Characteristics of Body Posture in the Sagittal Plane in 8–13-Year-Old Male Athletes Practicing Soccer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurement Tools
- (1)
- The angle of inclination of the lumbosacral spine (α);
- (2)
- The angularity of the thoracolumbar spine (β);
- (3)
- The angle of the upper thoracic segment (γ);
- (4)
- Torsion angle of the trunk in the sagittal plane (KPT);
- (5)
- Negative values of the angle indicate the anterior tilt of the trunk relative to the vertical;
- (6)
- Thoracic kyphosis angle (KKP);
- (7)
- Lumbar lordosis angle (KLL).
- (1)
- Depth of thoracic kyphosis (GKP);
- (2)
- Depth of lumbar lordosis (GLL).
2.3. Statistical Analysis
3. Results
4. Discussion
Practical Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kutzner-Kozińska, M. The Process of Correcting Postural Defects; AWF Warszawa: Warsaw, Poland, 2001. [Google Scholar]
- Nordin, M.; Frankel, V.H. Basic Biomechanics of the Musculoskeletal System; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 3–30. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.; Guyton, A. Textbook of Medial Physiology; Elsevier Saunders: Philadelphia, PA, USA, 2005. [Google Scholar]
- Proszkowiec, M.; Słonka, K.; Hyla-Klekot, L. Formation of body posture in the 2nd critical stage of postural development withregard to sexual maturity of subjects. Fizjoterapia 2011, 19, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Balagué, F.; Troussier, B.; Salminen, J.J. Non-Specific Low Back Pain in Children and Adolescents: Risk Factors. Eur. Spine J. 1999, 8, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafond, D.; Descarreaux, M.; Normand, M.C.; Harrison, D.E. Postural Development in School Children: A Cross-Sectional Study. Chiropr. Osteopat. 2007, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Wood, K.B. Spinal Deformity in the Adolescent Athlete. Clin. Sports Med. 2002, 21, 77–92. [Google Scholar] [CrossRef]
- Schiller, J.R.; Eberson, C.P. Spinal Deformity and Athletics. Sports Med. Arthrosc. 2008, 16, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janusz, W.; Rutkowska, E.; Markiewicz, A. Spinal injuries in athletes. Med. Sport. 1998, 7, 67–70. (In Polish) [Google Scholar]
- Dziak, A.; Tayara, S. Sacral Pain; Publisher PH-U “Kasper”: Cracow, Poland, 1997. (In Polish) [Google Scholar]
- Grabara, M. Analysis of Body Posture between Young Football Players and Their Untrained Peers. Hum. Mov. 2012, 13, 120–126. [Google Scholar] [CrossRef]
- Malina, R.M. Physical Growth and Biological Maturation of Young Athletes. Exerc. Sport Sci. Rev. 1994, 22, 389–433. [Google Scholar] [CrossRef]
- Zeyland-Malawka, E. Effects prolonged sport training on the sagittal sharp of the spine. Biol. Sport. 1989, 3, 255–260. [Google Scholar]
- Uetake, T.; Ohtsuki, F.; Tanaka, H.; Shindo, M. The Vertebral Curvature of Sportsmen. J. Sports Sci. 1998, 16, 621–628. [Google Scholar] [CrossRef]
- Wojtys, E.M.; Ashton-Miller, J.A.; Huston, L.J.; Moga, P.J. The Association between Athletic Training Time and the Sagittal Curvature of the Immature Spine. Am. J. Sports Med. 2000, 28, 490–498. [Google Scholar] [CrossRef]
- Barczyk-Pawelec, K.; Piechura, J.R.; Dziubek, W.; Rożek, K. Evaluation of isokinetic trunk muscle strength in adolescents with normal and abnormal postures. J. Manip. Physiol. Ther. 2015, 38, 484–492. [Google Scholar] [CrossRef]
- Wodecki, P.; Guigui, P.; Hanotel, M.C.; Cardinne, L.; Deburge, A. Sagittal alignment of the spine: Comparison between soccer players and subjects without sports activities. Rev. Chir. Orthop. Reparatrice Appar. Mot. 2002, 88, 328–336. [Google Scholar]
- Grabara, M.; Hadzik, A. Postural Variables in Girls Practicing Volleyball. Biomed. Hum. Kinet. 2009, 1, 67–71. [Google Scholar] [CrossRef]
- Grabara, M.; Hadzik, A. The body posture in young athletes compared to their peers. Pol. J. Sport Med. 2009, 2, 115–124. [Google Scholar]
- Grabara, M. Postural Variables in Girls Practicing Sport Gymnastics. Biomed. Hum. Kinet. 2010, 2, 74–77. [Google Scholar] [CrossRef] [Green Version]
- López-Miñarro, P.A.; Muyor, J.M.; Alacid, F. Sagittal Spinal Curvatures and Pelvic Tilt in Elite Young Kayakers. Med. Dello Sport 2010, 63, 509–519. [Google Scholar]
- Lichota, M.; Plandowska, M.; Mil, P. The Shape of Anterior-Posterior Curvatures of the Spine in Athletes Practising Selected Sports. Pol. J. Sport Tour. 2011, 18, 112–116. [Google Scholar] [CrossRef]
- Haugaasen, M.; Jordet, G. Developing Football Expertise: A Football-Specific Research Review. Int. Rev. Sport Exerc. Psychol. 2012, 5, 177–201. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Gómez-Carmona, C.D.; Pino-Ortega, J.; Moreno-Pérez, V.; Rodríguez-Pérez, M.A. Match and training high intensity activity-demands profile during a competitive mesocycle in youth elite soccer players. J. Hum. Kinet. 2020, 75, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Sánchez-Sánchez, J.; Del Bosque, M.V.; Solano-Suárez, D.; Castillo, Y.D. Analysis of the distance covered according to absolute and relative thresholds in eleven-a-side and seven-a-side soccer referees during official matches. RICYDE Rev. Int. Cienc. Deport. 2020, 16, 358–368. [Google Scholar] [CrossRef]
- Dompier, T.P.; Powell, J.W.; Barron, M.J.; Moore, M.T. Time-Loss and Non-Time-Loss Injuries in Youth Football Players. J. Athl. Train. 2007, 42, 395–402. [Google Scholar] [PubMed]
- Maffulli, N.; Longo, U.G.; Spiezia, F.; Denaro, V. Aetiology and Prevention of Injuries in Elite Young Athletes. Med. Sport Sci. 2010, 56, 187–200. [Google Scholar] [CrossRef]
- Di Salvo, V.; Baron, R.; González-Haro, C.; Gormasz, C.; Pigozzi, F.; Bachl, N. Sprinting Analysis of Elite Soccer Players during European Champions League and UEFA Cup Matches. J. Sports Sci. 2010, 28, 1489–1494. [Google Scholar] [CrossRef]
- Chtara, M.; Rouissi, M.; Bragazzi, N.L.; Owen, A.L.; Haddad, M.; Chamari, K. Dynamic Balance Ability in Young Elite Soccer Players:Implication of Isometric Strength. J. Sports Med. Phys. Fit. 2018, 58, 414–420. [Google Scholar] [CrossRef]
- Starosta, W. Symmetry and asymmetry in shooting demonstrated by elite football players. In Science and Football; Reilly, T., Lees, A., Davids, K., Murphy, W., Eds.; E & FN Spon: London, UK, 1988; pp. 346–355. [Google Scholar]
- McLean, B.D.; Tumilty, D.M.A. Left-Right Asymmetry in Two Types of Soccer Kick. Br. J. Sports Med. 1993, 27, 260–262. [Google Scholar] [CrossRef] [Green Version]
- Mills, A.; Butt, J.; Maynard, I.; Harwood, C. Identifying Factors Perceived to Influence the Development of Elite Youth Football Academy Players. J. Sports Sci. 2012, 30, 1593–1604. [Google Scholar] [CrossRef] [PubMed]
- Morgans, R.; Orme, P.; Anderson, L.; Drust, B. Principles and Practices of Training for Soccer. J. Sport Health Sci. 2014, 3, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Deprez, D.; Fransen, J.; Boone, J.; Lenoir, M.; Philippaerts, R.; Vaeyens, R. Characteristics of High-Level Youth Soccer Players: Variation by Playing Position. J. Sports Sci. 2015, 33, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Clemente, F.M.; Ramirez-Campillo, R.; Castillo, D.; Raya-González, J.; Silva, A.F.; Afonso, J.; Sarmento, H.; Rosemann, T.; Knechtle, B. Effects of Mental Fatigue in Total Running Distance and Tactical Behavior During Small-Sided Games: A Systematic Review with a Meta-Analysis in Youth and Young Adult’s Soccer Players. Front. Psychol. 2021, 12, 656445. [Google Scholar] [CrossRef] [PubMed]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of Soccer: An Update. Sport. Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Maher, M.E.; Hutchison, M.; Cusimano, M.; Comper, P.; Schweizer, T.A. Concussions and Heading in Soccer: A Review of the Evidence of Incidence, Mechanisms, Biomarkers and Neurocognitive Outcomes. Brain Inj. 2014, 28, 271–285. [Google Scholar] [CrossRef]
- Muyor, J.M.; López-Miñarro, P.A.; Alacid, F. A Comparison of the Thoracic Spine in the Sagittal Plane between Elite Cyclists and Non-Athlete Subjects. J. Back Musculoskelet. Rehabil. 2011, 24, 129–135. [Google Scholar] [CrossRef]
- López-Miñarro, P.A.; Muyor, J.M.; Alacid, F. Sagittal Spinal and Pelvic Postures of Highly-Trained Young Canoeists. J. Hum. Kinet. 2011, 29, 41–48. [Google Scholar] [CrossRef]
- Barczyk-Pawelec, K.; Bankosz, Z.; Derlich, M. Body Postures and Asymmetries in Frontal and Transverse Planes in the Trunk Area in Table Tennis Players. Biol. Sport 2012, 29, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Vařeková, R.; Vařeka, I.; Janura, M.; Svoboda, Z.; Elfmark, M. Evaluation of Postural Asymmetry and Gross Joint Mobility in Elite Female Volleyball Athletes. J. Hum. Kinet. 2011, 29, 5–13. [Google Scholar] [CrossRef]
- Grabara, M. Comparison of Posture among Adolescent Male Volleyball Players and Non-Athletes. Biol. Sport 2015, 32, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bańkosz, Z.; Barczyk-Pawelec, K. Habitual and ready positions in female table tennis players and their relation to the prevalence of back pain. PeerJ 2020, 8, e9170. [Google Scholar] [CrossRef]
- TIBCO Software Inc. Data Science Textbook. 2020. Available online: https://docs.tibco.com/data-science/textbook (accessed on 22 November 2021).
- Lee, S.; Lee, D.K. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 2018, 71, 353–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruxton, G.D.; Beauchamp, G. Time for some a priori thinking about post hoc testing. Behav. Ecol. 2008, 19, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Lenhard, W.; Lenhard, A. Computation of Effect Sizes. Psychometrica. 2016. Available online: https://www.psychometrica.de/effect_size.html (accessed on 22 November 2021). [CrossRef]
- Mandroukas, A.; Metaxas, T.; Michailidis, Y.; Christoulas, K.; Heller, J. Effects of soccer training in muscular strength: A comparative study in trained youth soccer players and untrained boys of the same biological age. J. Sports Med. Phys. Fit. 2020, 61, 1469–1477. [Google Scholar] [CrossRef]
- Ludwig, O.; Kelm, J.; Hammes, A.; Schmitt, E.; Fröhlich, M. Targeted Athletic Training Improves the Neuromuscular Performance in Terms of Body Posture from Adolescence to Adulthood—Long-Term Study Over 6 Years. Front. Physiol. 2018, 9, 1620. [Google Scholar] [CrossRef] [Green Version]
- González-Gálvez, N.; Gea-García, G.M.; Marcos-Pardo, P.J. Effects of Exercise Programs on Kyphosis and Lordosis Angle: A Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0216180. [Google Scholar] [CrossRef] [PubMed]
- Walicka-Cupryś, K.; Szeliga, E.; Guzik, A.; Mrozowiak, M.; Niewczas, M.; Ostrowski, P.; Tabaczek-Bejster, I. Evaluation of Anterior-Posterior Spine Curvatures and Incidence of Sagittal Defects in Children and Adolescents Practicing Traditional Karate. Biomed Res. Int. 2019, 2019, 9868473. [Google Scholar] [CrossRef] [Green Version]
- Snodgrass, S.J.; Ryan, K.E.; Miller, A.; James, D.; Callister, R. Relationship between Posture and Non-Contact Lower Limb Injury in Young Male Amateur Football Players: A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 6424. [Google Scholar] [CrossRef] [PubMed]
Group F | Group C | F vs. C | |||||
---|---|---|---|---|---|---|---|
Median | IQR | Median | IQR | p U MW Test | d Cohen’s Test | ||
All | Age [years] | 10.00 | 3.00 | 10.00 | 3.00 | 0.9301 | 0.02 |
Body weight [kg] | 35.00 | 13.30 | 35.00 | 14.00 | 0.0357 * | 0.27 | |
Body height [cm] | 143.75 | 15.00 | 140.00 | 14.00 | 0.0039 * | 0.17 | |
BMI [kg/m2] | 17.29 | 2.57 | 17.08 | 3.61 | 0.1995 | 1.38 | |
Training [years] | 5.00 | 3.00 | 0 | 0 | - | - | |
8–9 years | Age [years] | 9.00 | 1.00 | 9.00 | 0.00 | 0.6702 | 0.08 |
Body weight [kg] | 30.40 | 5.00 | 27.00 | 7.00 | 0.0147 * | 0.52 | |
Body height [cm] | 136.00 | 9.50 | 133.00 | 7.00 | 0.0064 * | 0.58 | |
BMI [kg/m2] | 16.22 | 1.36 | 15.27 | 3.43 | 0.1366 | 0.31 | |
Training [years] | 4.00 | 2.00 | 0 | 0 | - | - | |
10–11 years | Age [years] | 11.00 | 1.00 | 10.00 | 1.00 | 0.1929 | 0.29 |
Body weight [kg] | 37.00 | 8.00 | 35.00 | 13.00 | 0.1024 | 0.36 | |
Body height [cm] | 147.00 | 10.00 | 140.00 | 11.00 | 0.0013 * | 0.75 | |
BMI [kg/m2] | 17.72 | 2.41 | 17.08 | 5.00 | 0.8230 | 0.05 | |
Training [years] | 5.50 | 1.00 | 0 | 0 | - | - | |
12–13 years | Age [years] | 13.00 | 1.00 | 12.00 | 1.00 | 0.1784 | 0.34 |
Body weight [kg] | 46.00 | 15.35 | 41.50 | 7.00 | 0.0008 * | 0.91 | |
Body height [cm] | 158.00 | 13.00 | 151.50 | 9.00 | 0.0020 * | 0.82 | |
BMI [kg/m2] | 19.01 | 2.53 | 17.56 | 1.45 | 0.0040 * | 0.76 | |
Training [years] | 8.00 | 1.00 | 0 | 0 | - | - |
Group F | Group C | F vs. C | |||||
---|---|---|---|---|---|---|---|
Mean/ Median | SD/ IQR | Mean/ Median | SD/ IQR | p Test T/ UM Test | d Cohen’s Test | ||
8–9 years | Lumbosacral spine inclination angle (alfa) [°] | 11.08 | 3.92 | 8.99 | 4.73 | 0.0216 * | 0.48 |
Thoracolumbar spine inclination angle (beta) [°] | 9.95 | 3.79 | 9.93 | 3.23 | 0.8387 | 0.01 | |
Superior thoracic spine inclination angle (gamma) [°] | 18.27 | 2.94 | 13.96 | 2.50 | 0.0000 * | 1.57 | |
Compensation index | 6.83 | 5.25 | 4.95 | 5.46 | 0.0857 | 0.35 | |
Torso inclination angle [°] | −5.20 | 3.60 | −1.60 | 4.00 | 0.0000 * | 1.06 | |
Thoracic kyphosis angle [°] | 151.85 | 5.15 | 156.12 | 4.90 | 0.0002 * | 0.85 | |
Thoracic kyphosis depth [mm] | 11.40 | 9.50 | 14.75 | 8.55 | 0.2119 | 0.27 | |
Lumbar lordosis angle [°] | 158.69 | 6.32 | 161.08 | 6.16 | 0.1067 | 0.38 | |
Lumbar lordosis depth [mm] | 13.29 | 5.86 | 14.95 | 6.06 | 0.1689 | 0.28 | |
10–11 years | Lumbosacral spine inclination angle (alfa) [°] | 10.79 | 3.23 | 8.45 | 3.97 | 0.0048 * | 0.62 |
Thoracolumbar spine inclination angle (beta) [°] | 7.90 | 3.17 | 10.64 | 2.82 | 0.0001 * | 0.87 | |
Superior thoracic spine inclination angle (gamma) [°] | 18.25 | 2.99 | 14.42 | 3.24 | 0.0000 * | 1.17 | |
Compensation index | 7.47 | 4.96 | 5.97 | 5.77 | 0.3077 | 0.26 | |
Torso inclination angle [°] | −7.00 | 4.20 | −1.52 | −1.20 | 0.0000 * | 1.84 | |
Thoracic kyphosis angle [°] | 153.85 | 4.23 | 154.95 | 4.09 | 0.2652 | 0.25 | |
Thoracic kyphosis depth [mm] | 10.50 | 5.70 | 16.10 | 8.10 | 0.0000 * | 1.25 | |
Lumbar lordosis angle [°] | 161.31 | 4.91 | 160.91 | 5.20 | 0.6839 | 0.08 | |
Lumbar lordosis depth [mm] | 10.06 | 4.82 | 17.20 | 5.40 | 0.0000 * | 1.33 | |
12–13 years | Lumbosacral spine inclination angle (alfa) [°] | 10.39 | 3.47 | 12.05 | 4.68 | 0.1192 | 0.35 |
Thoracolumbar spine inclination angle (beta) [°] | 8.99 | 3.82 | 8.55 | 2.68 | 0.4551 | 0.11 | |
Superior thoracic spine inclination angle (gamma) [°] | 18.06 | 3.26 | 15.10 | 3.72 | 0.0025 * | 0.72 | |
Compensation index | 7.66 | 4.61 | 3.10 | 4.21 | 0.0002 * | 0.87 | |
Torso inclination angle [°] | −5.65 | 2.70 | −3.20 | 6.10 | 0.0497 * | 0.36 | |
Thoracic kyphosis angle [°] | 153.47 | 5.18 | 156.71 | 4.14 | 0.0077 * | 0.57 | |
Thoracic kyphosis depth [mm] | 11.40 | 8.05 | 11.60 | 10.70 | 0.9179 | 0.03 | |
Lumbar lordosis angle [°] | 160.62 | 5.71 | 159.89 | 4.23 | 0.5886 | 0.12 | |
Lumbar lordosis depth [mm] | 13.77 | 6.76 | 12.95 | 6.37 | 0.6522 | 0.11 |
Group F | Group C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
p ANOVA/ Kruskal Wallis Test | d Cohen’s Test | 8–9 vs. 10–11 | 8–9 vs. 12–13 | 10–11 vs. 12–13 | p ANOVA/ Kruskal Wallis Test | d Cohen’s Test | 8–9 vs. 10–11 | 8–9 vs. 12–13 | 10–11 vs. 12–13 | |
Lumbosacral Spine Inclination Angle (Alfa) [°] | 0.6698 | 0.15 | N | N | N | 0.0037 * | 0.71 | N | 0.0197 * | 0.0047 * |
Thoracolumbar Spine Inclination Angle (Beta) [°] | 0.0395 * | 0.46 | 0.0327 * | N | N | 0.0186 * | 0.49 | N | N | 0.0164 * |
Superior Thoracic Spine Inclination Angle (Gamma) [°] | 0.9401 | 0.05 | N | N | N | 0.3311 | 0.25 | N | N | N |
Compensation Index | 0.7016 | 0.16 | N | N | N | 0.0772 | 0.50 | N | N | N |
Torso Inclination Angle [°] | 0.0080 * | 0.49 | 0.0060 * | N | N | 0.0106 * | 0.63 | N | N | 0.0117 * |
Thoracic Kyphosis Angle [°] | 0.1078 | 0.43 | N | N | N | 0.2162 | 0.35 | N | N | N |
Thoracic Kyphosis Depth [mm] | 0.0440 * | 0.57 | 0.049 * | N | N | 0.0213 * | 0.62 | N | N | 0.0198 * |
Lumbar Lordosis Angle [°] | 0.0712 | 0.49 | N | N | N | 0.6200 | 0.22 | N | N | N |
Lumbar Lordosis Depth [mm] | 0.0166 * | 0.50 | 0.0305 * | N | 0.0499 * | 0.0097 * | 0.70 | N | N | 0.0074 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barczyk-Pawelec, K.; Rubajczyk, K.; Stefańska, M.; Pawik, Ł.; Dziubek, W. Characteristics of Body Posture in the Sagittal Plane in 8–13-Year-Old Male Athletes Practicing Soccer. Symmetry 2022, 14, 210. https://doi.org/10.3390/sym14020210
Barczyk-Pawelec K, Rubajczyk K, Stefańska M, Pawik Ł, Dziubek W. Characteristics of Body Posture in the Sagittal Plane in 8–13-Year-Old Male Athletes Practicing Soccer. Symmetry. 2022; 14(2):210. https://doi.org/10.3390/sym14020210
Chicago/Turabian StyleBarczyk-Pawelec, Katarzyna, Krystian Rubajczyk, Małgorzata Stefańska, Łukasz Pawik, and Wioletta Dziubek. 2022. "Characteristics of Body Posture in the Sagittal Plane in 8–13-Year-Old Male Athletes Practicing Soccer" Symmetry 14, no. 2: 210. https://doi.org/10.3390/sym14020210