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Abstract: This study proposes innovative methods for the time-fractional modified Degasperis–
Procesi (mDP) and Camassa–Holm (mCH) models of solitary wave solutions. To formulate the
concepts of the homotopy perturbation transform method (HPTM) and Elzaki transform decompo-
sition method (ETDM), we mix the Elzaki transform (ET), homotopy perturbation method (HPM),
and Adomian decomposition method (ADM). The Caputo sense is applied to this work. The solu-
tions to a few numerical examples of the modified Degasperis–Procesi (mDP) and Camassa–Holm
(mCH) are shown for integer and fractional orders of the issues. The derived and precise solutions
are compared using two-dimensional and three-dimensional plots of the solutions, confirming the
suggested method’s improved accuracy. Tables are created for each problem to display the suggested
approach’s results, precise solutions, and absolute error. These methods provide the iterations as a
series of solutions. To show the proposed techniques’ efficiency, we compute the absolute error. It
is evident from the estimated values that the approaches are precise and simple and that they can
therefore be further extended to linear and nonlinear issues.

Keywords: Elzaki’s transform; mDP and mCH models; series solution; homotopy perturbation
method; Adomian decomposition method

1. Introduction

Fractional calculus (FC) is an easy and useful method for obtaining precise data for
various equation forms. This dynamic field of mathematics, which generalizes the integer
order to its fractional order and gives rise to a broad class of mathematical modeling [1–3]
generates the most significant fractional differential equations (FDEs). Numerous physi-
cal phenomena utilizing fractional differential equations have recently been the focus of
significant research for various scientific and engineering applications. Caputo–Fabrizio,
Atangana–Baleanu, Riemann–Liouville, Liouville–Caputo, and Hadamard, among oth-
ers, presented various fundamental fractional derivative principles [4–7]. To generate a
fractional derivative in the desired order, the Caputo fractional derivative calculates first
an ordinary derivative and then a fractional integral. The fractional Riemann–Liouville
derivative is calculated in reverse order. The fractional Riemann–Liouville derivative
permits initial sources to be stated as fractional derivatives and their integrals. In contrast,
the fractional Caputo derivative only permits the inclusion of conventional initial and
boundary sources [8]. Nonlinear models have been utilized to describe various indus-
trial and scientific applications, including astrophysics, hydrology, nuclear engineering,
meteorology, and astrobiology [9,10].

Fractional partial differential equations (FPDEs) have gained popularity among math-
ematicians in recent years due to their numerous applications, particularly in applied
sciences, engineering, mathematical physics, biology, neural materials, strong state material
science, plasma physics, geo-optical filaments, electrode’s electrolyte, allometric scaling
laws in ecology and biology, the quantum evolution of complex systems, chemical physics,
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dielectric polarization, fractional dynamics, quantitative finance, astrophysics, electromag-
netic waves, nonlinear optics and stochastic dynamical systems. A few other applications
of FPDEs can be found in viscoelastic and viscoplastic flow [11], continuum mechanics [12],
spherical flames [13], wave propagation [14], image processing [15], anomalous diffu-
sion [16], entropy [17], turbulent flow [18], groundwater containment transport [19] and
so on.

Due of the above-mentioned useful applications of FC in real-world challenges, the
study of this area has become attractive to academics. Mathematicians realized it was
required to investigate the numerical or analytical solutions of FPDEs and their systems
to further the topic’s investigation [20–22]. Using analytical and numerical methods, nu-
merous significant mathematical models that mirror some of the physical processes in
nature are routinely solved [23–25]. To resolve FPDEs and similar systems, mathemati-
cians have developed a variety of approaches. This is a well-known field of inquiry
since the outputs of the given challenges support the dynamics of natural systems as
they occur [26–28]. Scholars have put their best efforts into this subject and have regularly
developed useful approaches. In this regard, significant and effective procedures have
been put into place to address FPDEs and associated systems, such as the Sine–Gordon
expansion method [29], Elzaki transform decomposition method [30], variational iteration
method [31,32], finite element method [33], first integral method [34], natural transform
decomposition method [35,36], generalized Kudryashov method [37], finite volume meth-
ods [38], and many other techniques.

In this work, we consider a family of significant physical equations known as a
modified β-equation, which has the following form [39]:

∂ςζ($, λ)

∂λς
− ∂

∂λ

(
∂2ζ($, λ)

∂$2

)
+ (β + 1)ζ2($, λ)

∂ζ($, λ)

∂$
− β

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
− ζ($, λ)

∂3ζ($, λ)

∂$3 = 0, 0 < ς ≤ 1. (1)

Choosing β = 3 results in the mDP model

∂ςζ($, λ)

∂λς
− ∂

∂λ

(
∂2ζ($, λ)

∂$2

)
+ 4ζ2($, λ)

∂ζ($, λ)

∂$
− 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
− ζ($, λ)

∂3ζ($, λ)

∂$3 = 0, 0 < ς ≤ 1. (2)

Choosing β = 2 in Equation (1) results in the mCH model

∂ςζ($, λ)

∂λς
− ∂

∂λ

(
∂2ζ($, λ)

∂$2

)
+ 3ζ2($, λ)

∂ζ($, λ)

∂$
− 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
− ζ($, λ)

∂3ζ($, λ)

∂$3 = 0, 0 < ς ≤ 1. (3)

Here, ζ denotes a horizontal component of the fluid velocity and $ and λ denote the
spatial and temporal components. The mCH and mDP models resemble the incompressible
Euler equation, which was revealed to be fully integrable with a Lax pair and emerges
in shallow water [40]. Liu and Ouyang [41] employed numerical simulations to develop
new solitary wave solutions for this model. To acquire significant results for the time-
fractional mCH and mDP models, Dubey et al. [42] proposed a q-homotopy analysis
approach coupled with a novel approach. Behera and Mehra created a wavelet-optimized
finite difference approach to research the approximations of the mCH and mDP models’
solutions [43]. To give a few different bright and dark soliton results of the mCH and
mDP models in the form of Weierstrass elliptic functions and Jacobi elliptic functions,
Kader and Latif [44] employed a Lie symmetry technique. To solve the mCH and mDP
models, Yousif et al. developed two methods, namely, HPM and VIM, and established
the results in good agreement [45]. In the present study, we develop a concept for novel
schemes that allow us to approximately solve the fractional mCH and mDP models in
the Caputo sense. The homotopy perturbation transform technique (HPTM) and Elzaki
transform decomposition method (ETDM) were both combined with Elzaki’s transform
(ET). It is essential to remember that the proposed procedures can perform better overall
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since they can need less computing work than the other techniques while maintaining
a high accuracy of the numerical result. This work’s structure is as follows: We give a
few basic aspects of calculus theory in Section 2. Sections 3 and 4 provide the HPTM and
ETDM formulations for obtaining the general solution. In Section 5, using a few numerical
examples and comparisons to the exact solution, we show the viability and effectiveness of
both approaches. Finally, Section 6 contains the conclusion.

2. Preliminaries Concepts

Definition 1. The Abel–Riemann derivative of fractional operator Dς of order ς is given as [46–48]

Dςζ($) =


d

d$ ζ($), ς = ,
1

Γ(−ς)
d

d$

∫ $
0

ζ($)

($−ψ)ς−+1 dψ, − 1 < ς < ,

where  ∈ Z+, ς ∈ R+ and

D−ςζ($) =
1

Γ(ς)

∫ $

0
($− ψ)ς−1ζ(ψ)dψ, 0 < ς ≤ 1.

Definition 2. The fractional-order Abel-Riemann integration operator Jψ is defined as [46–48]

Jςζ($) =
1

Γ(ς)

∫ $

0
($− ψ)ς−1ζ($)d$, $ > 0, ς > 0.

The operator has the basic properties:

Jς$ =
Γ( + 1)

Γ( + ς + 1)
$+ψ,

Dς$ =
Γ( + 1)

Γ(− ς + 1)
$−ψ.

Definition 3. The Caputo fractional operator Dς of ς is defined as [46–48]

CDςζ($) =


1

Γ(−ς)

∫ $
0

ζ (ψ)

($−ψ)ς−+1 dψ, − 1 < ς < ,
d

d$ ζ($),  = ς.
(4)

Definition 4.

Jς
$ Dς

$ζ($) = g($)−
m

∑
k=0

gk(0+)
$k

k!
, f or $ > 0, and− 1 < ς ≤ ,  ∈ N.

Dς
$ Jς

$ζ($) = g($).

(5)

Definition 5. The fractional-order Caputo operator of Elzaki’s transform is given by:

E[Dς
$ζ($)] = s−ςE[ζ($)]−

−1

∑
k=0

s2−ς+kζ(k)(0), where − 1 < ς < .

3. Procedure of HPTM

Here, the HPTM procedure is given to solve the FPDEs:

Dς
λζ($, λ) = P1[$]ζ($, λ) +R1[$]ζ($, λ), 0 < ς ≤ 1, (6)

having initial source
ζ($, 0) = ξ($).
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Here, Dς
λ = ∂ς

∂λς is the Caputo type derivative of order ς, and P1[$], R1[$] are linear
and nonlinear functions.

Operating the ET, we have

E[Dς
λζ($, λ)] = E[P1[$]ζ($, λ) +R1[$]ζ($, λ)], (7)

1
uς
{M(u)− u2ζ($, 0)} = E[P1[$]ζ($, λ) +R1[$]ζ($, λ)]. (8)

Using the differential property of the ET, we get

M(u) = u2ζ($, 0) + uςE[P1[$]ζ($, λ) +R1[$]ζ($, λ)]. (9)

Using the inverse ET, we have

ζ($, λ) = ζ($, 0) + E−1[uςE[P1[$]ζ($, λ) +R1[$]ζ($, λ)]]. (10)

Now, by implementing HPM on Equation (12),

ζ($, λ) =
∞

∑
k=0

εkζk($, λ). (11)

where ε ∈ [0, 1] is a homotopy parameter.
The nonlinear term in Equation (8) can be represented as

R1[$]ζ($, λ) =
∞

∑
k=0

εk Hk(ζ), (12)

We can get the polynomials utilizing the following method [49]:

Hk(ζ0, ζ1, ..., ζn) =
1

Γ(n + 1)
Dk

ε

[
R1

(
∞

∑
k=0

εiζi

)]
ε=0

, (13)

where Dk
ε = ∂k

∂εk .
By utilizing (14) and (15) in (12), we have

∞

∑
k=0

εkζk($, λ) = ζ($, 0) + ε×
(
E−1

[
uςE{P1

∞

∑
k=0

εkζk($, λ) +
∞

∑
k=0

εk Hk(ζ)}
])

. (14)

Correlating the coefficient of ε, we obtain

ε0 : ζ0($, λ) = ζ($, 0),

ε1 : ζ1($, λ) = E−1[uςE(P1[$]ζ0($, λ) + H0(ζ))],

ε2 : ζ2($, λ) = E−1[uςE(P1[$]ζ1($, λ) + H1(ζ))],

.

.

.

εk : ζk($, λ) = E−1[uςE(P1[$]ζk−1($, λ) + Hk−1(ζ))], k > 0, k ∈ N.

(15)

Thus, the series form approximation Equation (8) is

ζ($, λ) = lim
M→∞

M

∑
k=1

ζk($, λ). (16)
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4. Procedure of ETDM

Here, the ETDM procedure is presented to solve the FPDEs:

Dς
λζ($, λ) = P1($, λ) +R1($, λ), 0 < ς ≤ 1, (17)

having initial source
ζ($, 0) = ξ($).

Here, Dς
λ = ∂ς

∂λς is the Caputo type derivative of order ς, and P1 andR1 are linear and
non-linear functions.

Operating the ET, we have

E[Dς
λζ($, λ)] = E[P1($, λ) +R1($, λ)],

1
uς
{M(u)− u2ζ($, 0)} = E[P1($, λ) +R1($, λ)].

(18)

Using the differential property of the ET, we get

M(u) = uζ($, 0) + uςE[P1($, λ) +R1($, λ)], (19)

Using the inverse ET, we have

ζ($, λ) = ζ($, 0) + E−1[uςE[P1($, λ) +R1($, λ)]. (20)

The decomposition solution of ζ($, λ) is as follows:

ζ($, λ) =
∞

∑
m=0

ζm($, λ). (21)

The nonlinear term in Equation (19) can be represented as

R1($, λ) =
∞

∑
m=0
Am(ζ). (22)

with

Am

(
ζ0, ζ1, ζ2, · · · , ζm

)
=

1
m!

[
∂m

∂`m

{
R1

(
∞

∑
m=0

`mζm

)}]
`=0

, m = 0, 1, 2, · · · (23)

By utilizing (24) and (26) in (23), we have

∞

∑
m=0

ζm($, λ) = ζ($, 0) + E−1uς

[
E

{
P1

(
∞

∑
m=0

ζm($, λ)

)
+

∞

∑
m=0
Am(ζ)

}]
. (24)

Thus, we get
ζ0($, λ) = ζ($, 0), (25)

ζ1($, λ) = E−1[uςE{P1(ζ0) +A0}],

In general, for m ≥ 1, we have

ζm+1($, λ) = E−1[uςE{P1(ζm) +Am}].

5. Numerical Problem

Example 1. Let us assume the following fractional mDP model
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∂ςζ($, λ)

∂λς
− ∂

∂λ

(
∂2ζ($, λ)

∂$2

)
+ 4ζ2($, λ)

∂ζ($, λ)

∂$
− 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
− ζ($, λ)

∂3ζ($, λ)

∂$3 = 0 (26)

with initial source
ζ($, 0) = −15

8
sech2(

$

2
)

Operating the ET, we have

E
(

∂ςζ

∂λς

)
= E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
, (27)

Using the differential property of the ET, we get

1
uς
{M(u)− u2ζ($, 0)} = E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
, (28)

M(u) = uζ($, 0) + uςE

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
. (29)

Using the inverse ET, we have

ζ($, λ) = ζ($, 0) + E−1

[
uς

{
E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+

ζ($, λ)
∂3ζ($, λ)

∂$3

]}]
,

ζ($, λ) = (−15
8

sech2(
$

2
)) + E−1

[
uς

{
E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+

ζ($, λ)
∂3ζ($, λ)

∂$3

]}]
.

(30)

Now, by means of the HPM procedure, we have

∞

∑
k=0

εkζk($, λ) =

(
− 15

8
sech2(

$

2
)

)
+

(
E−1

[
uςE

[(
∞

∑
k=0

εk ∂

∂λ

(
∂2ζk($, λ)

∂$2

)
− 4

∞

∑
k=0

εkζ2
k($, λ)

∞

∑
k=0

εk ∂ζk($, λ)

∂$

)

+ 3
∞

∑
k=0

εk ∂ζk($, λ)

∂$

∞

∑
k=0

εk ∂2ζk($, λ)

∂$2 +
∞

∑
k=0

εkζk($, λ)
∞

∑
k=0

εk ∂3ζk($, λ)

∂$3

]])
.

(31)

Correlating the coefficient of ε, we obtain

ε0 : ζ0($, λ) = −15
8

sech2(
$

2
),

ε1 : ζ1($, λ) = E−1

(
uςE

[
∂

∂λ

(
∂2ζ0($, λ)

∂$2

)
− 4ζ2

0($, λ)
∂ζ0($, λ)

∂$
+ 3

∂ζ0($, λ)

∂$

(
∂2ζ0($, λ)

∂$2

)
+ ζ0($, λ)

∂3ζ0($, λ)

∂$3

])

= −450 csch5($) sinh6

(
$

2

)
λς

Γ(ς + 1)

...
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Finally, the series form result is stated as

ζ($, λ) = ζ0($, λ) + ζ1($, λ) + · · ·

ζ($, λ) = −15
8

sech2(
$

2
)− 450 csch5($) sinh6

(
$

2

)
λς

Γ(ς + 1)
+ · · ·

Utilizing the ETDM
Operating the ET, we have

E
{

∂ςζ

∂λς

}
= E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
, (32)

Using the differential property of the ET, we get

1
uς
{M(u)− u2ζ($, 0)} = E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
, (33)

M(u) = u2ζ($, 0) + uςE

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
. (34)

Using the inverse ET, we have

ζ($, λ) = ζ($, 0) + E−1

[
uς

{
E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+

ζ($, λ)
∂3ζ($, λ)

∂$3

]}]
,

ζ($, λ) = (−15
8

sech2(
$

2
)) + E−1

[
uς

{
E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 4ζ2($, λ)

∂ζ($, λ)

∂$
+ 3

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+

ζ($, λ)
∂3ζ($, λ)

∂$3

]}]
.

(35)

The series form approximation is

ζ($, λ) =
∞

∑
m=0

ζm($, λ) (36)

with ζ2($, λ) ∂ζ($,λ)
∂$ = ∑∞

m=0Am, ∂ζ($,λ)
∂$ ( ∂2ζ($,λ)

∂$2 ) = ∑∞
m=0 Bm and ζ($, λ) ∂3ζ($,λ)

∂$3 = ∑∞
m=0 Cm

are the Adomian polynomials which show the nonlinear terms, and

∞

∑
m=0

ζm($, λ) = ζ($, 0)− E−1

[
uς

{
E

[
∂

∂λ
(

∂2ζ($, λ)

∂$2 )− 4
∞

∑
m=0
Am + 3

∞

∑
m=0
Bm +

∞

∑
m=0
Cm

]}]
,

∞

∑
m=0

ζm($, λ) = (−15
8

sech2(
$

2
))− E−1

[
uς

{
E

[
∂

∂λ
(

∂2ζ($, λ)

∂$2 )− 4
∞

∑
m=0
Am + 3

∞

∑
m=0
Bm +

∞

∑
m=0
Cm

]}]
.

(37)

The comparison of both sides gives the recursive algorithm:

ζ0($, λ) = −15
8

sech2(
$

2
).
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On m = 0,

ζ1($, λ) = −450 csch5($) sinh6

(
$

2

)
λς

Γ(ς + 1)
.

Finally, the series form result is stated as

ζ($, λ) =
∞

∑
m=0

ζm($, λ) = ζ0($, λ) + ζ1($, λ) + · · ·

ζ($, λ) = −15
8

sech2(
$

2
)− 450 csch5($) sinh6

(
$

2

)
λς

Γ(ς + 1)
+ · · ·

Hence, we get the exact result at ς = 1 as

ζ($, λ) = −15
8

[
sech2 1

2

(
$− 5

2
λ

)]
(38)

In Figure 1, graphical layout of the suggested methods and exact solution at ς = 1 for ζ($, λ).
Graphical layout of the suggested methods solution for ζ($, λ) at various ς values. In Table 1,
comparison of our methods and exact solution at ς = 1 with the absolute error (AE).

Figure 1. Graphical layout of the suggested methods and exact solution at ς = 1 for ζ($, λ). Graphical
layout of the suggested methods solution for ζ($, λ) at various ς values.
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Table 1. Comparison of our methods and exact solution at ς = 1 with the absolute error (AE).

λ = 0.01 Exact Solution Our Methods’ Solution AE of Our Methods

$ ς = 1 ς = 1 ς = 1

1 −1.49154 −1.50142 2.324274 × 10−3

2 −0.80253 −0.80532 3.806376 × 10−4

3 −0.34656 −0.34432 3.588191 × 10−4

4 −0.13570 −0.13432 2.553213 × 10−4

5 −0.05110 −0.05070 1.146792 × 10−4

6 −0.01896 −0.01872 4.523050 × 10−5

7 −0.00699 −0.00690 1.706341 × 10−5

8 −0.00257 −0.00255 6.335290 × 10−6

9 −0.00094 −0.00089 2.338505 × 10−6

10 −0.00034 −0.00034 8.613563 × 10−7

Example 2. Let us assume the following fractional mCH model

∂ςζ($, λ)

∂λς
− ∂

∂λ

(
∂2ζ($, λ)

∂$2

)
+ 3ζ2($, λ)

∂ζ($, λ)

∂$
− 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
− ζ($, λ)

∂3ζ($, λ)

∂$3 = 0 (39)

with initial source
ζ($, 0) = −2 sech2(

$

2
)

Operating the ET, we have

E
(

∂ςζ

∂λς

)
= E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
, (40)

Using the differential property of the ET, we get

1
uς
{M(u)− u2ζ($, 0)} = E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
, (41)

M(u) = u2ζ($, 0) + uςE

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
. (42)

Using the inverse ET, we have

ζ($, λ) = ζ($, 0) + E−1

[
uς

{
E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+

ζ($, λ)
∂3ζ($, λ)

∂$3

]}]
,

ζ($, λ) =

(
− 2 sech2

(
$

2

))
+ E−1

[
uς

{
E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+

ζ($, λ)
∂3ζ($, λ)

∂$3

]}]
.

(43)

Now, by means of the HPM procedure, we have



Symmetry 2023, 15, 269 10 of 14

∞

∑
k=0

εkζk($, λ) =

(
− 2 sech2

(
$

2

))
+

(
E−1

[
uςE

[(
∞

∑
k=0

εk ∂

∂λ

(
∂2ζk($, λ)

∂$2

)
− 3

∞

∑
k=0

εkζ2
k($, λ)

∞

∑
k=0

εk ∂ζk($, λ)

∂$

)

+ 2
∞

∑
k=0

εk ∂ζk($, λ)

∂$

∞

∑
k=0

εk ∂2ζk($, λ)

∂$2 +
∞

∑
k=0

εkζk($, λ)
∞

∑
k=0

εk ∂3ζk($, λ)

∂$3

]])
.

(44)

Correlating the coefficient of ε, we obtain

ε0 : ζ0($, λ) = −2 sech2

(
$

2

)
,

ε1 : ζ1($, λ) = E−1

(
uςE

[
∂

∂λ

(
∂2ζ0($, λ)

∂$2

)
− 3ζ2

0($, λ)
∂ζ0($, λ)

∂$
+ 2

∂ζ0($, λ)

∂$

(
∂2ζ0($, λ)

∂$2

)
+ ζ0($, λ)

∂3ζ0($, λ)

∂$3

])

= −384 csch5($) sinh6

(
$

2

)
λς

Γ(ς + 1)

...

Finally, the series form result is stated as

ζ($, λ) = ζ0($, λ) + ζ1($, λ) + · · ·

ζ($, λ) = −2 sech2

(
$

2

)
− 384 csch5($) sinh6

(
$

2

)
λς

Γ(ς + 1)
+ · · ·

Utilizing the ETDM
Operating the ET, we have

E
{

∂ςζ

∂λς

}
= E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
, (45)

Using the differential property of the ET, we get

1
uς
{M(u)− u2ζ($, 0)} = E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
, (46)

M(u) = u2ζ($, 0) + uςE

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+ ζ($, λ)

∂3ζ($, λ)

∂$3

]
. (47)

Using the inverse ET, we have

ζ($, λ) = ζ($, 0) + E−1

[
uς

{
E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+

ζ($, λ)
∂3ζ($, λ)

∂$3

]}]
,

ζ($, λ) =

(
− 2 sech2

(
$

2

))
+ E−1

[
uς

{
E

[
∂

∂λ

(
∂2ζ($, λ)

∂$2

)
− 3ζ2($, λ)

∂ζ($, λ)

∂$
+ 2

∂ζ($, λ)

∂$

(
∂2ζ($, λ)

∂$2

)
+

ζ($, λ)
∂3ζ($, λ)

∂$3

]}]
.

(48)
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The series form approximation is

ζ($, λ) =
∞

∑
m=0

ζm($, λ) (49)

with ζ2($, λ) ∂ζ($,λ)
∂$ = ∑∞

m=0Am, ∂ζ($,λ)
∂$ ( ∂2ζ($,λ)

∂$2 ) = ∑∞
m=0 Bm and ζ($, λ) ∂3ζ($,λ)

∂$3 = ∑∞
m=0 Cm

are the Adomian polynomials which show the nonlinear terms, and

∞

∑
m=0

ζm($, λ) = ζ($, 0)− E−1

[
uς

{
E

[
∂

∂λ
(

∂2ζ($, λ)

∂$2 )− 3
∞

∑
m=0
Am + 2

∞

∑
m=0
Bm +

∞

∑
m=0
Cm

]}]
,

∞

∑
m=0

ζm($, λ) =

(
− 2 sech2

(
$

2

))
− E−1

[
uς

{
E

[
∂

∂λ
(

∂2ζ($, λ)

∂$2 )− 3
∞

∑
m=0
Am + 2

∞

∑
m=0
Bm +

∞

∑
m=0
Cm

]}]
.

(50)

The comparison of both sides gives the recursive algorithm:

ζ0($, λ) = −2 sech2

(
$

2

)
.

On m = 0,

ζ1($, λ) = −384 csch5($) sinh6

(
$

2

)
λς

Γ(ς + 1)
.

Finally, the series form result is stated as

ζ($, λ) =
∞

∑
m=0

ζm($, λ) = ζ0($, λ) + ζ1($, λ) + · · ·

ζ($, λ) = −2 sech2

(
$

2

)
− 384 csch5($) sinh6

(
$

2

)
λς

Γ(ς + 1)
+ · · ·

Hence, we get the exact result at ς = 1 as

ζ($, λ) = −2 sech2

(
$− λ

2

)
(51)

In Figure 2, graphical layout of the suggested methods and exact solution at ς = 1 for ζ($, λ).
Graphical layout of the suggested methods solution for ζ($, λ) at various ς values. In Table 2,
comparison of our methods and exact solution at ς = 1 with the absolute error (AE).

Table 2. Comparison of our methods and exact solution at ς = 1 with the absolute error (AE).

λ = 0.01 Exact Solution Our Methods’ Solution AE of Our Methods

$ ς = 1 ς = 1 ς = 1

1 −1.58014 −1.59532 2.703113 × 10−4

2 −0.84636 −0.85142 9.720903 × 10−5

3 −0.36469 −0.36484 2.742579 × 10−6

4 −0.14267 −0.14192 7.853812 × 10−6

5 −0.05371 −0.05351 4.412590 × 10−6

6 −0.01992 −0.01983 1.848193 × 10−6

7 −0.00735 −0.00730 7.113341 × 10−7



Symmetry 2023, 15, 269 12 of 14

Table 2. Cont.

λ = 0.01 Exact Solution Our Methods’ Solution AE of Our Methods

8 −0.00270 −0.00269 2.659878 × 10−7

9 −0.00099 −0.00099 9.843626 × 10−7

10 −0.00036 −0.00036 3.629193 × 10−7

Figure 2. Graphical layout of the suggested methods and exact solution at ς = 1 for ζ($, λ). Graphical
layout of the suggested methods solution for ζ($, λ) at various ς values.

6. Conclusions

In this paper, we described a method using HPTM and ETDM to get the fractional
order solitary wave solutions for the mDP and mCH models. These schemes’ main benefit
was that it delivered meaningful results in the calculation of consecutive iterations. It is
clear that all of the terms could be found as series solutions. Two steps were taken to
achieve the numerical solutions. The targeted issues were first simplified using the Elzaki
transformation, and the solutions were then obtained by applying the decomposition
method and homotopy perturbation method. The tables and figures showed that the
current techniques were better able to evaluate the results of the targeted issues. The
solutions were provided at various fractional orders, and a very quick convergence of
fractional solutions toward an integer-order solution was demonstrated. The relationship
between the fractional and integer-order solutions was very clearly demonstrated by the
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graphical representation. Both approaches can be expanded to tackle highly nonlinear
FPDEs and associated systems because both of them are simple and easy to understand.
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