Sustaining Quasi De-Sitter Inflation with Bulk Viscosity
Abstract
:1. Introduction
2. Bulk-Viscosity Driven Quasi De-Sitter Inflation: Mathematical Background
2.1. Examining the Energy Conditions
2.2. Exact De-Sitter Expansion within the Generalised Causal Theory
3. Numerical Solutions
4. Results and Interpretation
4.1. Admissible Regions of the Parameters
- (a)
- : this is the perfect-fluid cosmological solution with an ultra-stiff EOS [40].
- (b)
- : this corresponds to the exact de-Sitter solution.
- (c)
- : the corresponding solution is given by
4.2. Estimation of the Model Parameters
4.3. Comparison with Observations
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532–535. [Google Scholar]
- Hawking, S.W. The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 1982, 115, 295–297. [Google Scholar] [CrossRef]
- Guth, A.H.; Pi, S.-Y. Fluctuations in the new inflationary universe. Phys. Rev. Lett. 1982, 49, 1110–1113. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aikin, R.W.; Barkats, D.; Benton, S.J.; Bischoff, C.A.; Bock, J.J.; Brevik, J.A.; Buder, I.; Bullock, E.; Dowell, C.D.; et al. Detection of b-mode polarization at degree angular scales by bicep2. Phys. Rev. Lett. 2014, 112, 241101. [Google Scholar] [CrossRef]
- Ayón-Beato, E.; García, A. Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics. Phys. Rev. Lett. 1998, 80, 5056–5059. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J., Supp. 2003, 148, 175–194. [Google Scholar] [CrossRef]
- Spergel, D.N.; Bean, R.; Doré, O.; Nolta, M.R.; Bennett, C.L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E.; Page, L.; et al. Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. Astrophys. J. Supp. Ser. 2007, 170, 377–408. [Google Scholar] [CrossRef]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Supp. Ser. 2011, 192, 18. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys. 2014, 571, A22. [Google Scholar]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.; Bartolo, N.; Basak, S.; et al. Planck 2018 results-x. constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Linde, A.D. Chaotic Inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Baumann, D. Inflation. In Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small; World Scientfic: Singapore, 2011; pp. 523–686. [Google Scholar]
- Bezrukov, F.; Shaposhnikov, M. The standard model higgs boson as the inflaton. Phys. Lett. B 2008, 659, 703–706. [Google Scholar] [CrossRef]
- Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation with pseudo nambu-goldstone bosons. Phys. Rev. Lett. 1990, 65, 3233–3236. [Google Scholar] [CrossRef]
- Bassett, B.A.; Tsujikawa, S.; Wands, D. Inflation dynamics and reheating. Rev. Mod. Phys. 2006, 78, 537–589. [Google Scholar] [CrossRef]
- Wands, D. Multiple field inflation. Lect. Notes Phys. 2008, 738, 275–304. [Google Scholar]
- Kachru, S.; Kallosh, R.; Linde, A.D.; Maldacena, J.M.; McAllister, L.P.; Trivedi, S.P. Towards inflation in string theory. JCAP 2003, 10, 013. [Google Scholar] [CrossRef]
- Dvali, G.R.; Tye, S.H.H. Brane inflation. Phys. Lett. B 1999, 450, 72–82. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Kanti, P.; Gannouji, R.; Dadhich, N. Gauss-Bonnet Inflation. Phys. Rev. D 2015, 92, 041302. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Maartens, R. Dissipative cosmology. Class. Quantum Gravity 1995, 12, 1455. [Google Scholar] [CrossRef]
- Zimdahl, W. Bulk viscous cosmology. Phys. Rev. D 1996, 53, 5483–5493. [Google Scholar] [CrossRef]
- Brevik, I.; Gorbunova, O. Dark energy and viscous cosmology. Gen. Relativ. Gravit. 2005, 37, 2039–2045. [Google Scholar] [CrossRef]
- Belinchón, J.A.; Cornejo-Pérez, O.; Cruz, N. Exact solutions of a causal viscous FRW cosmology within the Israel–Stewart theory through factorization. Gen. Rel. Grav. 2022, 54, 10. [Google Scholar] [CrossRef]
- Hakk, E.A.; Tawfik, A.N.; Nada, A.; Yassin, H. Cosmic Evolution of Viscous QCD Epoch in Causal Eckart Frame. Universe 2021, 7, 112. [Google Scholar] [CrossRef]
- Brevik, I.; Timoshkin, A.V. Thermodynamic aspects of entropic cosmology with viscosity. Int. J. Mod. Phys. D 2021, 30, 2150008. [Google Scholar] [CrossRef]
- Cárdenas, V.H.; Cruz, M.; Lepe, S. Cosmic expansion with matter creation and bulk viscosity. Phys. Rev. D 2020, 102, 123543. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Valentino, E.D.; Paliathanasis, A.; Lu, J. Challenging bulk viscous unified scenarios with cosmological observations. Phys. Rev. D 2019, 100, 103518. [Google Scholar] [CrossRef]
- Cruz, N.; González, E.; Palma, G. Exact analytical solution for an Israel–Stewart cosmology. Gen. Rel. Grav. 2020, 52, 62. [Google Scholar] [CrossRef]
- Brevik, I.; Elizalde, E.; Odintsov, S.D.; Timoshkin, A.V. Inflationary universe in terms of a van der Waals viscous fluid. Int. J. Geom. Meth. Mod. Phys. 2017, 14, 1750185. [Google Scholar] [CrossRef]
- Brevik, I.; Grøn, O.; de Haro, J.; Odintsov, S.D.; Saridakis, E.N. Viscous Cosmology for Early- and Late-Time Universe. Int. J. Mod. Phys. D 2017, 26, 1730024. [Google Scholar] [CrossRef]
- Muller, I. Zum Paradoxon der Warmeleitungstheorie. Z. Phys. 1967, 198, 329–344. [Google Scholar] [CrossRef]
- Israel, W. Nonstationary irreversible thermodynamics: A causal relativistic theory. Ann. Phys. 1976, 100, 310–331. [Google Scholar] [CrossRef]
- Israel, W. Thermo-field dynamics of black holes. Phys. Lett. A 1976, 57, 107–110. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Generic instabilities in first-order dissipative relativistic fluid theories. Phys. Rev. D 1985, 31, 725. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Stability and causality in dissipative relativistic fluids. Ann. Phys. 1983, 151, 466–496. [Google Scholar] [CrossRef]
- Rezzolla, L.; Zanotti, O. Relativistic Hydrodynamics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Maartens, R.; Mendez, V. Nonlinear bulk viscosity and inflation. Phys. Rev. 1997, 55, 1937. [Google Scholar] [CrossRef]
- Maartens, R.; Govender, M.; Maharaj, S.D. Inflation driven by causal heat flux. Gen. Rel. Grav. 1999, 31, 815–819. [Google Scholar] [CrossRef]
- Chabanov, M.; Rezzolla, L.; Rischke, D.H. General-relativistic hydrodynamics of non-perfect fluids: 3 + 1 conservative formulation and application to viscous black hole accretion. Mon. Not. R. Astron. Soc. 2021, 505, 5910–5940. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J. Causality of the Einstein-Israel-Stewart Theory with Bulk Viscosity. Phys. Rev. Lett. 2019, 122, 221602. [Google Scholar] [CrossRef] [PubMed]
- Kovtun, P. First-order relativistic hydrodynamics is stable. JHEP 2019, 10, 034. [Google Scholar] [CrossRef]
- Maartens, R. Causal Thermodynamics in Relativity. arXiv 1996, arXiv:astro-ph/9609119v1. [Google Scholar]
- Capozziello, S.; Nojiri, S.; Odintsov, S.D. Unified phantom cosmology: Inflation, dark energy and dark matter under the same standard. Phys. Lett. B 2006, 632, 597–604. [Google Scholar] [CrossRef]
- Saridakis, E.N. Theoretical Limits on the Equation-of-State Parameter of Phantom Cosmology. Phys. Lett. B 2009, 676, 7–11. [Google Scholar] [CrossRef]
- Khurshudyan, M. On the Phenomenology of an Accelerated Large-Scale Universe. Symmetry 2016, 8, 110. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D. Inflation in a viscous fluid model. Eur. Phys. J. 2016, 76, 1–12. [Google Scholar] [CrossRef]
- Zimdahl, W. Cosmological particle production, causal thermodynamics, and inflationary expansion. Phys. Rev. D 2000, 61, 083511. [Google Scholar] [CrossRef]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. Reconstruction of scalar field theories realizing inflation consistent with the Planck and BICEP2 results. Phys. Lett. B 2014, 737, 374–378. [Google Scholar] [CrossRef]
- Riotto, A. Inflation and the theory of cosmological perturbations. ICTP Lect. Notes Ser. 2003, 14, 317–413. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. V. CMB power spectra and likelihoods. Astron. Astrophys. 2020, 641, A5. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 2020, 641, A1. [Google Scholar]
- Ade, P.A.; Ahmed, Z.; Aikin, R.W.; Alex, K.D.; Barkats, D.; Benton, S.J.; Bischoff, C.A.; Bock, J.J.; Bowens-Rubin, R.; Brevik, J.A.; et al. BICEP2/Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season. Phys. Rev. Lett. 2018, 121, 221301. [Google Scholar] [CrossRef]
- Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl. Ser. 2013, 208, 19. [Google Scholar] [CrossRef]
- Aiola, S.; Calabrese, E.; Maurin, L.; Naess, S.; Schmitt, B.L.; Abitbol, M.H.; Addison, G.E.; Ade, P.A.; Alonso, D.; Amiri, M.; et al. The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters. J. Cosmol. Astrop. Phys. 2020, 12, 047. [Google Scholar] [CrossRef]
- Dutcher, D.; Balkenhol, L.; Ade, P.A.; Ahmed, Z.; Anderes, E.; Anderson, A.J.; Archipley, M.; Avva, J.S.; Aylor, K.; Barry, P.S.; et al. Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data. Phys. Rev. D 2021, 104, 022003. [Google Scholar] [CrossRef]
- Forconi, M.; Giarè, W.; Valentino, E.D.; Melchiorri, A. Cosmological constraints on slow roll inflation: An update. Phys. Rev. D 2021, 104, 103528. [Google Scholar] [CrossRef]
- Giarè, W.; Renzi, F.; Mena, O.; Valentino, E.D.; Melchiorri, A. Is the Harrison-Zel’dovich spectrum coming back? ACT preference for ns∼1 and its discordance with Planck. Mon. Not. Roy. Astron. Soc. 2023, 521, 2911. [Google Scholar] [CrossRef]
- Handley, W.; Lemos, P. Quantifying the global parameter tensions between ACT, SPT and Planck. Phys. Rev. D 2021, 103, 063529. [Google Scholar] [CrossRef]
- Romatschke, P. Relativistic Fluid Dynamics Far From Local Equilibrium. Phys. Rev. Lett. 2018, 120, 012301. [Google Scholar] [CrossRef]
- Normann, B.D.; Brevik, I. General Bulk-Viscous Solutions and Estimates of Bulk Viscosity in the Cosmic Fluid. Entropy 2016, 18, 215. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Aben, R.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; et al. Observation of Long-Range Elliptic Azimuthal Anisotropies in √s=13 and 2.76 TeV pp Collisions with the ATLAS Detector. Phys. Rev. Lett. 2016, 116, 172301. [Google Scholar] [CrossRef] [PubMed]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Measurement of long-range near-side two-particle angular correlations in pp collisions at √s=13 TeV. Phys. Rev. Lett. 2016, 116, 172302. [Google Scholar] [CrossRef]
- Bozek, P. Elliptic flow in proton-proton collisions at sqrt(S)=7 TeV. Eur. Phys. J. C 2011, 71, 1530. [Google Scholar] [CrossRef]
- Werner, K.; Karpenko, I.; Pierog, T. The ’Ridge’ in Proton-Proton Scattering at 7 TeV. Phys. Rev. Lett. 2011, 106, 122004. [Google Scholar] [CrossRef] [PubMed]
- Montefalcone, G.; Aragam, V.; Visinelli, L.; Freese, K. Observational Constraints on Warm Natural Inflation. arXiv 2022, arXiv:2212.04482. [Google Scholar] [CrossRef]
- Zimdahl, W.; Pavon, D.; Maartens, R. Reheating and causal thermodynamics. Phys. Rev. D 1997, 55, 4681–4688. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Nunes, A.; Pavon, D. Asymptotic behavior of the warm inflation scenario with viscous pressure. Phys. Rev. D 2006, 73, 023502. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahiri, S.; Rezzolla, L. Sustaining Quasi De-Sitter Inflation with Bulk Viscosity. Symmetry 2024, 16, 194. https://doi.org/10.3390/sym16020194
Lahiri S, Rezzolla L. Sustaining Quasi De-Sitter Inflation with Bulk Viscosity. Symmetry. 2024; 16(2):194. https://doi.org/10.3390/sym16020194
Chicago/Turabian StyleLahiri, Sayantani, and Luciano Rezzolla. 2024. "Sustaining Quasi De-Sitter Inflation with Bulk Viscosity" Symmetry 16, no. 2: 194. https://doi.org/10.3390/sym16020194
APA StyleLahiri, S., & Rezzolla, L. (2024). Sustaining Quasi De-Sitter Inflation with Bulk Viscosity. Symmetry, 16(2), 194. https://doi.org/10.3390/sym16020194