Isolation and Structure Elucidation of a Novel Symmetrical Macrocyclic Phthalate Hexaester
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. The Cyanobacterium
2.3. Extraction and Isolation
2.4. Bioactive Assays
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isobe, A.; Iwasaki, S.; Uchida, K.; Tokai, T. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat. Commun. 2019, 10, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyutskanova, D.; Ivanova, V.; Stoilova-Disheva, M.; Kolarova, M.; Aleksieva, K.; Peltekova, V. Isolation and characterization of a psychrotolerant Streptomyces strain from permafrost soil in spitsbergen, producing phthalic acid ester. Biotechnol. Biotechnol. Equip. 2009, 23, 1220–1224. [Google Scholar] [CrossRef] [Green Version]
- Smaoui, S.; Mellouli, L.; Lebrihi, A.; Coppel, Y.; Fguira, L.F.B.; Mathieu, F. Purification and structure elucidation of three naturally bioactive molecules from the new terrestrial Streptomyces sp. TN17 strain. Nat. Prod. Res. 2011, 25, 806–814. [Google Scholar] [CrossRef] [Green Version]
- Belghit, S.; Bijani, C.; Zitouni, A.; Sabaou, N.; Mathieu, F.; Badji, B. A new Streptomyces strain isolated from Saharan soil produces di-(2-ethylhexyl) phthalate, a metabolite active against methicillin-resistant Staphylococcus aureus. Ann. Microbiol. 2015, 65, 1341–1350. [Google Scholar]
- Keire, D.A.; Anton, P.; Faull, K.F.; Ruth, E.; Walsh, J.H.; Chew, P.; Quisimoro, D.; Territo, M.; Reeve, J.R. Diethyl phthalate, a chemotactic factor secreted by Helicobacter pylori. J. Biol. Chem. 2001, 276, 48847–48853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyoshi, T.; Sato, H.; Harada, T. New Metabolites, 2, 4, 6-triketosuberic acid and 2, 4, 6, 8-tetraketosebacic acid, formed from 2-butyne-1, 4-diol by Fusarium merismoides B11. Agric. Biol. Chem. 1974, 38, 1935–1939. [Google Scholar]
- Amade, P.; Mallea, M.; Bouaicha, N. Isolation, structural identification and biological activity of two metabolites produced by Penicillium olsonii Bainier and Sartory. J. Antibiot. 1994, 47, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Ni, J.; Chang, F.; Liu, S.; Xu, N.; Sun, W.; Xie, Y.; Guo, Y.; Ma, Y.; Yang, Z. Bio-source of di-n-butyl phthalate production by filamentous fungi. Sci. Rep. 2016, 6, 19791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, I.; Mega, N.; Sanada, H. Components of the gel of Aloe vera (L.) Bunn. f. Biosci. Biotechnol. Biochem. 1993, 57, 1350–1352. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, J.H.; Lim, D.S.; Kim, C.H. Anti-leukaemic and anti-mutagenic effects of di (2-ethylhexyl) phthalate Isolated from Aloe vera Linne. J. Pharm. Pharmacol. 2000, 52, 593–598. [Google Scholar] [CrossRef]
- Radonić, A.; Blažević, I.; Mastelić, J.; Zekić, M.; Skočibušić, M.; Maravić, A. Phytochemical analysis and antimicrobial activity of Cardaria draba (L.) Desv. volatiles. Chem. Biodivers. 2011, 8, 1170–1181. [Google Scholar] [CrossRef]
- Babu, B.; Wu, J.-T. Production of phthalate esters by nuisance freshwater algae and cyanobacteria. Sci. Total Environ. 2010, 408, 4969–4975. [Google Scholar] [CrossRef]
- Chen, C.Y. Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) from red alga-Bangia atropurpurea. Water Res. 2004, 38, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Namikoshi, M.; Fujiwara, T.; Nishikawa, T.; Ukai, K. Natural abundance 14C content of dibutyl phthalate (DBP) from three marine algae. Mar. Drugs 2006, 4, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, Y.; Tanaka, M.; Miyashita, M.; Abdel-Wahab, M.; Megaly, A.M.; Nakagawa, Y.; Miyagawa, H. A Fluorescent compound from the exuviae of the scorpion, Liocheles australasiae. J. Nat. Prod. 2020, 83, 542–546. [Google Scholar] [CrossRef]
- Sawers, R.G. o-Phthalate derived from plastics’ plasticizers and a bacterium’s solution to its anaerobic degradation. Mol. Microbiol. 2018, 108, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Junghare, M.; Spiteller, D.; Schink, B. Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium Syntrophorhabdus aromaticivorans. ISME J. 2019, 13, 1252–1268. [Google Scholar] [CrossRef]
- Liang, D.-W.; Zhang, T.; Fang, H.H.; He, J. Phthalates biodegradation in the environment. Appl. Microbiol. Biotechnol. 2008, 80, 183. [Google Scholar] [CrossRef]
- Vega, D.; Bastide, J. Dimethylphthalate hydrolysis by specific microbial esterase. Chemosphere 2003, 51, 663–668. [Google Scholar] [CrossRef]
- Engene, N.; Rottacker, E.C.; Kaštovský, J.; Byrum, T.; Choi, H.; Ellisman, M.H.; Komárek, J.; Gerwick, W.H. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 2012, 62, 1171. [Google Scholar] [CrossRef]
- Singh, R.K.; Tiwari, S.P.; Rai, A.K.; Mohapatra, T.M. Cyanobacteria: An emerging source for drug discovery. J. Antibiot. 2011, 64, 401. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.T. Pharmaceutical agents from filamentous marine cyanobacteria. Drug Discov. Today 2013, 18, 863–871. [Google Scholar] [CrossRef]
- Osborne, N.J.; Webb, P.M.; Shaw, G.R. The toxins of Lyngbya majuscula and their human and ecological health effects. Environ. Int. 2001, 27, 381–392. [Google Scholar] [CrossRef]
- Mynderse, J.S.; Moore, R.E.; Kashiwagi, M.; Norton, T.R. Antileukemia activity in the Osillatoriaceae: Isolation of debromoaplysiatoxin from Lyngbya. Science 1977, 196, 538–540. [Google Scholar] [CrossRef]
- Cardellina, J.H.; Marner, F.-J.; Moore, R.E. Seaweed dermatitis: Structure of lyngbyatoxin A. Science 1979, 204, 193–195. [Google Scholar] [CrossRef]
- Moore, R.E.; Blackman, A.J.; Cheuk, C.E.; Mynderse, J.S.; Matsumoto, G.K.; Clardy, J.; Woodard, R.W.; Craig, J.C. Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J. Org. Chem. 1984, 49, 2484–2489. [Google Scholar] [CrossRef]
- Aimi, N.; Odaka, H.; Sakai, S.-I.; Fujiki, H.; Suganuma, M.; Moore, R.E.; Patterson, G.M.L. Lyngbyatoxins B and C, two new irritants from Lyngbya majuscula. J. Nat. Prod. 1990, 53, 1593–1596. [Google Scholar] [CrossRef]
- Nagai, H.; Yasumoto, T.; Hokama, Y. Aplysiatoxin and debromoaplysiatoxin as the causative agents of a red alga Gracilaria coronopifolia poisoning in Hawaii. Toxicon 1996, 34, 753–761. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, W.; Uchida, H.; Kikumori, M.; Irie, K.; Watanabe, R.; Suzuki, T.; Sakamoto, B.; Kamio, M.; Nagai, H. A new lyngbyatoxin from the Hawaiian cyanobacterium Moorea producens. Mar. Drugs 2014, 12, 2748–2759. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Tan, S.; Hanaki, Y.; Irie, K.; Uchida, H.; Watanabe, R.; Suzuki, T.; Sakamoto, B.; Kamio, M.; Nagai, H. Two new lyngbyatoxin derivatives from the canobacterium, Moorea producens. Mar. Drugs 2014, 12, 5788–5800. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Watanabe, M.; Sato, S.; Kawaguchi, M.; Xiao, Y.-Y.; Hayashi, K.; Watanabe, R.; Uchida, H.; Satake, M. New aplysiatoxin derivatives from the Okinawan cyanobacterium Moorea producens. Tetrahedron 2019, 75, 2486–2494. [Google Scholar] [CrossRef]
- Nagai, H.; Sato, S.; Iida, K.; Hayashi, K.; Kawaguchi, M.; Uchida, H.; Satake, M. Oscillatoxin I: A new aplysiatoxin derivative, from a marine cyanobacterium. Toxins 2019, 11, 366. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, M.; Satake, M.; Zhang, B.-T.; Xiao, Y.-Y.; Fukuoka, M.; Uchida, H.; Nagai, H. Neo-aplysiatoxin A isolated from Okinawan cyanobacterium Moorea producens. Molecules 2020, 25, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Atom | 13C a | 1H, mult, J (Hz) b | COSY | HMBC (H→C) |
---|---|---|---|---|
1 | 132.3 | 7.60, dd (3.3, 5.7 Hz) | H-2 | C-2 |
2 | 129.9 | 7.71, dd (3.3, 5.7 Hz) | H-1 | C-1, C-3 |
3 | 133.6 | |||
4 | 169.4 | |||
5 | 66.9 | 4.30, dd (6.6, 6.6 Hz) | H-6 | C-4, C-6, C-7 |
6 | 29.6 | 1.77, m | H-7 | C-5, C-7 |
7 | 26.9 | 1.49, m | H-6 | C-7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamio, M.; Jiang, W.; Osada, H.; Fukuoka, M.; Uchida, H.; Watanabe, R.; Suzuki, T.; Nagai, H. Isolation and Structure Elucidation of a Novel Symmetrical Macrocyclic Phthalate Hexaester. Symmetry 2021, 13, 361. https://doi.org/10.3390/sym13020361
Kamio M, Jiang W, Osada H, Fukuoka M, Uchida H, Watanabe R, Suzuki T, Nagai H. Isolation and Structure Elucidation of a Novel Symmetrical Macrocyclic Phthalate Hexaester. Symmetry. 2021; 13(2):361. https://doi.org/10.3390/sym13020361
Chicago/Turabian StyleKamio, Michiya, Weina Jiang, Hiroki Osada, Masayuki Fukuoka, Hajime Uchida, Ryuichi Watanabe, Toshiyuki Suzuki, and Hiroshi Nagai. 2021. "Isolation and Structure Elucidation of a Novel Symmetrical Macrocyclic Phthalate Hexaester" Symmetry 13, no. 2: 361. https://doi.org/10.3390/sym13020361