Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation
Abstract
1. Introduction
2. Analytical Results
2.1. Traveling Waves
2.2. Bright Soliton
3. Numerical Approximations
3.1. Spectral Fourier Methods
3.2. Dynamic Mode Decomposition
- Create two matrices from data set given in (31):
- Compute the full rank SVD of
- Based on the selected rank , construct the reduced matrices , , and
- Construct the dynamic operator
- Compute eigenvalues and eigenvectors of
- Construct the modes (eigenvectors) of the original matrix
- Construct time series approximation of the original dynamical system:where are the eigenvalues of L and are the initial conditions.
3.3. Koopman Approximation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schrödinger, E. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 79, 361–376. [Google Scholar] [CrossRef]
- Ali, F.; Jhangeer, A.; Muddasser, M.; Almusawa, H. Solitonic, quasi-periodic, super nonlinear and chaotic behaviors of a dispersive extended nonlinear Schrödinger equation in an optical fiber. Results Phys. 2021, 31, 104921. [Google Scholar] [CrossRef]
- Bandelow, U.; Akhmediev, N. Persistence of rogue waves in extended nonlinear Schrödinger equations: Integrable Sasa-Satsuma case. Phys. Lett. 2012, 376, 1558–1561. [Google Scholar] [CrossRef]
- Gromov, E.M.; Malomed, B.A. Damped solitons in an extended nonlinear Schrödinger equation with a spatial stimulated Raman scattering and decreasing dispersion. Opt. Commun. 2014, 320, 88–93. [Google Scholar] [CrossRef][Green Version]
- Gromov, E.M.; Malomed, B.A. Solitons in a forced nonlinear Schrödinger equation with the pseudo-Raman effect. Phys. Rev. E 2015, 92, 062926. [Google Scholar] [CrossRef]
- Vega-Guzmán, J.M.; Biswas, A.; Mahmood, M.F.; Zhou, Q.; Moshokoa, S.P.; Belic, M. Optical solitons with polarization mode dispersion for Lakshmanan-Porsezian-Daniel model by the method of undetermined coefficients. Optik 2018, 171, 114–119. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Miao, X.; Chen, Y. Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Phys. Lett. A 2011, 375, 1275–1280. [Google Scholar] [CrossRef]
- Gagnon, L.; Winternitz, P. Lie symmetries of a generalized nonlinear Schrödinger equation: I. The symmetry group and its subgroups. J. Phys. Math. Gen. 1988, 21, 1493. [Google Scholar] [CrossRef]
- Panoiu, N.C.; Mihalache, D.; Mazilu, D.; Crasovan, L.C.; Mel’nikov, I.V.; Lederer, F. Soliton dynamics of symmetry-endowed two-soliton solutions of the nonlinear Schrödinger equation. Chaos 2000, 10, 625–640. [Google Scholar] [CrossRef]
- Popovych, R.O.; Kunzinger, M.; Eshraghi, H. Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math. 2010, 109, 315–359. [Google Scholar] [CrossRef]
- Peng, L. Symmetries and reductions of integrable nonlocal partial differential equations. Symmetry 2019, 11, 884. [Google Scholar] [CrossRef]
- Biswas, A.; Vega-Guzman, J.; Bansal, A.; Kara, A.H.; Alzahrani, A.K.; Zhou, Q.; Belic, M.R. Optical dromions, domain walls and conservation laws with Kundu-Mukherjee-Naskar equation via traveling waves and Lie symmetry. Results Phys. 2020, 16, 102850. [Google Scholar] [CrossRef]
- Huang, Y.; Jing, H.; Li, M.; Ye, Z.; Yao, Y. On Solutions of an Extended Nonlocal Nonlinear Schrödinger Equation in Plasmas. Mathematics 2020, 8, 1099. [Google Scholar] [CrossRef]
- Myrzakul, A.; Nugmanova, G.; Serikbayev, N.; Myrzakulov, R. Surfaces and Curves Induced by Nonlinear Schrödinger-Type Equations and Their Spin Systems. Symmetry 2021, 13, 1827. [Google Scholar] [CrossRef]
- Boardman, A.D.; Alberucci, A.; Assanto, G.; Grimalsky, V.V.; Kibler, B.; McNiff, J.; Nefedov, I.S.; Rapoport, Y.G.; Valagiannopoulos, C.A. Waves in hyperbolic and double negative metamaterials including rogues and solitons. Nanotechnology 2017, 28, 444001. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koopman, B.O. Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. USA 1931, 17, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Koopman, B.O.; Neumann, J.v. Dynamical systems of continuous spectra. Proc. Natl. Acad. Sci. USA 1932, 18, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Mezić, I.; Banaszuk, A. Comparison of systems with complex behavior. Phys. D Nonlinear Phenom. 2004, 197, 101–133. [Google Scholar] [CrossRef]
- Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 2005, 41, 309–325. [Google Scholar] [CrossRef]
- Rowley, S.W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D.S. Spectral analysis of nonlinear flows. J. Fluid Mech. 2009, 641, 115–127. [Google Scholar] [CrossRef]
- Schmid, P.J.; Li, L.; Pust, O. Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 2011, 25, 249–259. [Google Scholar] [CrossRef]
- Noack, B.R.; Afanasiev, K.; Morzynski, M.; Tadmor, G.; Thiele, F. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 2003, 497, 335–363. [Google Scholar] [CrossRef]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Bruntin, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef]
- Alla, A.; Kutz, J.N. Nonlinear model order reduction via dynamic mode decomposition. Siam J. Sci. Comput. 2017, 39, B778–B796. [Google Scholar] [CrossRef]
- Crabb, M.; Akmediev, N. Doubly periodic solutions of the class-I infinitely extended nonlinear Schrödinger equation. Phys. Rev. E 2019, 99, 052217. [Google Scholar] [CrossRef]
- Kutz, J.N.; Proctor, J.L.; Brunton, S.L. Koopman theory for partial differential equations. arXiv 2016, arXiv:1607.07076. [Google Scholar]
- Arbabi, H.; Mezic, I. Ergodic Theory, Dynamic Mode Decomposition and Computation of Spectral Properties of the Koopman Operator. arXiv 2017, arXiv:1611.06664v6. [Google Scholar] [CrossRef]
- Kutz, J.N.; Proctor, J.L.; Brunton, S.L. Applied Koopman Theory for Partial Differential Equations and Data-Driven Modeling of Spatio-Temporal Systems. Complexity 2018, 2018, 16. [Google Scholar]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kaiser, E.; Kutz, J.N. Chaos as an intermittently forced linear system. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Nakao, H.; Mezić, I. Spectral analysis of the Koopman operator for partial differential equations. Chao Interdiscip. J. Nonlinear Sci. 2020, 30, 113131. [Google Scholar] [CrossRef]
- Ekici, M.; Mirzazadeh, M.; Sonmezoglu, A.; Ullah, M.Z.; Asma, M.; Zhou, Q.; Moshokoa, S.P.; Biswas, A.; Belic, M. Optical solitons with Schrödinger–Hirota equation by extended trial equation method. Optik 2017, 135, 451–461. [Google Scholar] [CrossRef]
- Islam, W.; Younis, M.; Rizvi, S.T.R. Optical Solitons with time fractional nonlinear Schrödinger equation and competing weakly nonlocal nonlinearity. Optik 2017, 130, 562–567. [Google Scholar] [CrossRef]
- Salova, A.; Emenheiser, J.; Rupe, A.; Crutchfield, J.P.; D’Souza, R.M. Koopman operator and its approximations for systems with symmetries. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 093128. [Google Scholar] [CrossRef]
- Beléndez, A.; Beléndez, T.; Matínez, F.J.; Pascual, C.; Alvarez, M.L.; Arribas, E. Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities. Nonlinear Dyn. 2016, 86, 1687–1700. [Google Scholar] [CrossRef]
- Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J.L. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2018. [Google Scholar]
- Gao, Z.; Lin, Y.; Sun, X.; Zeng, X. A reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest-neighbors regression. J. Comput. Phys. 2021, 452, 110907. [Google Scholar] [CrossRef]
- Kawahara, Y. Dynamic mode decomposition with reproducing kernels for Koopman spectral analysis. Adv. Neural Inf. Process. Syst. 2016, 29, 911–919. [Google Scholar]
- Tang, H.Z. Koopman Reduced Order Control for Three Body Problem. Mod. Mech. Eng. 2019, 9, 20–29. [Google Scholar] [CrossRef]
- Kevrekidis, I.; Rowley, C.W.; Williams, M. A kernel-based method for data-driven Koopman spectral analysis. J. Comput. Dyn. 2016, 2, 247–265. [Google Scholar]
- Kaiser, E.; Kutz, J.N.; Brunton, S.L. Data-driven discovery of Koopman eigenfunctions for control. Mach. Learn. Sci. Technol. 2021, 2, 035023. [Google Scholar] [CrossRef]
- Mendible, A.; Koch, J.; Lange, H.; Brunton, S.L.; Kutz, J.N. Data-driven modeling of rotating detonation waves. Phys. Rev. Fluids 2021, 6, 050507. [Google Scholar] [CrossRef]
- Klus, S.; Nüske, F.; Peitz, S.; Niemann, J.H.; Clementi, C.; Schütte, C. Data-driven approximation of the Koopman generator: Model reduction, system identification, and control. Physica D Nonlinear Phenom. 2020, 406, 132416. [Google Scholar] [CrossRef]
- Klus, S.; Nske, F.; Hamzi, B. Kernel-based approximation of the Koopman generator and Schrödinger operator. Entropy 2020, 22, 722. [Google Scholar] [CrossRef] [PubMed]
- Balabane, M.; Méndez, M.A.; Najem, S. Koopman operator for Burgers’s equation. Phys. Rev. Fluids 2021, 6, 064401. [Google Scholar] [CrossRef]
- Mesbahi, A.; Bu, J.; Mesbahi, M. Nonlinear observability via Koopman analysis: Characterizing the role of symmetry. Automatica 2021, 124, 109353. [Google Scholar] [CrossRef]
- Phillips, A. Extending Nonlinear Schrödinger Equation to Include Spatiotemporal Dispersion. Master’s Thesis, Lamar University, Beaumont, TX, USA, May 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klauss, R.; Phillips, A.; Vega-Guzmán, J.M. Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation. Symmetry 2022, 14, 465. https://doi.org/10.3390/sym14030465
Klauss R, Phillips A, Vega-Guzmán JM. Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation. Symmetry. 2022; 14(3):465. https://doi.org/10.3390/sym14030465
Chicago/Turabian StyleKlauss, Rachel, Aaron Phillips, and José M. Vega-Guzmán. 2022. "Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation" Symmetry 14, no. 3: 465. https://doi.org/10.3390/sym14030465
APA StyleKlauss, R., Phillips, A., & Vega-Guzmán, J. M. (2022). Analytical and Data-Driven Wave Approximations of an Extended Schrödinger Equation. Symmetry, 14(3), 465. https://doi.org/10.3390/sym14030465