Numerical Analysis of Fractional-Order Camassa–Holm and Degasperis–Procesi Models
Abstract
1. Introduction
2. Preliminaries Concepts
3. Procedure of HPTM
4. Procedure of ETDM
5. Numerical Problem
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eftekhari, T.; Rashidinia, J. A new operational vector approach for time-fractional subdiffusion equations of distributed order based on hybrid functions. Math. Methods Appl. Sci. 2022, 46, 388–407. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific: Singapore, 2015. [Google Scholar]
- Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New general variants of Chebyshev type inequalities via generalized fractional integral operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
- Abbas, M.I. Controllability and Hyers-Ulam stability results of initial value problems for fractional differential equations via generalized proportional-Caputo fractional derivative. Miskolc Math. Notes 2021, 22, 491–502. [Google Scholar] [CrossRef]
- Nikan, O.; Golbabai, A.; Machado, J.A.; Nikazad, T. Numerical approximation of the time fractional cable model arising in neuronal dynamics. Eng. Comput. 2022, 38, 155–173. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 2017, 143, D4016005. [Google Scholar] [CrossRef]
- Fu, H.; Wu, G.C.; Yang, G.; Huang, L.L. Continuous time random walk to a general fractional Fokker-Planck equation on fractal media. Eur. Phys. J. Spec. Top. 2021, 230, 3927–3933. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Oderinu, R.A.; Owolabi, J.A.; Taiwo, M. Approximate solutions of linear time-fractional differential equations. J. Math. Comput. Sci. 2023, 29, 60–72. [Google Scholar] [CrossRef]
- Salama, F.M.; Ali, N.H.M.; Abd Hamid, N.N. Fast O (N) hybrid Laplace transform-finite difference method in solving 2D time fractional diffusion equation. J. Math. Comput. Sci. 2021, 23, 110–123. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Vienna, Austria, 1997; pp. 291–348. [Google Scholar]
- Lu, S.; Guo, J.; Liu, S.; Yang, B.; Liu, M.; Yin, L.; Zheng, W. An Improved Algorithm of Drift Compensation for Olfactory Sensors. Appl. Sci. 2022, 12, 9529. [Google Scholar] [CrossRef]
- Hilfer, R.; Butzer, P.L.; Westphal, U. An introduction to fractional calculus. In Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2010; pp. 1–85. [Google Scholar]
- Bai, J.; Feng, X.C. Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 2007, 16, 2492–2502. [Google Scholar] [CrossRef]
- Loh, J.R.; Isah, A.; Phang, C.; Toh, Y.T. On the new properties of Caputo-Fabrizio operator and its application in deriving shifted Legendre operational matrix. Appl. Numer. Math. 2018, 132, 138–153. [Google Scholar] [CrossRef]
- Kumar, D.; Tchier, F.; Singh, J.; Baleanu, D. An efficient computational technique for fractal vehicular traffic flow. Entropy 2018, 20, 259. [Google Scholar] [CrossRef] [PubMed]
- Carreras, B.A.; Lynch, V.E.; Zaslavsky, G.M. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 2001, 8, 5096–5103. [Google Scholar] [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Ly motion. Water Resour Res. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Han, Y.; Wang, L.; Kang, R. Influence of consumer preference and government subsidy on prefabricated building developer’s decision-making: A three-stage game model. J. Civ. Eng. Manag. 2023, 29, 35–49. [Google Scholar] [CrossRef]
- Han, Y.; Yan, X.; Piroozfar, P. An overall review of research on prefabricated construction supply chain management. Eng. Constr. Archit. Manag. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Han, Y.; Xu, X.; Zhao, Y.; Wang, X.; Chen, Z.; Liu, J. Impact of consumer preference on the decision-making of prefabricated building developers. J. Civ. Eng. Manag. 2022, 28, 166–176. [Google Scholar] [CrossRef]
- Katsikis, V.N.; Mourtas, S.D.; Simos, T.E. Zeroing Neural Network for Pseudoinversionof an Arbitrary Time-Varying Matrix Based on Singular Value Decomposition. Mathematics 2022, 10, 1208. [Google Scholar] [CrossRef]
- Sun, L.; Hou, J.; Xing, C.; Fang, Z. A Robust Hammerstein-Wiener Model Identification Method for Highly Nonlinear Systems. Processes 2022, 10, 2664. [Google Scholar] [CrossRef]
- Li, X.; Dong, Z.; Wang, L.; Niu, X.; Yamaguchi, H.; Li, D.; Yu, P. A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows. Appl. Math. Model. 2023, 117, 219–250. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Zhou, X.; Fu, R. A Driving Fatigue Feature Detection Method Based on Multifractal Theory. IEEE Sens. J. 2022, 22, 19046–19059. [Google Scholar] [CrossRef]
- Li, R.; Wu, X.; Tian, H.; Yu, N.; Wang, C. Hybrid Memetic Pretrained Factor Analysis-Based Deep Belief Networks for Transient Electromagnetic Inversion. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Li, R.; Yu, N.; Wang, X.; Liu, Y.; Cai, Z.; Wang, E. Model-Based Synthetic Geoelectric Sampling for Magnetotelluric Inversion With Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Yel, G.; Baskonus, H.M.; Bulut, H. Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method. Opt. Quantum Electron. 2017, 49, 1–10. [Google Scholar] [CrossRef]
- Jin, H.; Wang, Z.; Wu, L. Global dynamics of a three-species spatial food chain model. J. Differ. Equ. 2022, 333, 144–183. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, H.; Wang, Z. Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis. J. Differ. Equ. 2022, 314, 251–286. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Chen, Z.; Yu, N.; Kong, W.; Li, T.; Liu, Y. Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum. Measurement 2022, 192, 110886. [Google Scholar] [CrossRef]
- Ford, N.J.; Xiao, J.; Yan, Y. A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 2011, 14, 454–474. [Google Scholar] [CrossRef]
- Eslami, M.; Fathi Vajargah, B.; Mirzazadeh, M.; Biswas, A. Application of first integral method to fractional partial differential equations. Indian J. Phys. 2014, 88, 177–184. [Google Scholar] [CrossRef]
- Saad Alshehry, A.; Imran, M.; Weera, W. Fractional-View Analysis of Fokker-Planck Equations by ZZ Transform with Mittag-Leffler Kernel. Symmetry 2022, 14, 1513. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Iqbal, N.; Aly, S.; Nonlaopon, K. Fractional Series Solution Construction for Nonlinear Fractional Reaction-Diffusion Brusselator Model Utilizing Laplace Residual Power Series. Symmetry 2022, 14, 1944. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Khater, M.M. Structure of solitary wave solutions of the nonlinear complex fractional generalized Zakharov dynamical system. Adv. Differ. Equ. 2018, 2018, 266. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, P.; Turner, I.; Burrage, K.; Anh, V. A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 2014, 38, 3871–3878. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations. Phys. Lett. A 2006, 352, 500–504. [Google Scholar] [CrossRef]
- Kamdem, J.S.; Qiao, Z. Decomposition method for the Camassa-Holm equation. Chaos Solitons Fractals 2007, 31, 437–447. [Google Scholar] [CrossRef]
- Liu, Z.; Ouyang, Z. A note on solitary waves for modified forms of Camassa-Holm and Degasperis-Procesi equations. Phys. Lett. A 2007, 366, 377–381. [Google Scholar] [CrossRef]
- Dubey, V.P.; Kumar, R.; Singh, J.; Kumar, D. An efficient computational technique for time-fractional modified Degasperis-Procesi equation arising in propagation of nonlinear dispersive waves. J. Ocean. Eng. Sci. 2021, 6, 30–39. [Google Scholar] [CrossRef]
- Behera, R.; Mehra, M. Approximate solution of modified camassa-holm and degasperis-procesi equations using wavelet optimized finite difference method. Int. J. Wavelets Multiresolution Inf. Process 2013, 11, 1350019. [Google Scholar] [CrossRef]
- Abdel Kader, A.; Abdel Latif, M. New soliton solutions of the CH-DP equation using lie symmetry method. Mod. Phys. Lett. B 2018, 32, 1850234. [Google Scholar] [CrossRef]
- Yousif, M.A.; Mahmood, B.A.; Easif, F.H. A New Analytical Study of Modified Camassa-Holm and Degasperis-Procesi Equations. Am. J. Comput. Math. 2015, 5, 267. [Google Scholar] [CrossRef]
- Elzaki, T.M. The new integral transform ‘Elzaki transform’. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Alshikh, A.A.; Mahgob, M.M.A. A Comparative Study Between Laplace Transform and Two New Integrals “ELzaki” Transform and “Aboodh” Transform. Pure Appl. Math. J. 2016, 5, 145. [Google Scholar] [CrossRef]
- Elzaki, T.; Alkhateeb, S. Modification of Sumudu transform “Elzaki transform” and adomian decomposition method. Appl. Math. Sci. 2015, 9, 603–611. [Google Scholar] [CrossRef]
- Ghorbani, A. Beyond Adomian polynomials: He polynomials. Chaos Solitons Fractals 2009, 39, 1486–1492. [Google Scholar] [CrossRef]
Exact Solution | Our Methods’ Solution | AE of Our Methods | |
---|---|---|---|
1 | −1.49154 | −1.50142 | 2.324274 |
2 | −0.80253 | −0.80532 | 3.806376 |
3 | −0.34656 | −0.34432 | 3.588191 |
4 | −0.13570 | −0.13432 | 2.553213 |
5 | −0.05110 | −0.05070 | 1.146792 |
6 | −0.01896 | −0.01872 | 4.523050 |
7 | −0.00699 | −0.00690 | 1.706341 |
8 | −0.00257 | −0.00255 | 6.335290 |
9 | −0.00094 | −0.00089 | 2.338505 |
10 | −0.00034 | −0.00034 | 8.613563 |
Exact Solution | Our Methods’ Solution | AE of Our Methods | |
---|---|---|---|
1 | −1.58014 | −1.59532 | 2.703113 |
2 | −0.84636 | −0.85142 | 9.720903 |
3 | −0.36469 | −0.36484 | 2.742579 |
4 | −0.14267 | −0.14192 | 7.853812 |
5 | −0.05371 | −0.05351 | 4.412590 |
6 | −0.01992 | −0.01983 | 1.848193 |
7 | −0.00735 | −0.00730 | 7.113341 |
8 | −0.00270 | −0.00269 | 2.659878 |
9 | −0.00099 | −0.00099 | 9.843626 |
10 | −0.00036 | −0.00036 | 3.629193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alesemi, M. Numerical Analysis of Fractional-Order Camassa–Holm and Degasperis–Procesi Models. Symmetry 2023, 15, 269. https://doi.org/10.3390/sym15020269
Alesemi M. Numerical Analysis of Fractional-Order Camassa–Holm and Degasperis–Procesi Models. Symmetry. 2023; 15(2):269. https://doi.org/10.3390/sym15020269
Chicago/Turabian StyleAlesemi, Meshari. 2023. "Numerical Analysis of Fractional-Order Camassa–Holm and Degasperis–Procesi Models" Symmetry 15, no. 2: 269. https://doi.org/10.3390/sym15020269
APA StyleAlesemi, M. (2023). Numerical Analysis of Fractional-Order Camassa–Holm and Degasperis–Procesi Models. Symmetry, 15(2), 269. https://doi.org/10.3390/sym15020269