Wigner–Ville Distribution Associated with Clifford Geometric Algebra Cln,0, n=3(mod 4) Based on Clifford–Fourier Transform
Abstract
:1. Introduction
2. Preliminaries
Clifford Geometric Algebra of
3. Clifford–Fourier Transform
3.1. Fourier Transform in
3.2. Generalization towards One Sided n-Dimensional Clifford–Fourier Transform
4. Wigner–Ville Distribution Associated with Clifford Geometric Algebra (mod 4) Based on Clifford–Fourier Transform, (mod 4)
4.1. Convolution for WVD-CFT
4.2. Uncertainty Principle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahri, M. Product theorem for quaternion Fourier transform. Int. J. Math. Anal. 2014, 8, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Haoui, Y.E.; Fahlaoui, S. Miyachi’s theorem for the quaternion Fourier transform. Circuits Syst. Signal Process. 2019, 39, 1–14. [Google Scholar]
- Xu, G.L.; Wang, X.T.; Xu, X.G. Fractional quaternion Fourier transform, convolution and correlation. Signal Process. 2008, 88, 2511–2517. [Google Scholar]
- Brackx, F.; Delanghe, R.; Sommen, F. Clifford Analysis; Pitman Advanced Pub. Program: Boston, MA, USA, 1982. [Google Scholar]
- Hitzer, E.; Bahri, M. Clifford–Fourier transform on multivector fields and Uncertainty principles for dimensions n = 2(mod 4) and n = 3(mod 4). Adv. Appl. Clifford Algebr. 2018, 18, 715–736. [Google Scholar] [CrossRef]
- Ebling, J.; Scheuermann, G. Clifford–Fourier transform on Vector Fields. IEEE Trans. Visual Comp. Graph. 2005, 11, 469–479. [Google Scholar] [CrossRef]
- Bahri, M.; Hitzer, E. Clifford–Fourier transformations and uncertainty principle for the Clifford geometric algebra Cl3,0. Adv. Appl. Clifford Algebr. 2006, 16, 41–61. [Google Scholar]
- Hitzer, E.; Bahri, M. Uncertainty Principle for the Clifford Geometric Algebra Cln,0, n = 3(mod 4) Based on Clifford–Fourier Transform; Springer (SCI) Book Series Applied and Numerical Harmonic Analysis; 2006; pp. 45–54. [Google Scholar]
- Bahri, M.; Ashino, R.; Vailancourt, R. Convolution theorems for Clifford–Fourier transform and properties. J. Indian Math. Soc. 2014, 20, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Brackx, F.; Schepper, N.D.; Sommen, F. The Clifford–Fourier transform. J. Fourier Anal. Appl. 2005, 11, 669–681. [Google Scholar] [CrossRef]
- Hitzer, E. General Steerable two-sided Clifford–Fourier transform, Convolution and Mustard Convolution. Adv. Appl. Clifford Algebr. 2017, 27, 2215–2234. [Google Scholar] [CrossRef]
- Bahri, M. A modified uncertainty principle for two sided quaternion Fourier transform. Adv. Appl. Clifford Algebr. 2016, 26, 513–527. [Google Scholar] [CrossRef]
- Bahri, M.; Ashino, R. A variation on uncertainty principle and logarithmic uncertainty principle for continuous quaternion wavelet transform. Abstr. Appl. Anal. 2017, 217, 3795120. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.G.; Owechko, Y.; Soffer, H.B.; Matic, M.R. On generalized marginal time-frequency distributions. IEEE Trans. Signal Process. 1996, 44, 2882–2886. [Google Scholar] [CrossRef]
- Hahn, S.L.; Snopek, K.M. Wigner distributions and ambiguity functions of 2-D quaternionic and monogenic signals. IEEE Trans. Signal Process. 2005, 53, 3111–3128. [Google Scholar] [CrossRef]
- Bahri, M. On two dimensional quaternion Wigne-Ville distribution. J. Appl. Math. 2014, 2014, 139471. [Google Scholar] [CrossRef] [Green Version]
- Bhat, M.Y.; Dar, A.H.; Nurhidayat, I.; Pinelas, S. An Interplay of Wigner–Ville Distribution and 2D Hyper-Complex Quadratic-Phase Fourier Transform. Fractal Fract. 2023, 7, 159. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Quadratic-phase scaled Wigner distribution: Convolution and correlation. Signal Image Video Process. 2023, 17, 2779–2788. [Google Scholar] [CrossRef]
- Dar, A.H.; Bhat, M.Y. Wigner Distribution and Associated Uncertainty Principles in the Framework of Octonion Linear Canonical Transform. Optik 2022, 272, 170213. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Almanjahie, I.B.; Dar, A.H.; Dar, J.G. Wigner–Ville Distribution and Ambiguity Function Associated with the Quaternion Offset Linear Canonical Transform. Demonstr. Math. 2022, 55, 786–797. [Google Scholar] [CrossRef]
- Claasen, T.A.C.M.; Mecklenbrauker, W.F.G. The Wigner distribution—A tool for time-frequency signal analysis—Part I: Continuous-time signals. Philips J. Res. 1980, 35, 217–250. [Google Scholar]
- Claasen, T.A.C.M.; Mecklenbrauker, W.F.G. The Wigner distribution—A tool for time-frequency signal analysis—Part II: Discrete-time signals. Philips J. Res. 1980, 35, 276–300. [Google Scholar]
- Claasen, T.A.C.M.; Mecklenbrauker, W.F.G. The Wigner distribution—A tool for time-frequency signal analysis—Part III: Relation with other time-frequency signal transformations. Philips J. Res. 1980, 35, 372–389. [Google Scholar]
- Papoulis, A. The Fourier Integral and Its Applications; Mc Gra-Hill Book Company, Inc.: New York, NY, USA, 1962. [Google Scholar]
Property | Function | CFT |
---|---|---|
Linearity | ||
Delay property | ||
Scaling property | ||
Shift property | ||
Vector differential | ||
Vector derivative | ||
Convolution | ||
Parseval theorem |
Property | Function | CFT |
---|---|---|
Left linearity | ||
Scaling | ||
Shift in frequency domain | ||
Shift in space domain | ||
Power of from left | ||
Power of from right | ||
Parseval theorem | ||
Scalar Parseval theorem | ||
Convolution | ||
Vector derivative (left) | ||
Vector derivative (right) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhat, M.Y.; Rafiq, S.; Zayed, M. Wigner–Ville Distribution Associated with Clifford Geometric Algebra Cln,0, n=3(mod 4) Based on Clifford–Fourier Transform. Symmetry 2023, 15, 1421. https://doi.org/10.3390/sym15071421
Bhat MY, Rafiq S, Zayed M. Wigner–Ville Distribution Associated with Clifford Geometric Algebra Cln,0, n=3(mod 4) Based on Clifford–Fourier Transform. Symmetry. 2023; 15(7):1421. https://doi.org/10.3390/sym15071421
Chicago/Turabian StyleBhat, Mohammad Younus, Shahbaz Rafiq, and Mohra Zayed. 2023. "Wigner–Ville Distribution Associated with Clifford Geometric Algebra Cln,0, n=3(mod 4) Based on Clifford–Fourier Transform" Symmetry 15, no. 7: 1421. https://doi.org/10.3390/sym15071421
APA StyleBhat, M. Y., Rafiq, S., & Zayed, M. (2023). Wigner–Ville Distribution Associated with Clifford Geometric Algebra Cln,0, n=3(mod 4) Based on Clifford–Fourier Transform. Symmetry, 15(7), 1421. https://doi.org/10.3390/sym15071421