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Abstract: Contingent claims, such as bonds, swaps, and options, are financial derivatives whose
payoffs depend on uncertain future real values of underlying assets which emphasize various real-
world applications. In general, valuations for contingent claims can be derived from the conditional
expectations of underlying assets. For a simple process, the moments are usually directly obtained
from its transition probability density function (PDF). However, if the transition PDF is unavailable in
simple form, the derivations of the moments and the contingent claim prices will not be accessible in
closed forms. This paper provides a closed-form formula for pricing contingent claims with nonlinear
payoff under a no-arbitrage principle when underlying assets follow the extended Cox–Ingersoll–
Ross (ECIR) process with the symmetry properties of the Brownian motion. The formula proposed
here is a consequence of successfully solving an explicit solution for a system of recurrence partial
differential equations in which its solution subtly depends on the conditional moments. For the
particular CIR process, we obtain simple closed-form formulas by solving the Riccati differential
equation. Furthermore, we carry out a complete investigation of the convergent case for those
formulas. In case such as that of the unsolvable Riccati differential equation, ECIR case, a numerical
method for numerically evaluating the mentioned analytical formulas and numerical validations for
the formulas are examined. The validity and efficiency of the formulas are numerically demonstrated
by comparison with results from Monte Carlo simulations for various modeling parameters. Finally,
the proposed formula is applied to the value contingent claims such as coupon bonds, interest rate
swaps, and arrears swaps.

Keywords: closed-form formula; conditional expectation; contingent claim; ECIR process

MSC: 60G65; 91G20

1. Introduction

Conditional expectations are useful statistical values applied in many branches in sci-
ence, especially in describing behaviors of observed data, and are often studied from
a probabilistic viewpoint based on transition probability density functions (PDFs) of
the data. Many applications in finance and economics require the knowledge of con-
ditional expectations, for example, in the valuation of financial products, e.g., contingent
claims such as coupon bonds, swaps, discount factor, etc., as can be seen in the works of
Ben-Ameur et al. [1] and Grasselli [2] for more details.

To value financial products, the no-arbitrage principle is essential; if arbitrage exists, it
is guaranteed that the investor can make profit from nothing, which provides an invest-
ment opportunity with infinite return. To satisfy the arbitrage-free property, symmetric
information is required [3]. The valuation of a contingent claim is usually investigated
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based on the conditional expectation (1) under a filtered risk-neutral probability space
(Ω,Ft, {Ft}0≤t≤T , Q) in the form

EQ
[

e−
∫ T

t (αxs+β) ds fT +
∫ T

t
e−
∫ s

t (αxu+β) du gs ds | Ft

]
, (1)

where α, β ∈ R and {xt}0≤t≤T is an adapted stochastic process describing the underlying
asset, and for some real value functions fT and gs with 0 ≤ t < s ≤ T.

In this work, we consider the conditional expectations (1) in the form

EQ
[

xγ
Te−

∫ T
t (αxs+β) ds | Ft

]
= EQ

[
xγ

Te−
∫ T

t (αxs+β) ds | xt = x
]
, (2)

where γ ∈ R and to be more specific, the process xt is considered as a short rate described
by the extended Cox–Ingersoll–Ross (ECIR) process [4]. The case that γ = 1 in (2) was
also studied in Duffie et al.’s work [5] for the class of affine jump-diffusion processes with
generalized payoff, including some case studies such as those of Ornstein–Uhlenbeck
(OU) and the Cox–Ingersoll–Ross (CIR) or squared processes. To be more general, the
Wiener process Wt in the ECIR process can be generalized by using the mixed fractional
Brownian motion, i.e., a linear combination of the Wiener process Wt and the fractional
Brownian motion WH

t with the Hurst parameter, H ∈ (0, 1). The mixed fractional Brownian
motion has some useful characteristic, e.g., it is arbitrage free and gains more attention
for applications in finance. An example of an application based on the mixed fractional
Brownian motion is described in [6].

Note that the contingent claim prices in the forms (1) and (2) have many useful
applications. In finance, a non-arbitrage price at time t of financial derivatives is considered
on a conditional expectation under a risk-neutral measure of their discounted payoff, more
details of which can be found in [7]. Therefore, the valuations of financial derivatives, such
as the coupon bonds, variance swaps, interest rate swaps, and options, always involve
calculating the forms of conditional expectations (1) and (2).

Since many processes describing financial assets have no transition PDFs in simple
form, the conditional expectations, the valuation of many financial products involving (1)
and (2) usually are not accessible in closed form; thus, alternative methods are required. In
practice, when analytical formulas for the expectations are not known in concise form, a
practical method such as the Monte Carlo simulation is required, which has disadvantages
in term of computational time. This paper aims to propose a closed-form formula for the
conditional expectation (1) based on the solution of a partial differential equation (PDE)
according to the Feynman–Kac representation, without requiring the knowledge of the
transition PDF. In some applications, the related PDEs may have no closed form solution
and numerical methods are required in order to obtain the results, for example, Ahmadian
and Ballestra [8] proposed the finite element method to solve ruin-related problems, and
Liang and Zou [9] studied the valuation of credit contingent interest rate swap with credit
rating migration using the alternating direction implicit method.

The CIR process is a diffusion process satisfying the Pearson Equation [10] and involv-
ing a wide variety of issues in many branches—more details on this can be found in [11].
This process was initially introduced by Feller [12] as a population growth stochastic model
and becomes popular in finance when Cox et al. [13] applied it to describe the evolution
behavior of short-term interest rates. Even though the CIR process is very useful in terms of
pricing financial derivatives, especially short-term interest rates, the process has a limitation
on its constant parameters, which are not suitable for modeling time-varying observed data.
A lot of strong empirical evidence has found that extreme movements in finance-based
practices tend to be assumed in function of the time, more details on which can be found
in [4,14,15]. In 1990, Hull and White [4] proposed a novel SDE such that the dynamics
of the CIR process can be governed by time-depending parameters, which is called the
ECIR process. The ECIR process is so attractive as a practical model to price the European
bond option. In 2003, Egorov et al. [16] presented the transition PDF of the ECIR process
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in a complicated form of the modified Bessel function of the first kind and proposed a
method to receive a closed-form approximation of the transition PDF through the Hermite
approximation. This is one of the most practically used empirical evidences to confirm that
it is not easy to obtain the conditional expectation (2) by using the transition PDF of the
ECIR process.

For this work, we assume that xs is governed by the ECIR process and R(t, r) is a
bounded continuous discount rate function; the value of the asset at initial time t can be
rewritten as Vt = EQ

[
e−
∫ T

t R(s,xs) ds f (xT) | Ft

]
, as can also be seen in [17]. With R ≡ 0 and

f (x) = xγ where γ ∈ R, under the probability measure P, Dufresne [18] derived a closed-
form formula for the conditional moments, EP[xγ

T | Ft
]
, for some sufficient conditions on

γ and the parameters in the CIR process xt. In 2007, under a risk-neutral probability Q
based on the CIR process, Ben-Ameur et al. [1] estimated an ex-coupon holding value at

time T, EQ
[
e−
∫ T

t xs ds f (xT) | Ft

]
, where f denotes the value of the bond at time T. Their

result is applicable but not in closed-form solutions. Moreover, they needed to find the
joint distribution of the random vector

(
xt+δ,

∫ t+δ
t xt dt

)
where δ > 0. This is characterized

by its Laplace transform which can be described by the conditional expectation (2) when
γ = 0 and β = 0. Recently, under the CIR process, Grasselli [2] directly determined a
mathematical expression of the conditional expectation (2). However, their expression was
expressed in terms of a product of the confluent hypergeometric function and the gamma
functions. This may be hard to work with in some cases.

We move our focus onto the ECIR process. In 2016, under probability measures, an
analytical formula was proposed by Rujivan [19] which was extended from Dufresne’s
approach [18] to the ECIR process for the case γ ∈ R. In 2018, an explicit formula for the
conditional expectations of a product of polynomial and exponential function, in the form
EP[xγ

Te−λxT | Ft
]
, was analytically derived by Sutthimat et al. [20] for the case γ, λ ∈ R.

Their results cover the results in such formulas of the Rujivan’s present [19] in the case of
λ = 0. Indeed, both works on the ECIR process have a limitation. A major concern for their
formulas in Theorems 1 and 2 of their works [19,20] is that the coefficients Aγ−k(τ) may not
be integrable to receive the exact integrations. Some numerical methods for integrations
are required to manipulate those integral terms in this very reason. However, both results
presented in [19,20] did not provide any methods to overcome this issue. Both results are
not ready for practical applications. In our analysis, we also present a numerical method to
deal with this challenge.

The useful applications of (2) under the CIR and ECIR processes need to be mentioned.
To price interest rate swaps (IRSs), a financial contingent claim, which is a financial deriva-
tive whose payoff depends on the uncertain future real value of other underlying assets,
is assumed together to follow the CIR process. The IRS is one of the common types of
contingent claim derivatives as a modified version of swaps. Normally, the cash flows of
IRSs on the payment dates are the same as the forward rate agreements (FRAs) which are
the contact that the forward rates can be fixed by an investor. In brief, an IRS is a form of
series of FRAs. We give some interesting works under the assumption that the discount
rate is continuously compounded, which have been well studied in the literature and can
apply our result of (2) to those works. In 2004, Mallier and Alobaidi [21] supposed that
the risk-neutral interest rates follow the CIR process. By utilizing the Green’s function
approach, they provided analytical expressions of the swap values for two well-known
types of IRSs, which are the arrears and vanilla swaps. Their analytical expressions, a sum
of values of the FRAs, which was in a closed form for an arrears swap but very complicated
because it depends on the gamma and the Kummer’s functions. However, for a vanilla
swap, their result was not in closed form and much more complicated than the results of
those arrears swaps. Unlike the results of Mallier and Alobaidi, Moreno and Platania [22]
provided a mathematical formula for the FRA values in 2015 for a special case of the ECIR
process, namely the cyclical square-root model; more details on this can be found in their
Proposition 8. Thus, an interest rate swap valuation was straightforwardly obtained as a
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consequence of this proposition. In fact, Proposition 8 in their work consists of the Mathieu
cosine and sine functions [23] and the parameter A(τ) given in this proposition may not be
exactly integrable. Thamrongrat and Rujivan [24] recently published an analytical formula
for pricing IRSs in terms of bond prices based on the ECIR process which was performed
under a discrete discount rate.

This paper successfully worked out an analytical formula of the conditional expec-
tations (2) for the ECIR process in terms of analytical expression. Furthermore, their
consequences were investigated without requiring the transition PDF of the ECIR process.
Additionally, for the CIR process, the formulas were reduced to concise forms which give
a greater advantage than the other approaches in the literature. Furthermore, the ECIR
process-facilitated valuation of financial derivatives is provided by using our proposed
results. Under ECIR process, this paper further suggests a numerical algorithm of the con-
ditional expectations (2) in case the Riccati differential equation may not be exactly solved.

This paper is organized as follows. A brief overview of the CIR process as well
as the ECIR process are provided in Section 2. The key methodology is mentioned in
Section 3 to address the main relevant concept for our main result, which is an analytical
formula of the conditional expectations (2) of the ECIR process. Section 4 gives a numerical
method to work with the generalized Riccati differential equation and one major concerned
limitation of our formula is discussed here. Section 5 validates our formulas and discusses
the analytical formulas’advantages compared with the Monte Carlo (MC) simulations. In
Section 6, some financial applications are demonstrated based on our proposed formula.
The aim of this study is recapitulated and concluded in Section 7.

2. The Extended Cox–Ingersoll–Ross Process

In this paper, we assume that the interest rate xt follows the ECIR process under a
risk-neutral probability measure Q, which is a diffusion model whose solution satisfies the
following SDE [4],

dxt = θ(t)(µ(t)− xt) dt + σ(t)
√

xt dWt, 0 ≤ t ≤ T. (3)

The well-known Wt is a Wiener process or Brownian motion whose increments are
generated by the symmetry of mean zero Gaussian distribution. Sometimes, the parameters
in (3) are referred to as follows: θ is the speed of adjustment to the long-term mean µ,
while σ indicates to the state space of the diffusion. The two assumptions explored by
Maghsoodi [15] are required to demonstrate that there is a path-wise unique strong solution
for the ECIR process xt and to avoid zero a.e. with regard to the probability measure P for a
specified time t during a time period [0, T]; more details on this can be found in Theorems
2.1 and 2.4 of [15]. We thus require the following sufficient condition.

Assumption 1. Time parameters θ(t), µ(t) and σ(t) in (3) are smooth and strictly positive. The
time function µ(t)

σ2(t) is locally bounded and 2θ(t)µ(t) ≥ σ(t)2 on [0, T].

To achieve our aim, a common question arises: why not directly use the transition
PDF of the CIR process? It is known that its transition PDF has an expression in a form
of Gamma density function and Laguerre polynomials; more details on this can be found
in [25,26]. The transition PDF can be written in an explicit form as

p(x, T | xt, t) = cτ e−(u+v)
( v

u

)q/2
Iq
(
2
√

uv
)
,

where τ = T − t, cτ = 2θ
σ2(1−e−θτ)

, u = cτ xt e−θτ , vs. = cτ x, q = 2θµ

σ2 − 1 and Iq(·) is the

ordered q Bessel function of the first kind,

Iq(x) =
∞

∑
k=0

( x
2

)2k+q 1
Γ(k + 1)Γ(k + q + 1)

.
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Since the transition PDF is complicated, as shown above, solving the closed-form
formulas for (2) by applying the transition PDF is more complicated.

It becomes even more difficult in the ECIR process, for example, as in the ECIR(d)
process observed by Egorov et al. in 2003 [16]. Its dynamics are followed by a time-
inhomogeneous diffusion process as

dxt = θ

(
σ2

0 d
4θ

e2σ1t − xt

)
dt + σ0eσ1t√xt dWt,

where θ, σ0 are positive, σ1 is real and d is positive. Its transition PDF was first proposed by
Maghsoodi [15],

p(x, T | xt, t) =
1
2

Ge−
λ+Gr

2

(
Gr
λ

) d−2
4

I d
2−1(λGr)

with λ = xtv, G = eθτv, v = 8σ1
σ2

0
e−θτ

(
e2σ1T − e2σ1t), τ = T − t and again Iq(·) is the Bessel

function of the first kind. To avoid using those of the transition PDFs for solving (2), this
paper applies Feynman–Kac representation which offers a method for solving a conditional
expectation of an Itô random process by deterministic implementations, more details on
which can be found in [27–30].

3. Main Results
3.1. Closed-Form Formula: Conditional Expectation

The first contribution of this section is to provide an integral form formula for the
pricing of the contingent claim with the polynomial payoff (2) by solving the PDE according
to the Feynman–Kac representation.

Theorem 1. Let 0 ≤ t ≤ T and xt follow the ECIR process (3) with α, β, γ ∈ R. Then,

EQ
[

xγ
Te−

∫ T
t (αxs+β) ds | xt = x

]
= eB(τ)x

∞

∑
j=0

A〈γ〉j (τ)xγ−j =: Uγ
E(x, τ), (4)

for all (x, τ) ∈ DE ⊂ (0, ∞)× [0, ∞), where τ = T − t ≥ 0. Under the assumption that the
infinite series in (4) uniformly converges on DE, the coefficients in (4) can be expressed as

A〈γ〉0 (τ) = e
∫ τ

0 P0(u) du,

A〈γ〉j (τ) = e
∫ τ

0 Pj(u) du
∫ τ

0
e−
∫ u

0 Pj(s)dsQj(u)A〈γ〉j−1(u) du,
(5)

for j ∈ N, where

Pj(τ) = θ(T − τ)µ(T − τ)B(τ)− θ(T − τ)(γ− j) + σ2(T − τ)(γ− j)B(τ)− β,

Qj(τ) = (γ− j + 1)
(

θ(T − τ)µ(T − τ) +
1
2

σ2(T − τ)(γ− j)
)

,
(6)

and B(τ) can be obtained by solving the following Riccati differential equation

B′(τ) =
1
2

σ2(T − τ)B2(τ)− θ(T − τ)B(τ)− α, B(0) = 0. (7)

Proof. The Feynman–Kac representation is used to solve U := Uγ
E(x, τ), which is defined as

a series in (4) that satisfies the appropriate PDE under the uniformly convergent assumption.
Thus, we have

−Uτ + θ(T − τ)(µ(T − τ)− x)Ux +
1
2

xσ2(T − τ)Uxx − (αx + β)U = 0 (8)
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with the initial condition at τ = 0

Uγ
E(x, 0) = EQ

[
xγ

Te−
∫ T

T (αxs+β) ds | xT = x
]
= xγ. (9)

Comparing the coefficients at τ = 0 in (4) and (9) to receive the initial conditions
B(0) = 0, A〈γ〉0 (0) = 1 and A〈γ〉j (0) = 0 for j ∈ N. Then, we compute (8) using (4) to find
the partial derivatives Uτ , Ux and Uxx. Consequently, we have

0 =− eB(τ)x

(
∞

∑
j=0

A〈γ〉j

′
(τ)xγ−j + xB

′
(τ)

∞

∑
j=0

A〈γ〉j (τ)xγ−j

)

+ θ(T − τ)(µ(T − τ)− x)eB(τ)x

(
∞

∑
j=0

(n− j)A〈γ〉j (τ)xγ−j−1 + B(τ)
∞

∑
j=0

A〈γ〉j (τ)xγ−j

)

+
1
2

xσ2(T − τ)eB(τ)x

(
∞

∑
j=0

(n− j)(n− j− 1)A〈γ〉j (τ)xγ−j−2 + 2B(τ)
∞

∑
j=0

(n− j)A〈γ〉j (τ)xγ−j−1

+B2(τ)
∞

∑
j=0

A〈γ〉j (τ)xγ−j

)
− (αx + β)eB(τ)x

∞

∑
j=0

A〈γ〉j (τ)xγ−j, (10)

which can be simplified as

0 =−
(

A〈γ〉0 (τ)

(
B
′
(τ) + θ(T − τ)B(τ)− 1

2
σ2(T − τ)B2(τ) + α

))
xγ+1

+

(
−A〈γ〉0

′
(τ) + P0(τ)A〈γ〉0 (τ)− A〈γ〉1 (τ)

(
B
′
(τ) + θ(T − τ)B(τ)− 1

2
σ2(T − τ)B2(τ) + α

))
xγ

+
∞

∑
j=1

(
−A〈γ〉j

′
(τ) + Pj(τ)A〈γ〉j (τ) + Qj(τ)A〈γ〉j−1(τ)

− A〈γ〉j+1(τ)

(
B
′
(τ) + θ(T − τ)B(τ)− 1

2
σ2(T − τ)B2(τ) + α

))
xγ−j (11)

Considering (11) as a series solution in x, we receive the system of ODEs as follows,

0 = A〈γ〉0

′
(τ)− P0(τ)A〈γ〉0 (τ),

0 = A〈γ〉j

′
(τ)− Pj(τ)A〈γ〉j (τ)−Qj(τ)A〈γ〉j−1(τ),

0 = B
′
(τ) + θ(T − τ)B(τ)− 1

2
σ2(T − τ)B2(τ) + α,

with their initial conditions B(0) = 0, A〈γ〉0 (0) = 1 and A〈γ〉j (0) = 0 for j ∈ N. Thus, the
solutions of the ODEs are given in (5) and (7) as required.

Notice that the function B is the solution of a generalized Riccati differential equa-
tion. It is well known that its solution is not available and can be only treated in some
cases. To overcome this problem, one can employ the numerical method discussed in the
following section.

By examining (4) when γ = n ∈ N0 and γ = m− 2θ(τ)µ(τ)
σ2(τ)

for m ∈ N, the infinite sum
in (4) is terminated at order n and can be written as in the following theorems.

Corollary 1. According to Theorem 1 with γ = n ∈ N0, we have

Un
E(x, τ) = EQ

[
xn

Te−
∫ T

t (αxs+β) ds | xt = x
]
= eB(τ)x

n

∑
j=0

A〈n〉j (τ)xn−j, (12)

for all (x, τ) ∈ DE ⊂ (0, ∞)× [0, ∞), τ = T − t ≥ 0, where the coefficients A〈n〉j (τ) are defined
by (5) and (6), and B(τ) is the solution of (7).
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Proof. Considering (5) when j = n + 1 obtains Qj(τ) = Qn+1(τ) = 0, it implies that the

coefficient A〈n〉j (τ) = A〈n〉n+1(τ) = 0. Since the coefficient A〈n〉j (τ) is a type of recurrence

problem involving the initial condition A〈n〉n+1(τ) = 0, A〈n〉j (τ) = 0 for all j ≥ n + 1. Thus,
the infinite sum (4) can be reduced to the finite sum as shown in (12).

Corollary 2. According to Theorem 1 with γ = m− 2θ(τ)µ(τ)
σ2(τ)

for all τ ≥ 0, m ∈ N, we have

Uγ
E(x, τ) = EQ

[
xγ

Te−
∫ T

t (αxs+β) ds | xt = x
]
= eB(τ)x

m

∑
j=0

A〈γ〉j (τ)xγ−j, (13)

for (x, τ) ∈ DE ⊂ (0, ∞)× [0, ∞), τ = T − t ≥ 0, where the coefficients A〈γ〉j (τ) are defined
by (5) and (6), and B(τ) is the solution of (7).

Proof. The proof can be shown similarly as in Corollary (1) by considering (5) and (6).

It is worth mentioning that our proposed formulas for the ECIR process generalize
some results in the literature. Furthermore, this section provides concise formulas for the
CIR process reduced from the previous theorems where the parameters depending on time
θ(t) = θ, µ(t) = µ and σ(τ) = σ are constant functions. In this case, Riccati differential
Equation (7) is solvable; thus, integral functions can be exactly solved as shown in the
following theorems.

Corollary 3. Suppose that xt follows the CIR process with α ≥ − θ2

2σ2 , β, γ ∈ R. Let 0 ≤ t ≤ T.
Then,

Uγ
C(x, τ) := EQ

[
xγ

Te−
∫ T

t (αxs+β) ds | xt = x
]
= eB(τ)x

∞

∑
j=0

A〈γ〉j (τ)xγ−j, (14)

for all (x, τ) ∈ DC ⊂ (0, ∞)× [0, ∞), τ = T − t ≥ 0. Under the assumption that the infinite
series in (14) uniformly converges on DC, the coefficients in (14) can be expressed as

A〈γ〉0 (τ) = H0(τ),

A〈γ〉j (τ) = Hj(τ)

(
j

∏
k=1

2Qk
k

)(
eρτ − 1

(ρ− θ) + eρτ(ρ + θ)

)j
,

(15)

for j ∈ N, where ρ =
√

θ2 + 2ασ2 and

Qj = (γ− j + 1)
(

θµ +
1
2

σ2(γ− j)
)

,

Hj(τ) = exp
[(

θ2µ

σ2 − β +

(
(γ− j) +

θµ

σ2

)
ρ

)
τ

](
2ρ

(ρ− θ) + eρτ(ρ + θ)

)2
(
(γ−j)+ θµ

σ2

)
.

(16)

In addition, function B given in (7) can be solved as

B(τ) = − 2α(eρτ − 1)
ρ(eρτ + 1) + θ(eρτ − 1)

. (17)

Proof. Determining (7) with constant parameters θ(t) = θ, µ(t) = µ and σ(τ) = σ, the
explicit solution for the Riccati differential Equation (7) is

B(τ) = − 2α(eρτ − 1)
ρ(eρτ + 1) + θ(eρτ − 1)

, (18)
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where ρ =
√

θ2 + 2ασ2, and its integration is

∫ τ

0
B(u) du =

2
σ2 ln

2ρe(
ρ+θ

2 )τ

(ρ− θ) + eρτ(ρ + θ)
.

Thus, we have

e
∫ τ

0 Pj(u) du = exp
[∫ τ

0

(
θµB(u)− θ(γ− j) + σ2(γ− j)B(u)− β

)
du
]

= exp
[(

θ2µ

σ2 − β +

(
(γ− j) +

θµ

σ2

)
ρ

)
τ

](
2ρ

(ρ− θ) + eρτ(ρ + θ)

)2
(
(γ−j)+ θµ

σ2

)
, (19)

which are defined as Hj(τ) for j ∈ N0. From Theorem 1, A〈γ〉0 (τ) = e
∫ τ

0 P0(u) du = H0(τ)
and

A〈γ〉1 (τ) = H1(τ)
∫ τ

0

1
H1(u)

Q1 A〈γ〉0 (u) du = 2H1(τ)Q1

(
eρτ − 1

(ρ− θ) + eρτ(ρ + θ)

)
.

From the result presented in (5) for j ∈ N, we obtain

A〈γ〉j (τ) = Hj(τ)
∫ τ

0

1
Hj(u)

Qj A
〈γ〉
j−1(u) du

= Hj(τ)
∫ τ

0

1
Hj(u)

Qj

(
Hj−1(u)

(
j−1

∏
k=1

2Qk
k

)(
eρu − 1

(ρ− θ) + eρu(ρ + θ)

)j−1
)

du

= Hj(τ)

(
j−1

∏
k=1

2Qk
k

) ∫ τ

0
eρu
(

2ρ

(ρ− θ) + eρu(ρ + θ)

)2( eρu − 1
(ρ− θ) + eρu(ρ + θ)

)j−1
du

= Hj(τ)

(
j

∏
k=1

2Qk
k

)(
eρτ − 1

(ρ− θ) + eρτ(ρ + θ)

)j
.

Under the uniformly convergent assumption, this completes the proof.

The case in which γ = n ∈ N0, Uγ
C(x, τ) in (14) can be expressed as a finite term of a

power series in x as follows.

Corollary 4. According to Corollary 3 with γ = n ∈ N0, we have

Un
C(x, τ) = EQ

[
xn

Te−
∫ T

t (αxs+β) ds | xt = x
]
= eB(τ)x

n

∑
j=0

A〈n〉j (τ)xn−j, (20)

for (x, τ) ∈ DC ⊂ (0, ∞)× [0, ∞), τ = T − t ≥ 0, where the coefficients A〈n〉j (τ) and B(τ) are
defined by (15), (16) and (17).

Proof. The proof is rather trivial by combining Corollary 1 with Corollary 3.

Furthermore, in this case and in that where γ = m− 2θµ

σ2 for m ∈ N, the following
theorem can readily be reduced from Corollary 3.

Corollary 5. According to Corollary 3 with γ = m− 2θµ

σ2 for m ∈ N, we have

Uγ
C(x, τ) = EQ

[
xγ

Te−
∫ T

t (αxs+β) ds | xt = x
]
= eB(τ)x

m

∑
j=0

A〈γ〉j (τ)xγ−j, (21)

for (x, τ) ∈ DC ⊂ (0, ∞)× [0, ∞), τ = T − t ≥ 0, where coefficients A〈γ〉j (τ) and B(τ) are
defined by (15), (16) and (17).
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Proof. The proof is relatively trivial by combining Corollary 2 with Corollary 3.

Remark 1. Consequently, our approach formulas can be extended to calculate the mixed polynomial
payoff. By applying the tower property for 0 ≤ t < s ≤ T where τ1 = s− t and τ2 = T − s, the
price of the T-claim with mixed polynomial payoff for ECIR process (3) can be expressed as

EQ
[

xs xT e−
∫ T

t (αxu+β) du | xt = x
]
= EQ

[
xs e−

∫ s
t (αxu+β) du EQ

[
xT e−

∫ T
s (αxu+β) du | xs

]
| xt = x

]
.

Remark 2. The benefits of this work, when α = β = 0, can be performed by special cases of our
proposed theorems, such as the first and the second conditional moments, variance, central moment,
mixed moment, covariance, and correlation.

3.2. Closed-Form Formula: Unconditional Expectation

Under Assumption 1, this section proposes two corollaries which are deduced from
the conditional formula for the CIR process presented in Corollary 4 to the unconditional
formula whereas τ → ∞. It should be noted that the following formulas are no longer
dependent on the given value of x.

Corollary 6. Suppose that xt follows the CIR process and α, β > 0. The price of the T-claim with
polynomial payoff at equilibrium, for all n ∈ N0, x > 0 and τ = T − t ≥ 0, is

lim
τ→∞

Un
C(x, τ) = lim

T→∞
EQ
[

xn
Te−

∫ T
t (αxs+β) ds | xt = x

]
= 0.

Proof. By considering Hj(τ) in (16), for all j = 0, 1, 2, . . . , n, it can be rewritten as

Hj(τ) =


2ρ exp

[(
ρ
2 +

θ2µ

σ2 −β

2
(
(n−j)+ θµ

σ2

)
)

τ

]
(ρ− θ) + eρτ(ρ + θ)


2
(
(n−j)+ θµ

σ2

)

.

It is not difficult to see that

(
ρ
2 +

θ2µ

σ2 −β

2
(
(n−j)+ θµ

σ2

)
)

< ρ for all j. So, lim
τ→∞

Hj(τ) = 0

and then

lim
τ→∞

Aj(τ) =

(
j

∏
k=1

2Qk
k

)
lim

τ→∞

(
Hj(τ)

(
eρτ − 1

(ρ− θ) + eρτ(ρ + θ)

)j
)

= 0,

for all j = 0, 1, 2, . . . , n. Thus, lim
τ→∞

Un
C(x, τ) = 0.

Corollary 7. Suppose that xt follows the CIR process and α, β = 0. The price of the T-claim with
polynomial payoff at equilibrium, for all n ∈ N0, x > 0 and τ = T − t ≥ 0, is

U∞
n := lim

τ→∞
Un

C(x, τ) = lim
T→∞

EQ[xn
T | xt = x] =

n

∏
k=1

2θµ + σ2(n− k)
2θ

. (22)

Proof. According to the (20) in Corollary 4 with α, β = 0, it is then obtained ρ = θ. As
τ → ∞, we note that limτ→∞ Hn(τ) = 1 and limτ→∞ Hj(τ) = 0 for all j = 0, 1, . . . , n− 1.
In other words, the coefficient terms Aj(τ) of xn−j approach 0, for k = 0, 1, . . . , n− 1. The
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remaining term, j = n, is only determined. From (17) in Corollary 3, since α = 0, B(τ) = 0
and yields

U∞
n = lim

τ→∞
An(τ) = lim

τ→∞
Hn(τ)

(
n

∏
k=1

2Qk
k

)(
eθτ − 1
2θeθτ

)n

=
n

∏
k=1

2θµ + σ2(n− k)
2θ

,

as required.

Remark 3. After some algebraic manipulations, we can show that Rujivan’s formula [19] reduces
to our formula (22).

Remark 4. It is obvious to what extent Corollary 4 applies to unconditional cases when α, β ≥ 0 as
displayed in Corollaries 6 and 7. In particular, it is easily checked that, when β < 0, limτ→∞ Un

C(x, τ)

converges towards 0 if and only if θ2µ−σ2β
θµ < ρ.

3.3. Analysis of Convergence
The aim of this section is to investigate Corollary 3 and whether the infinite sum given

in (14) converges. Notice that series (14) converges whenever A〈γ〉j = 0 for some j ∈ N0. To

see that the factor of A〈γ〉j in (15) only depends on Qj which can be zero. In other words,
the series (14) converges if and only if Qj = 0 for some j ∈ N0. There are only two cases

that Qj = 0, i.e., γ = n ∈ N0 and γ = m− 2θµ

σ2 for m ∈ N. The convergence cases of (14)
are already provided in Corollaries 4 and 5. However, the case of Qj 6= 0 for any j ∈ N0,
and the series (14) diverges as follows.

lim
n→∞

∣∣∣∣∣∣A〈γ〉n+1(τ)xγ−n−1

A〈γ〉n (τ)xγ−n

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣
2n+1

(n+1)! Hn+1(τ)
(

∏n+1
k=1 Qk

)(
eρτ−1

(ρ−θ)+eρτ(ρ+θ)

)n+1
xγ−n−1

2n

n! Hn(τ)
(
∏n

k=1 Qk
)( eρτ−1

(ρ−θ)+eρτ(ρ+θ)

)n
xγ−n

∣∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣2e−ρτQn+1
x(n + 1)

(
eρτ − 1

(ρ− θ) + eρτ(ρ + θ)

)(
2ρ

(ρ− θ) + eρτ(ρ + θ)

)−2
∣∣∣∣∣.

Since Qn+1 is a second-degree polynomial in n, the above expression is O(n), thus, by
ratio test, the (14) diverges.

4. Numerical Procedures

The valuation of the contingent claim with polynomial payoff based on the ECIR
process through Theorem 1, the formula (4), is an infinite sum of coefficients in (5). These
coefficients are defined as in the integral forms and depend on many parameters. Under
certain circumstances, i.e., when parameters are complicated, the integral cannot be pre-
cisely evaluated, or when the Riccati differential Equation (7) cannot be solved directly.
Thus, numerical methods are required to approximate the coefficients. In this section, we
numerically investigate the coefficients in (5) by utilizing numerical schemes based on the
symmetry concept to approximate the formula (4).

Let us first consider the Riccati differential Equation (7). From Corollary 3, if the Riccati
differential equation has constant coefficients, it has the exact solution, as shown in (18).
However, if it has variable coefficients, the analytical solution is not easily obtained. In this
case, one needs to approximate the solution by a numerical method; for example, in this
work, we use the fourth-order Runge–Kutta (RK4) method [31]. Thus, we are concerned
with the following initial value problem:

B′(s) =
1
2

σ2(T − s)B2(s)− θ(T − s)B(s)− α, B(0) = 0 (23)
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for s ∈ [0, τ]. We uniformly divide [0, τ] into m subintervals generated by si = ih,
i = 0, 1, . . . , m, where h = τ

m is the step size. Then, we denote (23) by

f (s, B) :=
1
2

σ2(T − s)B2 − θ(T − s)B− α.

Let Bi = B(si); then B0 = 0. By employing the RK4 method, we have four increments
as follows:

k1 = h f
(
si, Bi

)
,

k2 = h f
(
si +

h
2 , Bi +

k1
2
)
,

k3 = h f
(
si +

h
2 , Bi +

k2
2
)
,

k4 = h f
(
si + h, Bi + k3

)
,

thus, we obtain that

Bi+1 = Bi +
1
6
(
k1 + 2k2 + 2k3 + k4

)
.

Now, we have the approximate solutions Bi of the Riccati differential equation at each
nodal point si ∈ [0, τ], i = 0, 1, . . . , m. We denote B = [B0, B1, . . . , Bm]>. Afterwards, this
vector solution B is used to estimate the coefficients in (5). Since (5) is in integral form,
in this work, we construct matrix representation for integration based on the concept of
trapezoidal rule. By considering an integral function from the initial point s0 to each point
si, i = 0, 1, . . . , m, it is approximated by the trapezoidal rule. We obtain:

F(s0) :=
∫ s0

s0

f (ξ)dξ ≈ 0,

F(s1) :=
∫ s1

s0

f (ξ)dξ ≈ h
2
[

f (s0) + f (s1)
]
,

F(s2) :=
∫ s2

s0

f (ξ)dξ ≈ h
2
[

f (s0) + 2 f (s1) + f (s2)
]
,

...

F(sm) :=
∫ sm

s0

f (ξ)dξ ≈ h
2
[

f (s0) + 2 f (s1) + · · ·+ 2 f (sm−1) + f (sm)
]
.

From these integrations, we can construct the integration matrix by
F(s0)
F(s1)
F(s2)

...
F(sm)

 =


0
h
2

h
2

h
2 h h

2
...

...
. . . . . .

h
2 h · · · h h

2




f (s0)
f (s1)
f (s2)

...
f (sm)


and denote this by F = Jf. This J is called the integration matrix, which is easily computed.
We will then approximate the integral terms of A〈γ〉j (τ) for j ∈ N0 =: N∪ {0} in (5) using
the integration matrix J, and we have

A〈γ〉0 = eJP0 ,

A〈γ〉j = eJPj �
[

J
(

e−JPj �Qj �A〈γ〉j−1

)]
,

where A〈γ〉j =
[
A〈γ〉j (s0), A〈γ〉j (s1) . . . , A〈γ〉j (sm)

]>, Pj =
[
Pj(s0), Pj(s1), . . . , Pj(sm)

]> and

Qj =
[
Qj(s0), Qj(s1), . . . , Qj(sm)

]>; the elements of Pj and Qj can be directly calculated
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by (6). The notation � is the Hadamard product defined in [32] as the product of element-
wise at the same positions in matrices. In this work, we use the exponential function
of a matrix to denote the matrix whose element is the exponential of the element in
that component.

Finally, we obtain the numerical formula for the pricing of the T-claim with the
polynomial payoff (4) by

U〈γ〉E (x, τ) ≈ eB(sm)x
∞

∑
j=0

A〈γ〉j (sm)xγ−j,

where B(sm) and A〈γ〉j (sm) are the last components of vector solutions B and A〈γ〉j described
above, respectively. Moreover, we can reduce the number of computational points m,
but still preserve the accuracy by using other numerical integration approaches such as
Simpson’s rule, Newton–Cotes, quadrature formula, etc., as can be seen in [33] for more
details and references.

5. Experimental Validations

In this section, we verify the formula proposed in Section 3 by comparing with the
Monte Carlo (MC) simulation based on the following ECIR process,

dxt = θ

(
σ2

0 de2σ1t

4θ
− xt

)
dt + σ0eσ1t√xt dWt. (24)

Comparing with (3), we use θ(t) = θ, µ(t) = σ2
0 de2σ1t

4θ and σ(t) = σ0eσ1t, where θ, σ0 are
positive numbers, σ1 is a real number and with an integer d ≥ 2; thus, the Assumption 1 is
satisfied. In general, the expectation for the ECIR process (24) may be directly computed
using the transition density of xt presented by Egorov et al. [16]. However, this approach
will not produce an accurate value of U〈γ〉E (x, τ) for a small τ, and to overcome this problem,

the MC simulation is employed to approximate the value of U〈γ〉E (x, τ).
The MC simulations presented in this paper are based on the EM scheme which are

implemented by the MATLAB software to receive numerical solutions of (24) for evalu-
ating (2). In this case, we use the trapezoidal integration for the integral term. MATLAB
R2020a and a laptop with the following specifications were used in all of our calcula-
tions: Windows 10 Education, 64-bit Operating System, Intel(R) Core(TM) i7-8550U, CPU
@1.80GHz, 8.0 GB RAM.

5.1. Closed-Form Formulas for CIR and ECIR Processes with MC Simulations

In this experiment, Euler–Maruyama (EM) discretization was applied for the ECIR pro-
cess (24). Higham and Mao proved the accuracy of approximations by the EM scheme [34].
According to (24), we used θ = 1, d = 2, σ0 = 1, and in particular, we set σ1 = 0, 1 for the
CIR and ECIR processes, respectively.

Example 1 (CIR case, σ1 = 0). Formula (20) with α = β = 0.01 and for γ = n = 1, 2 :

This example demonstrates the closed-form Formula (20) based on (24) in the case
of γ = n ∈ N0 and σ1 = 0, CIR process. To validate Formula (20) in Corollary 4, we use
parameters θ = 1, σ0 = 0.1 and d = 2 in the process (24), and employ MC simulations with
different initial values x = 0.1, 0.2, . . . , 1 to generate 10, 000 sample paths of xt, where each
path consists of 10, 000 time steps over two different time intervals [0, 0.1] and [0, 1]. The
validations are performed through the comparisons between the Formula (20) and MC
simulations based on γ = 1, 2.

As presented in Figure 1, the numerical results from MC simulations (colored circles)
match completely with the results from Formula (20) (solid lines) for each x = 0.1, 0.2, . . . , 1.
Thus, the agreement of the results has validated the accuracy of Formula (20).
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(a) (b)

Figure 1. The validations of Un
C(x, τ) for τ = 0.1, 0.5, 1, 1.5 and x = 0.1, 0.2, . . . , 1.0: (a) the first

conditional moments; and (b) the second conditional moments.

Example 2 (ECIR case, σ1 = 1). Formula (12) with α = β = 1 and for γ = n = 1, 2 :

In this example, we validate the formula (12) of Un
E(x, τ) based on the process (24)

in the case of γ = n ∈ N0 with parameters θ = 1, σ0 = σ1 = 1 and d = 2 by comparing
with the MC simulation. Since the parameters are no longer constant, the solution B(τ)
of (7) cannot be solved analytically; thus, the numerical scheme RK4 (see Section 4) is
applied to approximate the solution B(τ) with 500 step sizes and the integral terms of the
coefficients in (5) are approximated by the trapezoidal rule using 500 subintervals. MC
simulations are performed using a number of sample paths, including 5000, 10,000, 20,000
and 40,0000, where each path consists of 10,000 steps over different time intervals [0, τ] for
τ = 0.01, 0.1, 1, 2.

Table 1 shows the comparisons between the numerical formula (12) of Un
E(x, τ) and

MC simulation for γ = 1, 2 at each initial value x = 0.1, 0.2, . . . , 1.0. The accuracy is
measured by the mean absolute differences (MADs) over initial values x. Table 1 shows
that the obtained MADs are very small and become smaller as the number of sample paths
increases for all cases of γ and T. This result confirms the accuracy of the formula (12) as
compared with the MC simulations. The average run times (ARTs) of the MC simulations
for different numbers of paths are displayed in Table 1. Obviously, the ARTs of MC
simulations are much more than that from the formula, which is approximately 0.3 s,
especially when using a large number of paths.

Table 1. The MADs between estimated solutions of Formula (12) and MC simulations.

γ No. of Paths
τ ART

0.01 0.1 1 2 (s)

1 5000 8.756 × 10−4 2.428 × 10−3 1.884 × 10−3 4.578 × 10−4 18.26
10,000 5.149 × 10−4 1.386 × 10−3 1.013 × 10−3 3.746 × 10−4 39.23
20,000 3.129 × 10−4 8.440 × 10−4 7.492 × 10−3 2.363 × 10−4 73.19
40,000 1.791 × 10−4 7.463 × 10−4 6.305 × 10−4 1.436 × 10−4 134.27

2 5000 1.599 × 10−3 3.162 × 10−3 9.097 × 10−3 6.633 × 10−3 18.34
10,000 6.147 × 10−4 2.182 × 10−3 5.019 × 10−3 3.873 × 10−3 39.35
20,000 2.980 × 10−4 1.643 × 10−3 3.390 × 10−3 2.865 × 10−3 73.63
40,000 2.773 × 10−4 7.568 × 10−4 2.459 × 10−3 2.305 × 10−3 135.69

5.2. Numerical Approximation of the Proposed Formulas with a Finite Sum

According to Section 3.3, when Qj are non-zero for all j ∈ N0, the series (14) diverges.
In this section, we study the level of accuracy of the formulas in Theorems 1 and Corol-
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lary 3, when the values are estimated using their partial sum. We denote U〈γ,K〉
E for the

approximation of Uγ
E by a partial sum of (4) up to order γ− K. In order to find a suitable

number K, before comparing with MC simulations, we need to measure the significant
difference of the value of U〈γ,K〉

E at each K ∈ N, which is defined by a sequence of absolute
relative differences (ARDs),

D〈γ,K〉
E (x, τ) :=

∣∣∣∣∣U
〈γ,K〉
E (x, τ)−U〈γ,K−1〉

E (x, τ)

U〈γ,K〉
E (x, τ)

∣∣∣∣∣,
for all (x, τ) ∈ (0, ∞)× [0, ∞). Furthermore, the accuracy of U〈γ,K〉

E (x, τ) compared with
MC for fixing the suitable K is measured via the absolute relative errors (AREs) defined by

E〈γ,K〉
E (x, τ) :=

∣∣∣∣∣U
〈γ,K〉
E (x, τ)−U〈γ,M〉

E (x, τ)

U〈γ,K〉
E (x, τ)

∣∣∣∣∣,
for all (R, τ) ∈ (0, ∞)× [0, ∞), where U〈γ,M〉

E is the result of EQ
[

xγ
Te−

∫ T
t (αxs+β) ds | xt = x

]
received from MC simulations.

The sequences of ARDs of D〈γ〉E (x, 0.01) are displayed in Table 2 for K = 5, 10, 15, 20
with parameters θ = 1, σ0 = σ1 = 1 and d = 2, except x = 0.01, 1, 5 for γ = −1.5,
−0.5, 0.5, 1.5. In the case of infinite sum of U〈γ〉E (x, 0.01), we consider the parameters
γ = −1.5,−0.5, 0.5, 1.5. According to Table 1, the received ARDs are likely improved when
K increases up to K = 20, showing that U〈γ,K〉

E for these K can already produce good ap-

proximations to U〈γ〉E . To verify this claim, the results of U〈γ,K〉
E with K = 10 are constructed

to compare with MC simulations, and the results are shown in the next example.

Table 2. The ARDs D〈γ,K〉
E (x, 0.01).

x K
γ

–1.5 –0.5 0.5 1.5

0.1 5 2.605 × 10−4 2.416 × 10−6 2.985 × 10−8 4.980 × 10−9

10 4.959 × 10−6 1.262 × 10−8 3.498 × 10−11 9.897 × 10−13

15 8.822 × 10−7 1.030 × 10−9 1.226 × 10−12 1.375 × 10−14

20 7.289 × 10−7 4.866 × 10−10 3.202 × 10−13 1.912 × 10−15

1 5 2.929 × 10−9 2.445 × 10−11 3.019 × 10−13 5.490 × 10−14

10 5.576 × 10−16 1.277 × 10−18 3.539 × 10−21 1.091 × 10−22

15 9.921 × 10−22 1.043 × 10−24 1.240 × 10−27 1.515 × 10−29

20 8.196 × 10−27 4.926 × 10−30 3.238 × 10−33 2.107 × 10−35

5 5 9.460 × 10−13 7.834 × 10−15 9.672 × 10−17 1.772 × 10−17

10 5.763 × 10−23 1.309 × 10−25 3.627 × 10−28 1.127 × 10−29

15 3.281 × 10−32 3.421 × 10−35 4.068 × 10−38 5.012 × 10−40

20 8.674 × 10−41 5.170 × 10−44 3.399 × 10−47 2.230 × 10−49

Example 3. The partial sum of (4) up to order γ− K with α = β = 1 for γ = −1.5, −0.5,
0.5, 1.5.

The comparison results between the formulas U〈γ,10〉
E (x, 0.01) and MC simulations

are shown in Table 3. MC simulations are performed by 5000, 10,000, 20,000, and 40,000
sample paths using 10,000 discretized steps. Table 3 shows the results of MC simulations
that closely match with the approximate Formula (4) with better approximations (smaller
AREs) when the number of sample paths increases. This confirms that the finite partial
sum approximation of (4) is very accurate as compared by MC simulation.
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Table 3. AREs E〈γ,10〉
E (x, 0.01) of approximations U〈γ,10〉

E (x, 0.01) and MC simulations.

x No. of Paths
γ

–1.5 –0.5 0.5 1.5

0.1 5000 8.879 × 10−3 1.724 × 10−3 1.904 × 10−3 5.297 × 10−3

10,000 4.499 × 10−3 1.439 × 10−3 1.209 × 10−3 2.196 × 10−3

20,000 1.089 × 10−3 6.156 × 10−4 5.260 × 10−4 1.532 × 10−3

40,000 9.658 × 10−4 5.739 × 10−4 1.281 × 10−4 8.521 × 10−4

1 5000 4.498 × 10−3 7.423 × 10−4 7.291 × 10−4 2.107 × 10−3

10,000 1.681 × 10−3 7.044 × 10−4 6.195 × 10−4 9.662 × 10−4

20,000 5.316 × 10−4 5.866 × 10−4 3.168 × 10−4 9.356 × 10−4

40,000 1.468 × 10−4 1.600 × 10−4 2.496 × 10−4 7.086 × 10−4

5 5000 1.260 × 10−3 1.531 × 10−4 2.136 × 10−4 4.115 × 10−4

10,000 8.906 × 10−4 1.327 × 10−4 1.785 × 10−4 3.865 × 10−4

20,000 8.220 × 10−4 7.713 × 10−5 1.128 × 10−4 1.216 × 10−4

40,000 9.445 × 10−5 1.588 × 10−5 3.812 × 10−5 8.439 × 10−5

6. Contingent Claims Pricing

In the context of pricing an option, assume that the underlying asset is set up to follow
the ECIR process (3); we first define the following process

Vt := EQ
[

e−
∫ T

t (αxs+β) ds fT +
∫ T

t
e−
∫ s

t (αxu+β) du gs ds | Ft

]
, 0 ≤ t ≤ T, (25)

where fT and g are nonnegative functions. In particular, according to Karatzas and Shreve’s
exercise 8.13 in [35], the process Vt in (25) gives the unique wealth process with the initial
wealth x; more details on this can be found in [35]. This is also called the valuation
process of a contingent claim (g, fT), where fT is the terminal payoff at maturity and
g = {gt,Ft | 0 ≤ t ≤ T} is the payoff rate.

This section illustrates an application for valuing the contingent claim with a date of
maturity T, which depends on the underlying asset xt following the ECIR or CIR process.
The analytical formulas for a contingent claim are provided in the following theorems.

Proposition 1. Let xt follow the ECIR process (3) with α, β ∈ R and n1, n2 ∈ N0. Suppose that
fT ≡ xn1

T and gs ≡ xn2
s for 0 ≤ t ≤ s ≤ T, then

Vt = Un1
E (x, τ) +

∫ τ

0
Un2

E (x, v) dv, (26)

for (x, τ) ∈ DE ⊂ (0, ∞)× [0, ∞), τ = T − t, and Un1
E and Un2

E are given in Corollary 1.

Proof. Applying Fubini’s theorem and Corollary 1 yields

Vt = EQ
[

xn1
T e−

∫ T
t (αxs+β) ds | xt = x

]
+
∫ T

t
EQ
[

xn2
s e−

∫ s
t (αxu+β) du | xt = x

]
ds

= Un1
E (x, τ) +

∫ T

t
Un2

E (x, s− t) ds.

Setting v = s− t obtains (26) as required.
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Remark 5. Suppose that fT ≡ ∑n1
k=0 akxk

T and gs ≡ ∑n2
k=0 bkxk

s , where xt follows the ECIR
process with α, β ∈ R and n1, n2 ∈ N0, for some sequences of real numbers (a0, a1, . . . , an1),
(b0, b1, . . . , bn2) in which an1 and bn2 are not zero. According to Proposition 1, we have

Vt = EQ

[
e−
∫ T

t (αxs+β) ds

(
n1

∑
k=0

akxk
T

)
+
∫ T

t
e−
∫ s

t (αxu+β) du

(
n2

∑
k=0

bkxk
s

)
ds | xt = x

]

=
n1

∑
k=0

akUk
E(x, τ) +

n2

∑
k=0

∫ τ

0
bkUk

E(x, v) dv.

Furthermore, for a CIR process, the above equation can readily be reduced to the following form

Vt =
n1

∑
k=0

akUk
C(x, τ) +

n2

∑
k=0

bk

(
k

∑
j=0

(∫ τ

0
eB(v)x Aj(v) dv

)
xk−j

)
.

Corollary 8. Suppose that xt follows the CIR process. According to Proposition 1 with α = 0,
β = r > 0 (also called fixed rate), and n1, n2 ∈ N0, we have

Vt = Un1
C (x, τ) +

1− e−(r+n2θ)τ

r + n2θ
xn2

+
n2

∑
j=1

 j

∏
k=1

Qk
kθ

j

∑
k=0

(−1)j−k+1
(

j
k

)(e−(r+(n2−k)θ)τ − 1
)

r + (n2 − k)θ

xn2−j, (27)

for (x, τ) ∈ DC ⊂ (0, ∞)× [0, ∞), τ = T − t, and Qk is given in Corollary 3.

Proof. From (20) in Corollary 4 with α = 0, then ρ = θ, B(τ) = 0, and Hj(τ) =

e−(r+(γ2−j)θ)τ for all τ ≥ 0 and j ∈ N0. Recalling Remark 5, we have

Vt = Un1
C (x, τ) +

n2

∑
j=0

(∫ τ

0
Aj(v) dv

)
xn2−j.

First, considering
∫ τ

0 Aj(v) dv for only j = 0 yields

∫ τ

0
A0(v) dv =

∫ τ

0
H0(v) dv =

1− e−(r+n2θ)τ

r + n2θ
,

and the remaining terms, for j = 1, 2, .., n2,

∫ τ

0
Aj(v) dv =

∫ τ

0

(
j

∏
k=1

2Qk
k

)
Hj(v)

(
eθv − 1
2θeθv

)j

dv

=
j

∏
k=1

Qk
kθ

∫ τ

0
e−(r+(n2−j)θ)v

(
eθv − 1

eθv

)j

dv

=
j

∏
k=1

Qk
kθ

∫ τ

0
e−(r+n2θ)v(eθv − 1)j dv

=
j

∏
k=1

Qk
kθ

j

∑
k=0

(−1)j−k
(

j
k

) ∫ τ

0
e−(r+(n2−k)θ)v dv

=
j

∏
k=1

Qk
kθ

j

∑
k=0

(−1)j−k+1
(

j
k

)(e−(r+(n2−k)θ)τ − 1
)

r + (n2 − k)θ

.
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The benefits of these theorems to some well-known pricing instruments are shown in
the following examples.

Example 4. Zero-coupon bond.

The valuation of a zero coupon bond at time t with expiration date T, p(t, T) is given
by the expression

p(t, T) = EQ
[
e−
∫ T

t αxs+β ds | xt = x
]

where xt follows the ECIR process. Applying Corollary 1 by setting γ = 0, we obtain the
formula for the price of the zero coupon bond

p(t, T) = A〈0〉0 (τ)eB(τ)x.

In the case that xt follows the CIR process, Corollary 4 is used to produce the closed-
form formula for valuing the zero coupon bond

p(t, T) = H0(τ)eB(τ)x

where

H0(τ) = exp
[(

θ2µ

σ2 − β +
θµρ

σ2

)
τ

](
2ρ

(ρ− θ) + eρτ(ρ + θ)

) 2θµ

σ2
,

B(τ) = − 2α(eρτ − 1)
ρ(eρτ + 1) + θ(eρτ − 1)

,

and ρ =
√

θ2 + 2ασ2.

Remark 6. If we set α = 1 and β = 0 for the CIR process, we obtain the identical formula for the
zero-coupon bond which appears in many pieces of literature.

Example 5. Two bonds interest rate swap.

In this example, we apply the Corollary 1 for pricing the value of fixed rate for a
floating swap, in which one company agrees to pay a fixed interest rate and receives in
exchange a floating rate, see [21]. We consider the interest swap as the difference between
the two bonds. From the point of view of the fixed ratepayer, the value of the interest rate
swap, denoted by Pswap, is Pswap := B f loat − B f ix where B f loat is the value of floating rate
bond, and B f ix is the value of fixed rate bond; see [36] for more details.

Suppose that the value of the swap is zero at the initial time t and the London Interbank
Offered Rate (LIBOR), then zero rates are used as discount rates, denoted by xt, which
follows the ECIR process. Then

B f ix =
N

∑
i=1

kie−
∫ Ti

t (αxs+β) ds + Le−
∫ T

t (αxs+β) ds

B f loat = (L + k0)e−
∫ T1

t (αxs+β) ds

for some integer N ≥ 2, where t is the initial time, Ti is the time until the ith payment is
exchanged; kt is the fixed payment made at time t; xt is the LIBOR zero rates corresponding
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to maturity t; and L is the notional principal in swap agreement. Thus, the value of the
interest rate swap at time T is

EQ[Pswap | xt = x
]

(28)

= EQ

[
(L + k0)e−

∫ T1
t (αxs+β) ds −

(
N

∑
i=1

kie−
∫ Ti

t (αxs+β) ds + Le−
∫ T

t (αxs+β) ds

)
| xt = x

]

To calculate (28), Corollary 1 can be applied by setting γ = 0.

Example 6. Arrears swap

An arrears swap, also known as a delayed reset swap, is one of the traded instruments
in the over-the-counter market, in which two companies or financial institutes decide to
exchange periodic payments with another. In this interest rate fixed for floating swap, the
floating rate paid on a payment date is based on the interest rate observed at the end of the
reset period, as can be seen in [36] for more details.

Let x f ix be a fixed rate, xt be a floating rate at time t, and P be a notional principle.
Suppose that an arrears swap has an expiration date T with N payment dates at t = T0 <
T1 < · · · < TN = T in an increment of ∆t = Ti − Ti−1, i = 1, 2, . . . , N. The payoff of such a
swap from a floating rate payer’s point of view at the ith payment date, Var

i , is the difference
between interest in a notional principle considered by the fixed and floating interest rates,
which can be expressed in the form Var

i =
(

x f ix − xTi

)
∆tP. By the fundamental theorem of

asset pricing [3], a no-arbitrage price at any time t of the arrears swap, Var, is the conditional
expectation of the sum of each payoff discounted to the initial time t = 0, which is

Var = EQ

[
N

∑
i=1

Var
i e−

∫ Ti
t αxs+β ds | xt = x

]

= ∆tP

(
x f ix

N

∑
i=1

EQ
[
e−
∫ Ti

t αxs+β ds | xt = x
]
−

N

∑
i=1

EQ
[

xTi e
−
∫ Ti

t αxs+β ds | xt = x
])

. (29)

By applying Corollary 1 and setting γ = 0 and γ = 1, the value of the arrears swap (29)
can be obtained as an analytical form. It should be noted that the fair value for paying the
fixed rate is

x f ix =

N
∑

i=1
EQ
[

xTi e
−
∫ Ti

t αxs+β ds | xt = x
]

N
∑

i=1
EQ
[

e−
∫ Ti

t αxs+β ds | xt = x
] =

N
∑

i=1
U1

E(x, i∆t)

N
∑

i=1
U0

E(x, i∆t)
.

7. Conclusions

In this work, we proposed the analytical formula for a contingent claim with the
polynomial payoff under the ECIR process represented as the conditional expectation

of the product of polynomial and exponential functions, EQ
[

xγ
Te−

∫ T
t (αxs+β) ds | xt = x

]
where α, β, γ ∈ R and xt follow the ECIR process (3). By solving (8) from the Feynman–
Kac representation, the analytical formula of (2) for the ECIR process was constructed in
terms of an infinite sum of analytical expressions in Theorem 1. Interestingly, the infinite
sum is reduced to a finite sum if γ ∈ N0 in Corollaries 1 and 2. Under the CIR process,
the parameters in (5) can be evaluated and the Riccati differential Equation (6) can be
analytically solved; thus, the formula in Theorem 1 for (2) can be rapidly deduced to the
formula in Corollary 3. In addition, as shown in Corollaries 4 and 5, the formulas can be
stated in closed form. The formula for the unconditional expectations are also obtained by
taking T → ∞, as can be seen in Corollaries 6 and 7.

The proposed closed-form formulas validated the validity and efficiency by comparing
the results with Monte Carlo simulations as illustrated in Section 5. The applications of the
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proposed formulas for contingent claims are described in Section 6 for financial products
such as zero-coupon bond, two bonds interest rate swap, an arrears swap. For these
applications under the ECIR process (3), the formula of (2) is extended for a more general

form, EQ
[
e−
∫ T

t (αxs+β) ds fT +
∫ T

t e−
∫ s

t (αxu+β) du gs ds | Ft

]
, for some real value functions fT

and gs where 0 ≤ t < s ≤ T. The proposed formulas can also be considered as generalized
results of other formulas which appeared in the literature.
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Abbreviations
The following abbreviations are used in this manuscript:

ARD absolute relative difference
ART average run time
CIR Cox–Ingersoll–Ross
ECIR extended Cox–Ingersoll–Ross
EM Euler–Maruyama
FRA forward rate agreement
IRS interest rate swap
LIBOR London Interbank Offered Rate
MAD mean absolute difference
MC Monte Carlo
ODE ordinary differential equation
OU Ornstein–Uhlenbeck
PDE partial differential equation
PDF probability density function
RK4 fourth-order Runge–Kutta
SDE stochastic differential equation
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