differential Evolution |
GA | Genetic Algorithm |
EA | Evolutionary Algorithms |
NC | Neighborhood Circle |
NN | Nearest Neighbor |
PSO | Particle Swarm Optimization |
SNN | Secondary Nearest Neighbor |
STSP | Symmetric Traveling Repairman Problem |
TRP | Traveling Repairman Problem |
TSP | Traveling Salesman Problem |
TSPTW | Traveling Salesman Problem with Time Window |
References
- Sudholt, D. The benefits of population diversity in evolutionary algorithms: A survey of rigorous runtime analyses. arXiv 2018, arXiv:1801.10087. [Google Scholar] [CrossRef]
- Wang, J.; Ersoy, O.K.; Chen, X.; Wang, F. A method of initial population generation of intelligent optimization algorithms for constrained global optimization. Int. J. Hybrid Inf. Technol. 2017, 10, 47–56. [Google Scholar] [CrossRef]
- Kazimipour, B.; Li, X.; Qin, A.K. A review of population initialization techniques for evolutionary algorithms. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 2585–2592. [Google Scholar] [CrossRef]
- Ashraf, A.; Pervaiz, S.; Haider Bangyal, W.; Nisar, K.; Ibrahim, A.A.; Rodrigues, J.J.P.C.; Rawat, D.B. Studying the impact of initialization for population-based algorithms with low-discrepancy sequences. Appl. Sci. 2021, 11, 8190. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.Y.; Yang, X.S. Influence of initialization on the performance of metaheuristic optimizers. arXiv 2020, arXiv:2003.03789. [Google Scholar] [CrossRef]
- Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput. 2018, 39, 1–23. [Google Scholar] [CrossRef]
- Friedrich, T.; Wagner, M. Seeding the initial population of multi-objective evolutionary algorithms: A computational study. Appl. Soft Comput. 2015, 33, 223–230. [Google Scholar] [CrossRef]
- Lu, M.; Yen, G.G. A rank-density-based genetic algorithm for multi-objective optimization. In Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC), Canberra, Australia, 8–12 December 2003; pp. 2795–2802. [Google Scholar] [CrossRef]
- Ibada, A.J.; Tüu-Szabó, B.; Kóczy, L.T. A new efficient tour construction heuristic for the Traveling Salesman Problem. In Proceedings of the 2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence (ISMSI’21), Victoria, Seychelles, 10–11 April 2021; pp. 71–76. [Google Scholar] [CrossRef]
- Ibada, A.J.; Tüu-Szabó, B.; Kóczy, L.T. Effect of the initial population construction on the DBMEA algorithm searching for the optimal solution of the traveling salesman problem. Infocommun. J. 2022, XIV, 72–78. [Google Scholar] [CrossRef]
- Zhang, J.; Hong, L.; Liu, Q. An Improved Whale Optimization Algorithm for the Traveling Salesman Problem. Symmetry 2021, 13, 48. [Google Scholar] [CrossRef]
- Pop, P.C.; Cosma, O.; Sabo, C.; Sitar, C.P. A comprehensive survey on the generalized traveling salesman problem. Eur. J. Oper. Res. 2024, 314, 819–835. [Google Scholar] [CrossRef]
- Kovács, L.; Iantovics, L.B.; Iakovidis, D.K. IntraClusTSP—An Incremental Intra-Cluster Refinement Heuristic Algorithm for Symmetric Travelling Salesman Problem. Symmetry 2018, 10, 663. [Google Scholar] [CrossRef]
- Kóczy, L.T.; Földesi, P.; Tüu-Szabó, B. A discrete bacterial memetic evolutionary algorithm for the traveling salesman problem. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 3261–3267. [Google Scholar] [CrossRef]
- Applegate, D.L. The Traveling Salesman Problem: A Computational Study; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Cook, W.J.; Espinoza, D.G. Computing with domino-parity inequalities for the Traveling Salesman Problem (TSP). INFORMS J. Comput. 2007, 19, 356–365. [Google Scholar] [CrossRef]
- Laporte, G. The Traveling Salesman Problem, the Vehicle Routing Problem, and Their Impact on Combinatorial Optimization. Int. J. Strateg. Decis. Sci. 2010, 1, 82–92. [Google Scholar] [CrossRef]
- Ayoola, J.A.; Asani, E.O.; Okeyinka, A.E.; Ayegba, P.O. Towards comparative analysis of branch-and-bound and nearest neighbour algorithms. In Proceedings of the 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), Lagos, Nigeria, 18–21 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Levine, M.S. Finding the right cutting planes for the TSP. ACM J. Exp. Algorithmics 2000, 5, 6-es. [Google Scholar] [CrossRef]
- Bouman, P.; Agatz, N.; Schmidt, M. Dynamic programming approaches for the traveling salesman problem with drone. Networks 2018, 72, 528–542. [Google Scholar] [CrossRef]
- Alanzi, E.; Menai, M.E.B. Solving the traveling salesman problem with machine learning: A review of recent advances and challenges. Artif. Intell. Rev. 2025, 58, 267–292. [Google Scholar] [CrossRef]
- Larrañaga, P.; Kuijpers, C.M.H.; Murga, R.H.; Inza, I.; Dizdarevic, S. Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artif. Intell. Rev. 1999, 13, 129–170. [Google Scholar] [CrossRef]
- Dorigo, M.; Gambardella, L.M. Ant colonies for the travelling salesman problem. Biosystems 1997, 43, 73–81. [Google Scholar] [CrossRef]
- Verma, O.P.; Jain, R.; Chhabra, V. Solution of travelling salesman problem using bacterial foraging optimisation algorithm. Int. J. Swarm Intell. 2014, 1, 179–192. [Google Scholar] [CrossRef]
- Toaza, B.; Esztergár-Kiss, D. A review of metaheuristic algorithms for solving TSP-based scheduling optimization problems. Appl. Soft Comput. 2023, 148, 110908. [Google Scholar] [CrossRef]
- Kóczy, L.T.; Földesi, P.; Tüű-Szabó, B. Enhanced discrete bacterial memetic evolutionary algorithm—An efficacious metaheuristic for the traveling salesman optimization. Inf. Sci. 2018, 460–461, 389–400. [Google Scholar] [CrossRef]
- Kóczy, L.T.; Földesi, P.; Tüű-Szabó, B. An effective discrete bacterial memetic evolutionary algorithm for the Traveling Salesman Problem. Int. J. Intell. Syst. 2017, 32, 862–876. [Google Scholar] [CrossRef]
- Sitters, R. Polynomial time approximation schemes for the traveling repairman and other minimum latency problems. SIAM J. Comput. 2021, 50, 1580–1602. [Google Scholar] [CrossRef]
- Tüű-Szabó, B.; Földesi, P.; Kóczy, L.T. An efficient evolutionary metaheuristic for the Traveling Repairman (Minimum Latency) Problem. Int. J. Comput. Intell. Syst. 2020, 13, 781–793. [Google Scholar] [CrossRef]
- Salehipour, A.; Sörensen, K.; Goos, P.; Bräysy, O. Efficient GRASP+VND and GRASP+VNS metaheuristics for the traveling repairman problem. 4OR Q. J. Oper. Res. 2011, 9, 189–209. [Google Scholar] [CrossRef]
- Savelsbergh, M.W.P. A note on the traveling repairman problem. Networks 1993, 23, 637–643. [Google Scholar] [CrossRef]
- Aho, A.V.; Hopcroft, J.E.; Ullman, J.D. The Design and Analysis of Computer Algorithms; Addison-Wesley: Boston, MA, USA, 1974. [Google Scholar]
- Gendreau, M.; Potvin, J.Y. Handbook of Metaheuristics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Ban, H.B.; Pham, D.H. Solving optimization problems simultaneously: The variants of the traveling salesman problem with time windows using multifactorial evolutionary algorithm. PeerJ Comput. Sci. 2023, 9, e1192. [Google Scholar] [CrossRef]
- Focacci, F.; Lodi, A.; Milano, M. A hybrid exact algorithm for the TSPTW. INFORMS J. Comput. 2002, 14, 403–417. [Google Scholar] [CrossRef]
- López-Ibáñez, M.; Blum, C.; Ohlmann, J.W.; Thomas, B.W. The travelling salesman problem with time windows: Adapting algorithms from travel-time to makespan optimization. Appl. Soft Comput. 2013, 13, 3806–3815. [Google Scholar] [CrossRef]
- Langevin, A.; Desrochers, M.; Desrosiers, J.; Gélinas, S.; Soumis, F. A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows. Networks 1993, 23, 631–640. [Google Scholar] [CrossRef]
- Dumas, Y.; Desrosiers, J.; Gelinas, E.; Solomon, M.M. An Optimal Algorithm for the Traveling Salesman Problem with Time Windows. Oper. Res. 1995, 43, 367–371. [Google Scholar] [CrossRef]
- Carlton, W.B.; Barnes, J.W. Solving the Traveling-Salesman Problem with Time Windows Using Tabu Search. IIE Trans. 1996, 28, 617–629. [Google Scholar] [CrossRef]
- Gendreau, M.; Hertz, A.; Laporte, G.; Stan, M. A generalized insertion heuristic for the traveling salesman problem with time windows. Oper. Res. 1998, 46, 330–335. [Google Scholar] [CrossRef]
- Ohlmann, J.W.; Thomas, B.W. A compressed-annealing heuristic for the traveling salesman problem with time windows. INFORMS J. Comput. 2007, 19, 80–90. [Google Scholar] [CrossRef]
- da Silva, R.F.; Urrutia, S. A general VNS heuristic for the traveling salesman problem with time windows. Discret. Optim. 2010, 7, 203–211. [Google Scholar] [CrossRef]
- Nawa, N.E.; Furuhashi, T. Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans. Fuzzy Syst. 1999, 7, 608–616. [Google Scholar] [CrossRef]
- Inoue, T.; Furuhashi, T.; Maeda, H.; Takaba, M. A study on interactive nurse scheduling support system using bacterial evolutionary algorithm engine. IEEJ Trans. Electron. Inf. Syst. 2002, 122, 1803–1811. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Chowdhury, A.; Abraham, A. A bacterial evolutionary algorithm for automatic data clustering. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 200; pp. 2403–2410. [CrossRef]
- Dányádi, Z.; Földesi, P.; Kóczy, L.T. A fuzzy bacterial evolutionary solution for three dimensional bin packing problems. Acta Tech. Jaurinensis 2010, 3, 325–333. [Google Scholar]
- Dányádi, Z.; Földesi, P.; Kóczy, L.T. Solution of a fuzzy resource allocation problem by various evolutionary approaches. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 807–812. [Google Scholar] [CrossRef]
- Amini, M.; Hatwagner, M.F.; Mikulai, G.C.; Kóczy, L.T. A vehicular traffic congestion predictor system using Mamdani fuzzy inference. Syst. Theory Control Comput. J. 2021, 1, 49–57. [Google Scholar] [CrossRef]
- Amini, M.; Hatwagner, M.F.; Mikulai, G.; Kóczy, L.T. Developing a macroscopic model based on fuzzy cognitive map for road traffic flow simulation. Infocommun. J. 2021, XIII, 14–23. [Google Scholar] [CrossRef]
- University of Waterloo. World TSP Dataset. Available online: https://www.math.uwaterloo.ca/tsp/world (accessed on 28 July 2025).
- University of Heidelberg. TSPLIB95, Dataset. 1995. Available online: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ (accessed on 28 July 2025).
Country | Number of Cities | NN | SNN | ANN | Exhaustive Search | Genetic Algorithm | ||
---|---|---|---|---|---|---|---|---|
R | CGH | R | CGH | |||||
Djibouti | 38 | 9748.946 | 13,509.088 | 10,474.948 | 78–100 | 8306.575 | 79.834 | 8306.575 |
China | 70 | 2570.329 | 4148.675 | 3565.305 | 18 | 2267.889 | 21.137 | 2263.575 |
Burma | 80 | 5477.026 | 8674.245 | 6079.910 | 98–100 | 4526.302 | 98.272 | 4526.302 |
Qatar | 194 | 11,892.888 | 18,980.443 | 17,199.801 | 9 | 11,649.869 | 56.280 | 11,255.296 |
Uruguay | 734 | 102,594.358 | 165,796.643 | 130,793.380 | 57–59 | 95,536.209 | 54.832 | 95,461.998 |
Zimbabwe | 929 | 117,733.696 | 200,063.995 | 160,430.512 | 10 | 114,813.039 | 48.955 | 114,484.256 |
Luxembourg | 980 | 14,212.721 | 26,240.107 | 20,397.885 | 8 | 13,995.032 | 16.254 | 13,958.023 |
Rwanda | 1621 | 32,276.665 | 68,487.437 | 45,630.149 | 10 | 31,596.476 | 9.768 | 31,596.476 |
Oman | 1979 | 120,542.129 | 204,249.064 | 152,503.643 | 13 | 110,747.729 | 12.688 | 110,029.190 |
Nicaragua | 3496 | 122,412.147 | 229,749.240 | 179,481.992 | 16 | 118,141.497 | 15.935 | 118,141.497 |
Canada | 4663 | 1,668,707.230 | 2,852,242.400 | 2,320,011.780 | 71–74 | 1,603,709.500 | 73.834 | 1,603,709.500 |
Tanzania | 6117 | 501,427.829 | 852,834.843 | 696,141.743 | 16 | 499,513.302 | 16.567 | 499,513.302 |
Egypt | 7146 | 222,335.231 | 391,416.939 | 306,664.393 | 4 | 217,487.431 | 3.981 | 217,487.431 |
Yemen | 7663 | 298,953.459 | 523,144.599 | 417,814.532 | 5 | 298,150.565 | 5.185 | 297,972.031 |
Panama | 8079 | 146,660.520 | 277,856.032 | 210,793.510 | 16 | 142,277.699 | 15.984 | 141,949.651 |
Ireland | 8246 | 259,165.057 | 421,610.120 | 350,446.111 | 12 | 255,167.585 | 11.971 | 255,167.585 |
Argentina | 9152 | 1,034,964.600 | 1,951,034.190 | 1,527,346.320 | 16 | 1,034,084.030 | 15.635 | 1,034,084.030 |
Japan | 9847 | 625,031.710 | 1,104,954.110 | 909,941.924 | 2 | 624,849.337 | 2.215 | 624,849.337 |
Greece | 9882 | 391,415.926 | 637,638.279 | 523,514.157 | 14 | 384,948.298 | 13.158 | 384,900.881 |
Kazakhstan | 9976 | 1,346,903.560 | 2,320,848.050 | 1,863,893.670 | 13 | 1,325,094.710 | 13.058 | 1,325,094.710 |
Finland | 10,639 | 657,774.773 | 1,081,658.770 | 889,702.220 | 20 | 649,477.672 | 20.158 | 649,477.672 |
Instance | NN | SNN | ANN | CGH |
---|---|---|---|---|
Burma | 2 ms | 3 ms | 2 ms | 2 ms |
Rwanda | 783 ms | 1766 ms | 1284 ms | 673 ms |
Instance | Standard DBMEA | DBMEA with CGH | ||
---|---|---|---|---|
Best | Avg | Best | Avg | |
xql662 | 2550.84 | 2550.84 | 2550.84 | 2550.84 |
dkg813 | 3243.41 | 3243.41 | 3243.41 | 3243.41 |
dka1376 | 4738.61 | 4743.2 | 4737.86 | 4738.33 |
dca1389 | 5156.43 | 5158.06 | 5156.32 | 5157.8 |
dja1436 | 5332.19 | 5335.93 | 5328.96 | 5330.09 |
icw1483 | 4467.22 | 4472.12 | 4466.68 | 4469.67 |
rbv1583 | 5446.09 | 5449.99 | 5445.34 | 5447.4 |
rby1599 | 5589.13 | 5592.02 | 5586.59 | 5591.56 |
dea2382 | 8154.34 | 8160.93 | 8149.61 | 8152.12 |
pds2566 | 7774.91 | 7781.57 | 7772.01 | 7778.91 |
bch2762 | 8376.18 | 8380.63 | 8369.98 | 8372.32 |
fdp3256 | 10,104.36 | 10,108.69 | 10,102.03 | 10,105.31 |
dkc3938 | 12,715.99 | 12,723.46 | 12,707.78 | 12,711.01 |
xqd4966 | 15,554.91 | 15,560.49 | 15,553.7 | 15,558.51 |
Instance | Standard DBMEA | DBMEA with CGH | ||
---|---|---|---|---|
S20 | S50 | S20 | S50 | |
TRP-Sn-R1 | 0.46620 | 5.3862 | 0.46435 | 4.504 |
TRP-Sn-R2 | 1.81035 | 4.157 | 1.20820 | 2.7564 |
TRP-Sn-R3 | 0.31860 | 5.8018 | 0.26175 | 4.9896 |
TRP-Sn-R4 | 0.64560 | 10.2186 | 0.58460 | 9.6592 |
TRP-Sn-R5 | 0.86665 | 7.1022 | 0.69775 | 6.4844 |
TRP-Sn-R6 | 0.36460 | 33.613 | 0.29005 | 33.01 |
TRP-Sn-R7 | 0.81975 | 3.9832 | 0.78280 | 3.2212 |
TRP-Sn-R8 | 0.73525 | 10.0588 | 0.72810 | 8.2512 |
TRP-Sn-R9 | 0.62660 | 9.1434 | 0.60420 | 8.1272 |
TRP-Sn-R10 | 0.66405 | 7.851 | 0.60135 | 6.7018 |
TRP-Sn-R11 | 0.31340 | 20.6156 | 0.24940 | 14.5618 |
TRP-Sn-R12 | 0.33315 | 4.0588 | 0.27370 | 3.8696 |
TRP-Sn-R13 | 0.46040 | 11.911 | 0.38175 | 10.9524 |
TRP-Sn-R14 | 0.25540 | 36.342 | 0.24555 | 34.18 |
TRP-Sn-R15 | 0.29265 | 4.9564 | 0.22680 | 4.345 |
TRP-Sn-R16 | 0.61670 | 4.9534 | 0.59085 | 4.3752 |
TRP-Sn-R17 | 1.41970 | 22.8882 | 1.18085 | 21.4784 |
TRP-Sn-R18 | 0.24355 | 15.444 | 0.23145 | 13.415 |
TRP-Sn-R19 | 7.2784 | 8.91 | 2.9512 | 6.1426 |
TRP-Sn-R20 | 0.83550 | 2.373 | 0.62880 | 1.9478 |
Instance | Best Known | DBMEA | DBMEA with CGH | |||||
---|---|---|---|---|---|---|---|---|
Best Value | Avg. Value | Avg. Sec | Initial CGH | Best Value | Avg. Value | Avg. Sec | ||
eil51 | 10,178 | 10,178 | 10,178 | 13.1285 | 10,859.087 | 10,178 | 10,178 | 11.9511 |
berlin52 | 143,721 | 143,721 | 143,721 | 3.0569 | 152,750.51 | 143,721 | 143,721 | 2.5359 |
st70 | 20,557 | 20,557 | 20,557 | 12.7221 | 22,657.996 | 20,557 | 20,557 | 11.3729 |
eil76 | 17,976 | 17,976 | 17,976 | 17.6342 | 19,518.298 | 17,976 | 17,976 | 14.6147 |
pr76 | 3,455,242 | 3,455,242 | 3,455,242 | 8.1218 | 3,696,829.1 | 3,455,242 | 3,455,242 | 7.3098 |
rat99 | 57,986 | 57,986 | 57,986 | 54.6843 | 62,967.779 | 57,986 | 57,986 | 51.8731 |
kroA100 | 983,128 | 983,128 | 983,128 | 24.0905 | 1,103,528.6 | 983,128 | 983,128 | 21.7378 |
kroD100 | 976,965 | 976,965 | 976,965 | 19.5177 | 1,054,638.6 | 976,965 | 976,965 | 18.2528 |
lin105 | 603,910 | 603,910 | 603,910 | 57.0368 | 687,043.79 | 603,910 | 603,910 | 47.8758 |
pr107 | 2,026,626 | 2,026,626 | 2,026,626 | 8.23 | 2,083,980 | 2,026,626 | 2,026,626 | 7.4696 |
rat195 | 2,10,191 | 218,665 | 218,693.1 | 157.8004 | 228,467.18 | 218,665 | 218,665 | 143.2586 |
pr226 | 7,100,308 | 7,196,869 | 7,196,898.6 | 208.2368 | 10,785,832 | 7,196,869 | 7,196,869 | 200.7428 |
Instance | Best Known | DBMEA | DBMEA with CGH | |||||
---|---|---|---|---|---|---|---|---|
n | w | Best Value | Avg. Value | Avg. Sec | Best Value | Avg. Value | Avg. Sec | |
20 | 120 | 265.6 | 265.6 | 265.6 | 0.2 | 265.6 | 265.6 | 0.2 |
140 | 232.8 | 232.8 | 232.8 | 0.2 | 232.8 | 232.8 | 1.8 | |
160 | 218.2 | 218.2 | 218.2 | 0.2 | 218.2 | 218.2 | 0.2 | |
180 | 236.6 | 236.6 | 236.6 | 0.2 | 236.6 | 236.6 | 0.2 | |
200 | 241 | 241 | 241 | 0.2 | 241 | 241 | 0.19 | |
40 | 120 | 377.8 | 377.8 | 377.8 | 0.6 | 377.8 | 377.8 | 0.53 |
140 | 364.4 | 364.4 | 364.4 | 0.7 | 364.4 | 364.4 | 0.68 | |
160 | 326.8 | 326.8 | 326.8 | 0.7 | 326.8 | 326.8 | 0.63 | |
180 | 330.4 | 330.68 | 330.68 | 1.1 | 330.53 | 330.68 | 0.98 | |
200 | 313.8 | 314.98 | 314.98 | 1.7 | 313.8 | 314.98 | 1.62 | |
60 | 120 | 451 | 451 | 451 | 1.3 | 451 | 451 | 1.26 |
140 | 452 | 452 | 452 | 1.4 | 452 | 452 | 1.32 | |
160 | 464 | 464.4 | 464.58 | 1.9 | 464.4 | 464.4 | 1.81 | |
180 | 421.2 | 421.2 | 421.82 | 3.6 | 421.2 | 421.2 | 3.23 | |
200 | 427.4 | 427.4 | 427.4 | 2.7 | 427.4 | 427.4 | 2.61 | |
80 | 100 | 578.6 | 578.6 | 578.6 | 1.4 | 578.6 | 578.6 | 1.31 |
120 | 541.4 | 541.4 | 542.24 | 6.9 | 541.4 | 542.24 | 6.84 | |
140 | 506 | 506 | 506.88 | 6.4 | 506 | 506 | 6.33 | |
160 | 504.8 | 505.2 | 506.14 | 6.7 | 505.2 | 505.2 | 6.7 | |
180 | 500.6 | 502 | 502.8 | 7.4 | 501.27 | 502 | 7.34 | |
200 | 481.4 | 481.8 | 482.86 | 7.5 | 481.8 | 481.8 | 7.48 | |
100 | 80 | 666.4 | 666.4 | 667.1 | 7.4 | 666.4 | 666.75 | 7.37 |
100 | 642 | 642 | 642.86 | 10.4 | 642 | 642.63 | 9.81 | |
120 | 597.2 | 598.2 | 600.1 | 15.1 | 598.2 | 600.1 | 14.85 | |
140 | 548.4 | 548.4 | 548.66 | 8.8 | 548.4 | 548.66 | 8.13 | |
160 | 555 | 555 | 556.22 | 12.8 | 555 | 555.86 | 12.53 | |
180 | 561.6 | 562 | 562.7 | 14.1 | 562 | 562.45 | 13.75 | |
200 | 550.2 | 551.2 | 552.84 | 15 | 550.6 | 551.27 | 14.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibada, A.J.; Tüű-Szabó, B.; Kóczy, L.T. The Circle Group Heuristic to Improve the Efficiency of the Discrete Bacterial Memetic Evolutionary Algorithm Applied for TSP, TRP, and TSPTW. Symmetry 2025, 17, 1683. https://doi.org/10.3390/sym17101683
Ibada AJ, Tüű-Szabó B, Kóczy LT. The Circle Group Heuristic to Improve the Efficiency of the Discrete Bacterial Memetic Evolutionary Algorithm Applied for TSP, TRP, and TSPTW. Symmetry. 2025; 17(10):1683. https://doi.org/10.3390/sym17101683
Chicago/Turabian StyleIbada, Ali Jawad, Boldizsár Tüű-Szabó, and László T. Kóczy. 2025. "The Circle Group Heuristic to Improve the Efficiency of the Discrete Bacterial Memetic Evolutionary Algorithm Applied for TSP, TRP, and TSPTW" Symmetry 17, no. 10: 1683. https://doi.org/10.3390/sym17101683
APA StyleIbada, A. J., Tüű-Szabó, B., & Kóczy, L. T. (2025). The Circle Group Heuristic to Improve the Efficiency of the Discrete Bacterial Memetic Evolutionary Algorithm Applied for TSP, TRP, and TSPTW. Symmetry, 17(10), 1683. https://doi.org/10.3390/sym17101683