Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements
Abstract
:1. Introduction
2. Regiospecific Analysis
2.1. Enzymatic Hydrolysis
2.2. Chemical Methods
2.3. Chromatography
2.3.1. Silver Ion Thin-Layer Chromatography (Ag-TLC)
2.3.2. Silver Ion High-Performance Liquid Chromatography (Ag-HPLC)
2.3.3. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)
2.3.4. Combined Chromatographic Methods
2.3.5. Other
2.4. Spectrometry
2.4.1. Mass Spectrometry (MS)
2.4.2. Nuclear Magnetic Resonance Spectrometry (NMR)
3. Stereospecific Analysis
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christie, W.W.; Han, X. Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis, 4th ed.; The Oily Press: Bridgwater, UK, 2010. [Google Scholar]
- Gunstone, F.D.; Harwood, J.L.; Padley, F.B. The Lipid Handbook, 1st ed.; Chapman and Hall: London, UK; New York, NY, USA, 1986. [Google Scholar]
- Chow, C.K. Fatty Acids in Foods and Their Health Implications, 2nd ed.; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Michalski, M.C.; Genot, C.; Gayet, C.; Lopez, C.; Fine, F.; Joffre, F.; Vendeuvre, J.L.; Bouvier, J.; Chardigny, J.M.; Raynal-Ljutovac, K. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Progr. Lipid Res. 2013, 52, 354–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuffrè, A.M. Variation in triacylglycerols of olive oils produced in Calabria (Southern Italy) during olive ripening. Riv. Ital. Sost. Gr. 2014, 91, 221–240. [Google Scholar]
- Giuffrè, A.M. Influence of cultivar and harvest year on triglyceride composition of olive oils produced in Calabria (Southern Italy). Eur. J. Lipid Sci. Technol. 2013, 115, 928–934. [Google Scholar] [CrossRef]
- Herchi, W.; Trabelsi, H.; Ben Salah, H.; Zhao, Y.Y.; Boukhchina, S.; Kallel, H.; Curtis, J.M. Changes in the triacylglycerol content of flaxseeds during development using liquid chromatography atmospheric pressure photoionization-mass spectrometry (LC-APPI-MS). Afr. J. Biotechnol. 2012, 11, 904–911. [Google Scholar] [CrossRef]
- Parcerisa, J.; Rafecas, M.; Castellote, A.I.; Codony, R.; Farràn, A.; Garcia, J.; López, A.; Romero, A.; Boatella, J. Influence of variety and geographical origin on the lipid fraction of hazelnuts (Coryllus avellana L.) from Spain: (II). Triglyceride composition. Food Chem. 1994, 50, 245–249. [Google Scholar] [CrossRef]
- Perona, J.S.; Portillo, M.P.; Macarulla, M.T.; Tueros, A.I.; Ruiz-Gutiérrez, V. Influence of different dietary fats on triacylglycerol deposition in rat adipose tissue. Brit. J. Nutr. 2000, 84, 765–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido-Fernández, A.; León-Camacho, M. Effect of season, feeding, and anatomical region on the triacylglycerol profile of Iberian pig fat. Food Chem. 2021, 361, 130070. [Google Scholar] [CrossRef]
- Scrimgeour, C.M.; Harwood, J.L. Fatty Acid and Lipid Structure. In The Lipid Handbook; Gunstone, F.D., Harwood, J.L., Dijkstra, A.J., Eds.; CRC Press: New York, NY, USA, 2007. [Google Scholar]
- Hammond, E.W. Lipid analysis—A 20th century success? J. Sci. Food Agric. 2002, 82, 5–11. [Google Scholar] [CrossRef]
- Laakso, P. Analysis of triacylglycerols—approaching the molecular composition of natural mixtures. Food Rev. Int. 1996, 12, 199–250. [Google Scholar] [CrossRef]
- Kuksis, A.; Marai, L.; Myher, J.J. Strategy of glycerolipid separation and quantitation by complementary analytical techniques: Plenary lecture. J. Chromatogr. B 1983, 273, 43–66. [Google Scholar] [CrossRef]
- Andrikopoulos, N.K. Chromatographic and spectroscopic methods in the analysis of triacylglycerol species and regiospecific isomers of oils and fats. Crit. Rev. Food Sci. Nutr. 2002, 42, 473–505. [Google Scholar] [CrossRef]
- Kuksis, A.; Itabashi, Y. Regio- and stereospecific analysis of glycerolipids. Methods 2005, 36, 172–185. [Google Scholar] [CrossRef]
- Kalo, P.J.; Kemppinen, A. Regiospecific analysis of TAGs using chromatography, MS, and chromatography-MS. Eur. J. Lipid Sci. Technol. 2012, 114, 399–411. [Google Scholar] [CrossRef]
- Christie, W.W. Silver ion and chiral chromatography in the analysis of tricylglycerols. Prog. Lipid Res. 1994, 33, 9–18. [Google Scholar] [CrossRef]
- Indelicato, S.; Bongiorno, D.; Pitonzo, R.; di Stefano, V.; Calabrese, V.; Indelicato, S.; Avellone, G. Triacylglycerols in edible oils: Determination, characterization, quantitation, chemometric approach and evaluation of adulterations. J. Chromatogr. A 2017, 1515, 1–16. [Google Scholar] [CrossRef]
- Brockerhoff, H. A stereospecific analysis of triglycerides. J. Lipid Res. 1965, 6, 10–15. [Google Scholar] [CrossRef]
- Brockerhoff, H. Stereospecific analysis of triglycerides: An alternative method. J. Lipid Res. 1967, 8, 167–169. [Google Scholar] [CrossRef]
- Christie, W.W. Triacylglycerols 3. Regio- and Stereospecific Analysis of Triacyl-sn-glycerols. Available online: https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/lipids/simple/tag3/index.htm (accessed on 10 March 2021).
- Luddy, F.E.; Breadford, R.A.; Herb, S.F.; Paul, M.A. A rapid quantitative procedure for the preparation of methyl esters of butter, fat and other fats. JAOCS 1968, 45, 549–552. [Google Scholar] [CrossRef]
- Ando, Y.; Tomita, Y.; Haba, Y. Preparation of ethyl magnesium bromide for regiospecific analysis of triacylglycerols. J. Oleo Sci. 2008, 57, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Becker, C.C.; Rosenquist, A.; Hølmer, G. Regiospecific analysis of triacylglycerols using allyl magnesium bromide. Lipids 1993, 28, 147–149. [Google Scholar] [CrossRef]
- Destaillats, F.; Angers, P.; Wolff, R.L.; Arul, J. Regiospecific analysis of conifer seed triacylglycerols by gas-liquid chromatography with particular emphasis on Δ5-olefinic acids. Lipids 2001, 36, 1247–1254. [Google Scholar] [CrossRef]
- Hashidate, T.; Itabashi, Y. Electrospray ionization mass spectrometry of regioisomeric 1,2-diacylglycerols. Bunseki Kagaku 2005, 54, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Itabashi, Y.; Myher, J.J.; Kuksis, A. Determination of positional distribution of short-chain fatty acids in bovine milk fat on chiral columns. JAOCS 1993, 70, 1177–1181. [Google Scholar] [CrossRef]
- Morris, L.J. Separation of Lipids by Silver Ion Chromatography. J. Lipid Res. 1966, 7, 717–732. [Google Scholar] [CrossRef]
- Nikolova-Damyanova, B. Silver Ion Chromatography and Lipids. In Advances in Lipid Methodology—One; Christle, W.W., Ed.; The Oily Press: Ayr, Scotland, 1992; pp. 181–237. [Google Scholar]
- Momchilova, S.; Nikolova-Damyanova, B. TLC of lipids. In Thin Layer Chromatography in Phytochemistry; Waksmundzka-Hajnos, M., Sherma, J., Kowalska, T., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 277–297. [Google Scholar]
- Momchilova, S.; Nikolova-Damyanova, B. Advances in Silver Ion Chromatography for the Analysis of Fatty Acids and Triacylglycerols—2001 to 2011. Anal. Sci. 2012, 28, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Dobson, G.; Christie, W.W.; Nikolova-Damyanova, B. Silver ion chromatography of lipids and fatty acids. J. Chromatogr. B 1995, 671, 197–222. [Google Scholar] [CrossRef]
- Nikolova-Damyanova, B. Retention of lipids in silver ion high-performance liquid chromatography: Facts and assumptions. J. Chromatogr. A 2009, 1216, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- Blanck, M.L.; Verdino, B.; Privett, O.S. Determination of Triglyceride via Silver Nitrate-TLC. JAOCS 1965, 42, 87–90. [Google Scholar] [CrossRef]
- Nikolova-Damyanova, B.; Chobanov, D.; Dimov, S. Separation of Isomeric Triacylglycerols by Silver Ion Thin-Layer Chromatography. J. Liq. Chromatogr. 1993, 16, 3997–4008. [Google Scholar] [CrossRef]
- Momchilova, S.; Nikolova-Damyanova, B. Stationary phases for silver ion chromatography: Preparation and properties. J. Sep. Sci. 2003, 26, 261–270. [Google Scholar] [CrossRef]
- Dallas, M.S.J.; Padley, F.B. Analysis of confectionery fats. I. Separation of triglycerides by silver nitrate thin-layer chromatography. Lebensm.-Wiss. Und-Technol. 1977, 10, 328–331. [Google Scholar]
- Gegiou, D.; Georgouli, M. A rapid argentation TLC method for detection of reesterified oils in olive and olive-residue oils. JAOCS 1983, 60, 833–835. [Google Scholar] [CrossRef]
- Christie, W.W. A stable silver-loaded column for the separation of lipids by high performance liquid chromatography. J. High. Res. Chromatogr. 1987, 10, 148–150. [Google Scholar] [CrossRef]
- Adlof, R.O. Analysis of triacylglycerol positional isomers by silver ion high performance liquid chromatography. J. High. Res. Chromatogr. 1995, 18, 105–107. [Google Scholar] [CrossRef]
- Adlof, R.; List, G. Analysis of triglyceride isomers by silver-ion high-performance liquid chromatography: Effect of column temperature on retention times. J. Chromatogr. A 2004, 1046, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, B.S.J. Silver-Complexation Liquid Chromatography for Fast, High-Resolution Separations of Triacylglycerols. JAOCS 1991, 68, 289–293. [Google Scholar] [CrossRef]
- Schuyl, P.J.W.; de Joode, T.; Vasconcellos, M.A.; Duchateau, G.S.M.J.E. Silver-phase high-performance liquid chromatography-electrospray mass spectrometry of triacylglycerols. J. Chromatogr. A 1998, 810, 53–61. [Google Scholar] [CrossRef]
- Lísa, M.; Denev, R.; Holčapek, M. Retention behavior of isomeric triacylglycerols in silver-ion HPLC: Effects of mobile phase composition and temperature. J. Sep. Sci. 2013, 36, 2888–2900. [Google Scholar] [CrossRef]
- Santoro, V.; Dal Bello, F.; Aigotti, R.; Gastaldi, D.; Romaniello, F.; Forte, E.; Magni, M.; Baiocchi, C.; Medana, C. Characterization and determination of interesterification markers (triacylglycerol regioisomers) in confectionery oils by liquid chromatography-mass spectrometry. Foods 2018, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Nikolova-Damyanova, B.; Christie, W.W.; Herslöf, B.G. Retention properties of triacylglycerols on silver ion high-performance liquid chromatography. J. Chromatogr. A 1995, 694, 375–380. [Google Scholar] [CrossRef]
- Christie, W.W. Separation of molecular species of triacylglycerols by high-performance liquid chromatography with a silver ion column. J. Chromatogr. A 1988, 454, 273–284. [Google Scholar] [CrossRef]
- Holčapek, M.; Dvoráková, H.; Lísa, M.; Girón, A.J.; Sandrab, P.; Cvacka, J. Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography–atmospheric pressure chemical ionization mass spectrometry: Comparison of five different mass analyzers. J. Chromatogr. A 2010, 1217, 8186–8194. [Google Scholar] [CrossRef] [PubMed]
- Nikolova-Damyanova, B. Lipid Analysis by silver ion Chromatography. In Advances in Lipid Methodology—Five; Adlof, R.O., Ed.; The Oily Press: Bridgwater, UK, 2003; pp. 43–123. [Google Scholar]
- Wada, S.; Koizumi, C.; Nonaka, J. Analysis of Triglycerides of Soybean Oil by High-Performance Liquid Chromatography in Combination with Gas Liquid Chromatography. J. Jpn. Oil Chem. Soc. 1977, 26, 95–99. [Google Scholar] [CrossRef]
- Nikolova-Damyanova, B. Reversed phase HPLC: General principles and application to fatty acids and triacylglycerols. In Advances in Lipid Methodology—Four; Christie, W.W., Ed.; The Oily Press: Bridgwater, UK, 1997; pp. 193–251. [Google Scholar]
- Aitzetmüller, K. The progress in the high performance liquid chromatography of lipids. Prog. Lipid Res. 1982, 21, 171–193. [Google Scholar] [CrossRef]
- Shukla, V.K.S. Recent advances in the high-performance liquid chromatography of lipids. Prog. Lipid Res. 1988, 27, 5–38. [Google Scholar] [CrossRef]
- Laakso, P.; Christie, W.W. Chromatographic resolution of chiral diacylglycerol derivatives: Potential in the stereospecific analysis of triacyl-sn-glycerols. Lipids 1990, 25, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-T.; Snyder, L.R.; McKeona, T.A. Prediction of relative retention times of triacylglycerols in nonaqueous reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1998, 808, 43–49. [Google Scholar] [CrossRef]
- Momchilova, S.; Itabashi, Y.; Nikolova-Damyanova, B.; Kuksis, A. Regioselective separation of isomeric triacylglycerols by reversed-phase high-performance liquid chromatography: Stationary phase and mobile phase effects. J. Sep. Sci. 2006, 29, 2578–2583. [Google Scholar] [CrossRef]
- Mottram, H.R.; Crossman, Z.M.; Evershed, R.P. Regiospecific characterisation of the triacylglycerols in animal fats using high performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. Analyst 2001, 126, 1018–1024. [Google Scholar] [CrossRef]
- Mottram, H.R.; Evershed, R.P. Structure analysis of triacylglycerol positional isomers using atmospheric pressure chemical ionisation mass spectrometry. Tetrahedron Lett. 1996, 37, 8593–8596. [Google Scholar] [CrossRef]
- Mottram, H.R.; Woodbury, S.E.; Evershed, R.P. Identification of triacylglycerol positional isomers present in vegetable oils by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectr. 1997, 11, 1240–1252. [Google Scholar] [CrossRef]
- Byrdwell, W.G. ACI-MS in Lipid Analysis. In Advances in Lipid Methodology—Five; Adlof, R.O., Ed.; The Oily Press: Bridgwater, UK, 2003; pp. 171–253. [Google Scholar]
- Byrdwell, W.C. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 2001, 36, 327–346. [Google Scholar] [CrossRef] [PubMed]
- Rigano, F.; Tranchida, P.Q.; Dugo, P.; Mondello, L. High-performance liquid chromatography combined with electron ionization mass spectrometry: A review. TrAC—Trends Anal. Chem. 2019, 118, 112–122. [Google Scholar] [CrossRef]
- Holčapek, M.; Jandera, P.; Zderadička, P.; Hrubá, L. Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2003, 1010, 195–215. [Google Scholar] [CrossRef]
- Lísa, M.; Holčapek, M.; Sovová, H. Comparison of various types of stationary phases in non-aqueous reversed-phase high-performance liquid chromatography-mass spectrometry of glycerolipids in blackcurrant oil and its enzymatic hydrolysis mixture. J. Chromatogr. A 2009, 1216, 8371–8378. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, T.; Pádrová, K.; Sigler, K. Regioisomeric and enantiomeric analysis of triacylglycerols. Anal. Biochem. 2017, 524, 3–12. [Google Scholar] [CrossRef]
- Leskinen, H.M.; Suomela, J.-P.; Kallio, H.P. Quantification of triacylglycerol regioisomers by ultra-high-performance liquid chromatography and ammonia negative ion atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Comm. Mass Spectr. 2010, 24, 1–5. [Google Scholar] [CrossRef]
- Vítová, M.; Goecke, F.; Sigler, K.; Řezanka, T. Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH. Algal Res. 2016, 13, 218–226. [Google Scholar] [CrossRef]
- Řezanka, T.; Lukavský, J.; Sigler, K.; Nedbalová, L.; Vítová, M. Temperature dependence of production of structured triacylglycerols in the alga Trachydiscus minutus. Phytochem. 2015, 110, 37–45. [Google Scholar] [CrossRef]
- Beccaria, M.; Costa, R.; Sullini, G.; Grasso, E.; Cacciola, F.; Dugo, P.; Mondello, L. Determination of the triacylglycerol fraction in fish oil by comprehensive liquid chromatography techniques with the support of gas chromatography and mass spectrometry data. Anal. Bioanal. Chem. 2015, 407, 5211–5225. [Google Scholar] [CrossRef]
- Schreiberová, O.; Krulikovská, T.; Sigler, K.; Čejková, A.; Řezanka, T. RP-HPLC/MS-APCI analysis of branched chain TAG prepared by precursor-directed biosynthesis with Rhodococcus erythropolis. Lipids 2010, 45, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, T.; Lukavský, J.; Nedbalová, L.; Kolouchová, I.; Sigler, K. Effect of starvation on the distribution of positional isomers and enantiomers of triacylglycerol in the diatom Phaeodactylum tricornutum. Phytochemistry 2012, 80, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, T.; Nedbalová, L.; Sigler, K. Comparative analysis of triacylglycerols from different Stichococcus strains by RP-HPLC/APCI-MS and chiral HPLC. J. Appl. Phycol. 2015, 27, 685–696. [Google Scholar] [CrossRef]
- Řezanka, T.; Kolouchová, I.; Čejková, A.; Cajthaml, T.; Sigler, K. Identification of regioisomers and enantiomers of triacylglycerols in different yeasts using reversed- and chiral-phase LC-MS. J. Sep. Sci. 2013, 36, 3310–3320. [Google Scholar] [CrossRef]
- Kofroňová, E.; Cvačka, J.; Jiroš, P.; Sýkora, D.; Valterová, I. Analysis of insect triacylglycerols using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Eur. J. Lipid Sci. Technol. 2009, 111, 519–525. [Google Scholar] [CrossRef]
- Holčapek, M.; Lísa, M.; Jandera, P.; Kabátová, N. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 2005, 28, 1315–1333. [Google Scholar] [CrossRef]
- Lísa, M.; Lynen, F.; Holčapek, M.; Sandra, P. Quantitation of triacylglycerols from plant oils using charged aerosol detection with gradient compensation. J. Chromatogr. A 2007, 1176, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ovčačíková, M.; Lísa, M.; Cífková, E.; Holčapek, M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 2016, 1450, 76–85. [Google Scholar] [CrossRef]
- Palyzová, A.; Cajthaml, T.; Řezanka, T. Separation of regioisomers and enantiomers of triacylglycerols containing branched fatty acids (iso and/or anteiso). Electrophoresis 2020, 42, 1832–1843. [Google Scholar] [CrossRef]
- Kallio, H.; Yli-Jokipii, K.; Kurvinen, J.P.; Sjövall, O.; Tahvonen, R. Regioisomerism of triacylglycerols in lard, tallow, yolk, chicken skin, palm oil, palm olein, palm stearin, and a transesterified blend of palm stearin and coconut oil analyzed by tandem mass spectrometry. J. Agric. Food Chem. 2001, 49, 3363–3369. [Google Scholar] [CrossRef]
- Kallio, H.; Nylund, M.; Boström, P.; Yang, B. Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method. Food Chem. 2017, 233, 351–360. [Google Scholar] [CrossRef]
- Herrera, L.C.; Ramaley, L.; Potvin, M.A.; Melanson, J.E. A method for determining regioisomer abundances of polyunsaturated triacylglycerols in omega-3 enriched fish oils using reversed-phase liquid chromatography and triple-stage mass spectrometry. Food Chem. 2013, 139, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Šala, M.; Lísa, M.; Campbell, J.L.; Holčapek, M. Determination of triacylglycerol regioisomers using differential mobility spectrometry. Rapid Commun. Mass Spectr. 2016, 30, 256–264. [Google Scholar] [CrossRef]
- Dugo, P.; Kumm, T.; Chiofalo, B.; Cotroneo, A.; Mondello, L. Separation of triacylglycerols in a complex lipidic matrix by using comprehensive two-dimensional liquid chromatography coupled with atmosheric pressure chemical ionization mass spectrometric detection. J. Sep. Sci. 2006, 29, 1146–1154. [Google Scholar] [CrossRef]
- Cacciola, F.; Dugo, P.; Mondello, L. Multidimensional liquid chromatography in food analysis. TrAC—Trends Anal. Chem. 2017, 96, 116–123. [Google Scholar] [CrossRef]
- Cacciola, F.; Russo, M.; Mondello, L.; Dugo, P. Comprehensive Two-Dimensional Liquid Chromatography Coupled to Mass Spectrometry: Fundamentals, Method Development and Applications. Compr. Anal. Chem. 2018, 79, 81–123. [Google Scholar] [CrossRef]
- Rigano, F.; Arigò, A.; Oteri, M.; la Tella, R.; Dugo, P.; Mondello, L. The Retention Index Approach in Liquid Chromatography: An Historical Review and Recent Advances. J. Chromatogr. A 2021, 1640, 461963. [Google Scholar] [CrossRef]
- Kalpio, M.; Linderborg, K.M.; Fabritius, M.; Kallio, H.; Yang, B. Strategy for stereospecific characterization of natural triacylglycerols using multidimensional chromatography and mass spectrometry. J. Chromatogr. A 2021, 1641, 461992. [Google Scholar] [CrossRef]
- Stoll, D.R.; Li, X.; Wang, X.; Carr, P.W.; Porter, S.E.G.; Rutan, S.C. Fast, comprehensive two-dimensional liquid chromatography. J. Chromatogr. A 2007, 1168, 3–43. [Google Scholar] [CrossRef] [Green Version]
- Guiochon, G.; Marchetti, N.; Mriziq, K.; Shalliker, R.A. Implementations of two-dimensional liquid chromatography. J. Chromatogr. A 2008, 1189, 109–168. [Google Scholar] [CrossRef]
- Dugo, P.; Favoino, O.; Tranchida, P.Q.; Dugo, G.; Mondello, L. Off-line coupling of non-aqueous reversed-phase and silver ion high-performance liquid chromatography-mass spectrometry for the characterization of rice oil triacylglycerol positional isomers. J. Chromatogr. A 2004, 1041, 135–142. [Google Scholar] [CrossRef]
- Palyzová, A.; Řezanka, T. Separation and identification of diacylglycerols containing branched chain fatty acids by liquid chromatography-mass spectrometry. J. Chromatogr. A 2021, 1635, 461708. [Google Scholar] [CrossRef]
- King, J.W. Supercritical fluid chromatography (SFC~)—global perspective and application in lipid analysis. In Advances in Lipid Methodology—Five; Adlof, R.O., Ed.; The Oily Press: Bridgwater, UK, 2003; pp. 301–353. [Google Scholar]
- Duval, J.; Colas, C.; Pecher, V.; Poujol, M.; Tranchant, J.-F.; Lesellier, E. Hyphenation of ultra high performance supercritical fluid chromatography with atmospheric pressure chemical ionisation high resolution mass spectrometry: Part 1. Study of the coupling parameters for the analysis of natural non-polar compounds. J. Chromatogr. A 2017, 1509, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Duval, J.; Colas, C.; Bonnet, P.; Lesellier, E. Hyphenation of ultra-high performance supercritical fluid chromatography with atmospheric pressure chemical ionisation high resolution mass spectrometry: Part 2. Study of chromatographic and mass spectrometry parameters for the analysis of natural non-polar compounds. J. Chromatogr. A 2019, 1596, 199–208. [Google Scholar] [CrossRef]
- Donato, P.; Inferrera, V.; Sciarrone, D.; Mondello, L. Supercritical fluid chromatography for lipid analysis in foodstuffs. J. Sep. Sci. 2017, 40, 361–382. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Abe, K.; Murano, Y.A. Practical Method for Analysis of Triacylglycerol Isomers Using Supercritical Fluid Chromatography. J. Am. Oil Chem. Soc. 2021, 98, 21–29. [Google Scholar] [CrossRef]
- Lee, J.W.; Nagai, T.; Gotoh, N.; Fukusaki, E.; Bamba, T. Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. J. Chromatogr. B 2014, 966, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryhage, R.; Stenhagen, E. Mass spectrometry in lipid research. J. Lipid Res. 1960, 1, 361–390. [Google Scholar] [CrossRef]
- Kallio, H.; Currie, G. Analysis of low erucic-acid turnip rapeseed oil (Brassica campestris) by negative ion chemical ionization tandem mass spectrometry. A method giving information on the fatty acid composition in positions sn-2 and sn-1/3 of triacylglycerols. Lipids 1993, 28, 207–215. [Google Scholar] [CrossRef]
- Currie, G.J.; Kallio, H. Triacylglycerols of human milk: Rapid analysis by ammonia negative ion tandem mass spectrometry. Lipids 1993, 28, 217–222. [Google Scholar] [CrossRef]
- Kallio, H.; Rua, P. Distribution of the Major Fatty Acids of Human Milk Between sn-2 and sn-1/3 Positions of Triacylglycerols. JAOCS 1994, 71, 985–992. [Google Scholar] [CrossRef]
- Laakso, P.; Kallio, H. Optimization of the mass spectrometric analysis of triacylglycerols using negative-ion chemical ionization with ammonia. Lipids 1996, 31, 33–42. [Google Scholar] [CrossRef]
- Kurvinen, J.-P.; Rua, P.; Sjövall, O.; Kallio, H. Software (MSPECTRA) for automatic interpretation of triacylglycerol molecular mass distribution spectra and collision induced dissociation product ion spectra obtained by ammonia negative ion chemical ionization mass spectrometry. Rapid Commun. Mass Spectr. 2001, 15, 1084–1091. [Google Scholar] [CrossRef]
- Kurvinen, J.-P.; Mu, H.; Kallio, H.; Xu, X.; Høy, C.E. Regioisomers of octanoic acid-containing structured triacylglycerols analyzed by tandem mass spectrometry using ammonia negative ion chemical ionization. Lipids 2001, 36, 1377–1382. [Google Scholar] [CrossRef]
- Kurvinen, J.-P.; Sjövall, O.; Kallio, H. Molecular Weight Distribution and Regioisomeric Structure of Triacylglycerols in Some Common Human Milk Substitutes. JAOCS 2002, 79, 13–22. [Google Scholar] [CrossRef]
- Malone, M.; Evans, J.J. Determining the Relative Amounts of Positional Isomers in Complex Mixtures of Triglycerides Using Reversed-Phase High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Lipids 2004, 39, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Ramaley, L.; Cubero Herrera, L.; Melanson, J.E. Applicability of non-linear versus linear fractional abundance calibration plots for the quantitative determination of triacylglycerol regioisomers by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1251–1259. [Google Scholar] [CrossRef]
- Lin, J.-T.; Arcinas, A. Analysis of Regiospecific Triacylglycerols by Electrospray Ionization-Mass Spectrometry3 of Lithiated Adducts. J. Agric. Food Chem. 2008, 56, 4909–4915. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-T. Ratios of Regioisomers of Triacylglycerols Containing Dihydroxy Fatty Acids in Castor Oil by Mass Spectrometry. JAOCS 2009, 86, 1031–1035. [Google Scholar] [CrossRef]
- Lin, J.-T.; Fagerquist, C.K.; Chen, G.Q. Ratios of Regioisomers of the Molecular Species of Triacylglycerols in Lesquerella (Physaria fendleri) Oil Estimated by Mass Spectrometry. JAOCS 2016, 2, 183–191. [Google Scholar] [CrossRef]
- Loutelier-Bourhis, C.; Zovi, O.; Lecamp, L.; Bunel, C.; Lange, C.M. Contribution of two approaches using electrospray ionization with multi-stage mass spectrometry for the characterization of linseed oil. Rapid Commun. Mass Spectr. 2009, 23, 3743–3752. [Google Scholar] [CrossRef]
- Fasciotti, M.; Monteiro, T.V.C.; Rocha, W.F.C.; Moraes, L.R.; Sussulini, A.; Eberlin, M.N.; Cunha, V.S. Comprehensive Triacylglycerol Characterization of Oils and Butters of 15 Amazonian Oleaginous Species by ESI-HRMS/MS and Comparison with Common Edible Oils and Fats. Eur. J. Lipid Sci. Technol. 2020, 122, 2000019. [Google Scholar] [CrossRef]
- Byrdwell, W.C. Qualitative and quantitative analysis of triacylglycerols by atmospheric pressure ionization (APCI and ESI) mass spectrometry techniques. In Modern Methods for Lipid Analysis by Liquid Chromatography/Mass Spectrometry and Related Techniques; Byrdwell, W.C., Ed.; AOCS Press: New York, NY, USA, 2005; pp. 298–412. [Google Scholar]
- Byrdwell, W.C. The bottom-up solution to the triacylglycerol lipidome using atmospheric pressure chemical ionization mass spectrometry. Lipids 2005, 40, 383–417. [Google Scholar] [CrossRef] [PubMed]
- Byrdwell, W.C. Critical Ratios for structural analysis of triacylglycerols using mass spectrometry. Lipid Technol. 2015, 27, 258–261. [Google Scholar] [CrossRef]
- Byrdwell, W.C. The Updated Bottom Up Solution applied to mass spectrometry of soybean oil in a dietary supplement gelcap. Anal. Bioanal. Chem. 2015, 407, 5143–5160. [Google Scholar] [CrossRef]
- Murphy, R.C. Challenges in mass spectrometry-based lipidomics of neutral lipids. TrAC—Trends Anal. Chem. 2018, 107, 91–98. [Google Scholar] [CrossRef]
- Fabritius, M.; Linderborg, K.M.; Tarvainen, M.; Kalpio, M.; Zhang, Y.; Yang, B. Direct inlet negative ion chemical ionization tandem mass spectrometric analysis of triacylglycerol regioisomers in human milk and infant formulas. Food Chem. 2020, 328, 126991. [Google Scholar] [CrossRef]
- Yeo, J.D.; Parrish, C.C. Evaluation of triacylglycerol (TAG) profiles and their contents in salmon muscle tissue using ESI-MS/MS spectrometry with multiple neutral loss scans. Food Chem. 2020, 324, 126816. [Google Scholar] [CrossRef]
- Leveque, N.L.; Acheampong, A.; Heron, S.; Tchapla, A. Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method. Anal. Chim. Acta 2012, 722, 80–86. [Google Scholar] [CrossRef]
- Jie, M.S.L.K.; Lam, C.C. 13C-Nuclear magnetic resonance spectroscopic studies of triacylglycerols of type AAA containing (Z)- and (E)-monoethylenic acyl groups. Chem. Phys. Lipids 1995, 78, 15–27. [Google Scholar] [CrossRef]
- Redden, P.R.; Lin, X.; Horrobin, D.F. Comparison of the Grignard deacylation TLC and HPLC methods and high resolution 13C-NMR for the sn-2 positional analysis of triacylglycerols containing γ-linolenic acid. Chem. Phys. Lipids 1996, 79, 9–19. [Google Scholar] [CrossRef]
- Vlahov, G. Determination of the 1,3- and 2-positional distribution of fatty acids in olive oil triacylglycerols by13C nuclear magnetic resonance spectroscopy. J. AOAC Intern. 2006, 89, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Kildahl-Andersen, G.; Gjerlaug-Enger, E.; Rise, F.; Haug, A.; Egelandsdal, B. Quantification of Fatty Acids and their Regioisomeric Distribution in Triacylglycerols from Porcine and Bovine Sources Using 13C NMR Spectroscopy. Lipids 2021, 56, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, G.; Trivellone, E.; Lamanna, R.; Di Luccia, A.; Motta, A. Milk Identification of Different Species: 13C-NMR Spectroscopy of Triacylglycerols from Cows and Buffaloes’ Milks. J. Dairy Sci. 2000, 83, 2432–2437. [Google Scholar] [CrossRef]
- He, Y.; Wu, T.; Sun, H.; Sun, P.; Liu, B.; Luo, M.; Chen, F. Comparison of fatty acid composition and positional distribution of microalgae triacylglycerols for human milk fat substitutes. Algal Res. 2019, 37, 40–50. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Strocchi, G.; Bustamante, J.; Torres-Cobos, B.; Guardiola, F.; Moreda, W.; Martínez-Rivas, J.M.; Valli, E.; Bendini, A.; Toschi, T.G.; et al. Large-scale evaluation of shotgun triacylglycerol profiling for the fast detection of olive oil adulteration. Food Control 2021, 123, 107851. [Google Scholar] [CrossRef]
- Hancock, S.E.; Poad, B.L.J.; Batarseh, A.; Abbott, S.K.; Mitchell, T.W. Advances and unresolved challenges in the structural characterization of isomeric lipids. Anal. Biochem. 2017, 524, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Ye, H. Overview of Lipidomic Analysis of Triglyceride Molecular Species in Biological Lipid Extracts. J. Agric. Food Chem. 2021, 69, 8895–8909. [Google Scholar] [CrossRef]
- Christie, W.W.; Nikolova-Damyanova, B.; Laakso, P.; Herslof, B. Stereospecific analysis of triacyl-sn-glycerols via resolution of diastereomeric diacylglycerol derivatives by high-performance liquid chromatography on silica. JAOCS 1991, 68, 695–701. [Google Scholar] [CrossRef]
- Takagi, T.; Itabashi, Y. Resolution of racemic monoacylglycerols to enantiomers by high-performance liquid chromatography. JAOCS 1985, 34, 962–963. [Google Scholar] [CrossRef]
- Itabashi, Y.; Takagi, T. High performance liquid chromatographic separation of monoacylglycerol enantiomers on a chiral stationary phase. Lipids 1986, 21, 413–416. [Google Scholar] [CrossRef]
- Takagi, T.; Ando, Y. Enantiomer separations of mixtures of monoacylglycerol derivatives by HPLC on a chiral column. Lipids 1990, 25, 398–400. [Google Scholar] [CrossRef]
- Itabashi, Y.; Takagi, T. High-performance liquid chromatographic separation of diacylglycerol enantiomers on a chiral stationary phase. J. Chromatogr. A 1987, 402, 257–264. [Google Scholar] [CrossRef]
- Itabashi, Y.; Kukis, A.; Marai, L.; Takagi, T. HPLC resolution of diacylglycerol moieties of natural triacylglycerols on a chiral phase consisting of bonded (R)-(+)-1-(1-naphthyl)ethylamine. J. Lipid Res. 1990, 31, 1711–1717. [Google Scholar] [CrossRef]
- Itabashi, Y.; Kuksis, A.; Myher, J.J. Determination of molecular species of enantiomeric diacylglycerols by chiral phase high performance liquid chromatography and polar capillary gas-liquid chromatography. J. Lipid Res. 1990, 31, 2119–2126. [Google Scholar] [CrossRef]
- Itabashi, Y.; Marai, L.; Kuksis, A. Identification of natural diacylglycerols as the 3,5-dinitrophenylurethanes by chiral phase liquid chromatography with mass spectrometry. Lipids 1991, 26, 951–956. [Google Scholar] [CrossRef]
- Takagi, T.; Ando, Y. Stereospecific analysis of triacyl-sn-glycerols by chiral high-performance liquid chromatography. Lipids 1991, 26, 542–547. [Google Scholar] [CrossRef]
- Ando, Y.; Takagi, T. Micro method for stereospecific analysis of triacyl-sn-glycerols by chiral-phase high performance liquid chromatography. JAOCS 1993, 70, 1047–1049. [Google Scholar] [CrossRef]
- Itabashi, Y.; Myher, J.J.; Kuksis, A. High-performance liquid chromatographic resolution of reverse isomers of 1,2-diacyl-rac-glycerols as 3,5-dinitrophenylurethanes. J. Chromatogr. A 2000, 893, 261–279. [Google Scholar] [CrossRef]
- Okabe, H.; Itabashi, Y.; Ota, T.; Kuksis, A. Highly sensitive method for the separation of enantiomeric and regioisomeric diacylglycerols as 2-anthrylurethanes by chiral-phase high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A 1998, 829, 81–89. [Google Scholar] [CrossRef]
- Itabashi, Y. Chiral-phase HPLC resolution of enantiomeric diacylglycerol moieties of fish-oil triacylglycerols. Bunseki Kagaku 1999, 48, 1145–1148. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.W. Positional distribution of fatty acids in glycerolipids. In Lipid Analysis, 3rd ed.; Christie, W.W., Ed.; The Oily Press: Bridgwater, UK, 2003; pp. 373–387. [Google Scholar]
- Kalo, P. Regio- and stereospecific analysis of diacylglycerols and monoacylglycerols. Lipid Technol. 2014, 26, 63–66. [Google Scholar] [CrossRef]
- Nagai, T.; Mizobe, H.; Otake, I.; Ichioka, K.; Kojima, K.; Matsumoto, Y.; Gotoh, N.; Kuroda, I.; Wada, S. Enantiomeric separation of asymmetric triacylglycerol by recycle high-performance liquid chromatography with chiral column. J. Chromatogr. A 2011, 1218, 2880–2886. [Google Scholar] [CrossRef]
- Nagai, T.; Matsumoto, Y.; Jiang, Y.; Ishikawa, K.; Wakatabe, T.; Mizobe, H.; Yoshinaga, K.; Kojima, K.; Kuroda, I.; Saito, T.; et al. Actual ratios of triacylglycerol positional isomers and enantiomers comprising saturated fatty acids and highly unsaturated fatty acids in fishes and marine mammals. J. Oleo Sci. 2013, 62, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Nagai, T.; Watanabe, N.; Yoshinaga, K.; Mizobe, H.; Kojima, K.; Kuroda, I.; Odanaka, Y.; Saito, T.; Beppu, F.; Gotoh, N. Abundances of triacylglycerol positional isomers and enantiomers comprised of a dipalmitoylglycerol backbone and short- or medium-chain fatty acids in bovine milk fat. J. Oleo Sci. 2015, 64, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Gotoh, N.; Wada, S.; Nagai, T. Separation of asymmetric triacylglycerols into their enantiomers by recycle high-performance liquid chromatography. Lipid Technol. 2011, 23, 105–108. [Google Scholar] [CrossRef]
- Kalpio, M.; Nylund, M.; Linderborg, K.M.; Yang, B.; Kristinsson, B.; Haraldsson, G.G.; Kallio, H. Enantioselective chromatography in analysis of triacylglycerols common in edible fats and oils. Food Chem. 2015, 172, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Kalpio, M.; Magnússon, J.D.; Gudmundsson, H.G.; Linderborg, K.M.; Kallio, H.; Haraldsson, G.G.; Yang, B. Synthesis and enantiospecific analysis of enantiostructured triacylglycerols containing n-3 polyunsaturated fatty acids. Chem. Phys. Lipids 2020, 231, 104937. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Kinoshita, T.; Kasamatsu, E.; Yoshinaga, K.; Mizobe, H.; Yoshida, A.; Itabashi, Y.; Gotoh, N. Simultaneous separation of triacylglycerol enantiomers and positional isomers by chiral high performance liquid chromatography coupled with mass spectrometry. J. Oleo Sci. 2019, 68, 1019–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, T.; Kinoshita, T.; Kasamatsu, E.; Yoshinaga, K.; Mizobe, H.; Yoshida, A.; Itabashi, Y.; Gotoh, N. Simultaneous quantification of mixed-acid triacylglycerol positional isomers and enantiomers in palm oil and lard by chiral high-performance liquid chromatography coupled with mass spectrometry. Symmetry 2020, 12, 1385. [Google Scholar] [CrossRef]
- Lísa, M.; Holčapek, M. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal. Chem. 2013, 85, 1852–1859. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Zhou, X.H.; Han, B.; Yu, Z.; Yi, H.X.; Jiang, S.L.; Li, Y.Y.; Pan, J.C.; Zhang, L.W. Regioisomeric and enantiomeric analysis of primary triglycerides in human milk by silver ion and chiral HPLC APCI-MS. J. Dairy Sci. 2020, 103, 7761–7774. [Google Scholar] [CrossRef]
- Řezanka, T.; Lukavský, J.; Nedbalová, L.; Sigler, K. Production of structured triacylglycerols from microalgae. Phytochemistry 2014, 104, 95–104. [Google Scholar] [CrossRef]
- Řezanka, T.; Vítová, M.; Nováková, A.; Sigler, K. Separation and Identification of Odd Chain Triacylglycerols of the Protozoan Khawkinea quartana and the Mold Mortierella alpina Using LC-MS. Lipids 2015, 50, 811–820. [Google Scholar] [CrossRef]
- Řezanka, T.; Nedbalová, L.; Sigler, K. Enantiomeric separation of triacylglycerols containing polyunsaturated fatty acids with 18 carbon atoms. J. Chromatogr. A 2016, 1467, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, T.; Kolouchová, I.; Nedbalová, L.; Sigler, K. Enantiomeric separation of triacylglycerols containing very long chain fatty acids. J. Chromatogr. A 2018, 1557, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Palyzová, A.; Rezanka, T. Enantiomeric separation of triacylglycerols containing fatty acids with a ring (cyclofatty acids). J. Chromatogr. A 2020, 1622, 461103. [Google Scholar] [CrossRef]
- Palyzová, A.; Rezanka, T. Separation of triacylglycerols containing allenic and acetylenic fatty acids by enantiomeric liquid chromatography-mass spectrometry. J. Chromatogr. A 2020, 1623, 461161. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, K. Development of Analytical Methods and Nutritional Studies Using Synthetic Fatty Acids and Triacylglycerols. J. Oleo Sci. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Picq, M.; Bernoud-Hubac, N.; Lagarde, M. Synthesis and biological interest of structured docosahexaenoic acid-containing triacylglycerols and phospholipids. Org. Chem. 2013, 17, 841–847. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momchilova, S.; Nikolova-Damyanova, B. Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements. Symmetry 2022, 14, 247. https://doi.org/10.3390/sym14020247
Momchilova S, Nikolova-Damyanova B. Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements. Symmetry. 2022; 14(2):247. https://doi.org/10.3390/sym14020247
Chicago/Turabian StyleMomchilova, Svetlana, and Boryana Nikolova-Damyanova. 2022. "Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements" Symmetry 14, no. 2: 247. https://doi.org/10.3390/sym14020247
APA StyleMomchilova, S., & Nikolova-Damyanova, B. (2022). Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements. Symmetry, 14(2), 247. https://doi.org/10.3390/sym14020247