Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory
Abstract
1. Introduction
2. Background on the Action
3. General Construction of Lagrange Density
4. Covariant Construction of Lagrange Density
5. Field Equations
6. Summary and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Hehl, F.W.; Von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393. [Google Scholar] [CrossRef]
- Kostelecký, V.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef] [PubMed]
- Hees, A.; Bailey, Q.G.; Bourgoin, A.; Bars, P.L.; Guerlin, C.; Poncin-Lafitte, L. Tests of Lorentz symmetry in the gravitational sector. Universe 2016, 2, 4. [Google Scholar] [CrossRef]
- Kostelecký, V.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar] [CrossRef]
- Tasson, J. The Standard-Model Extension and Gravitational Tests. Symmetry 2016, 8, 111. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef]
- Yunes, N.; Yagi, K.; Pretorius, F. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Phys. Rev. D 2016, 94, 084002. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Potting, R. CPT, strings, and meson factories. Phys. Rev. D 1995, 51, 3923. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef]
- Poncin-Lafitte, C.L.; Hees, A.; Lambert, S. Lorentz symmetry and very long baseline interferometry. Phys. Rev. D 2016, 94, 125030. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef]
- Bailey, Q.G. Time-delay and doppler tests of the Lorentz symmetry of gravity. Phys. Rev. D 2009, 80, 044004. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Kostelecký, V.A. Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J. Constraints on Lorentz violation from gravitational Cherenkov radiation. Phys. Lett. B 2015, 749, 551. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 2016, 757, 510. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J. Prospects for Large Relativity Violations in Matter-Gravity Couplings. Phys. Rev. Lett. 2009, 102, 010402. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J. Matter-gravity couplings and Lorentz violation. Phys. Rev. D 2011, 83, 016013. [Google Scholar] [CrossRef]
- Bourgoin, A.; Hees, A.; Bouquillon, S.; Le Poncin-Lafitte, C.; Francou, G.; Angonin, M.C. Testing Lorentz symmetry with Lunar Laser Ranging. Phys. Rev. Lett. 2016, 117, 241301. [Google Scholar] [CrossRef]
- Mueller, H. Atom interferometry tests of the isotropy of post-Newtonian gravity. Phys. Rev. Lett. 2008, 100, 031101. [Google Scholar] [CrossRef]
- Flowers, N.A.; Goodge, C.; Tasson, J.D. Superconducting-Gravimeter Tests of Local Lorentz Invariance. Phys. Rev. Lett. 2017, 119, 201101. [Google Scholar] [CrossRef]
- Shao, C.G.; Chen, Y.F.; Sun, R.; Cao, L.S.; Zhou, M.K.; Hu, Z.K.; Yu, C.; Müller, H. Limits on Lorentz violation in gravity from worldwide superconducting gravimeters. Phys. Rev. D 2018, 97, 024019. [Google Scholar] [CrossRef]
- Hees, A.; Bailey, Q.G.; Le Poncin-Lafitte, C.; Bourgoin, A.; Rivoldini, A.; Lamine, B.; Meynadier, F.; Guerlin, C.; Wolf, P. Testing Lorentz symmetry with planetary orbital dynamics. Phys. Rev. D 2015, 92, 064049. [Google Scholar] [CrossRef]
- Shao, L. Tests of Local Lorentz Invariance Violation of Gravity in the Standard Model Extension with Pulsars. Phys. Rev. Lett. 2014, 112, 111103. [Google Scholar] [CrossRef]
- Bailey, Q.G. Anisotropic cubic curvature couplings. Phys. Rev. D 2016, 94, 065029. [Google Scholar] [CrossRef]
- Bonder, Y. Lorentz violation in the gravity sector: The t puzzle. Phys. Rev. D 2015, 91, 125002. [Google Scholar] [CrossRef]
- Bonder, Y.; Leon, G. Inflation as an amplifier. Phys. Rev. D 2017, 96, 044036. [Google Scholar] [CrossRef]
- Bailey, Q.G. Recent Developments in Spacetime-Symmetry tests in Gravity. In CPT and Lorentz Symmetry VIII; Lehnert, R., Ed.; World Scientific: Singapore, 2020. [Google Scholar]
- Bonder, Y.; Peterson, C. Explicit Lorentz violation in a static and spherically-symmetric spacetime. Phys. Rev. D 2020, 101, 064056. [Google Scholar] [CrossRef]
- O’Neal-Ault, K.; Bailey, Q.G.; Nilsson, N.A. 3+1 formulation of the standard-model extension. Phys. Rev. D 2021, 103, 044010. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, J.; Shao, L. Neutron star structure in the minimal gravitational Standard-Model Exten-sion and the implication to continuous gravitational waves. Phys. Lett. B 2020, 803, 135283. [Google Scholar] [CrossRef]
- Xu, R.; Gao, Y.; Shao, L. Precession of Spheroids under Lorentz violation and Observational Conse-Quences for Neutron Stars. arXiv 2021, arXiv:2012.01320. [Google Scholar]
- Bonder, Y.; Peterson, C. Spontaneous Lorentz violation and Asymptotic Flatness. arXiv 2021, arXiv:2103.07611. [Google Scholar]
- Kostelecký, V.A.; Mewes, M. Lorentz and Diffeomorphism Violations in Linearized Gravity. Phys. Lett. B 2018, 779, 136. [Google Scholar] [CrossRef]
- Seifert, M. Vector models of gravitational Lorentz symmetry breaking. Phys. Rev. D 2009, 79, 124012. [Google Scholar] [CrossRef]
- Altschul, B.; Bailey, Q.G.; Kostelecký, V.A. Lorentz violation with an antisymmetric tensor. Phys. Rev. D 2010, 81, 065028. [Google Scholar] [CrossRef]
- Seifert, M. Lorentz-Violating Gravity Models and the Linearized Limit. Symmetry 2018, 10, 490. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Li, Z. Backgrounds in gravitational effective field theory. Phys. Rev. D 2021, 103, 024059. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Lane, C.D. Relating Noncommutative SO(2,3)* Gravity to the Lorentz-Violating Stand-ard-Model Extension. Symmetry 2018, 10, 480. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Kostelecký, V.A.; Xu, R. Short-range gravity and Lorentz violation. Phys. Rev. D 2015, 91, 022006. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A. Spontaneous Lorentz Violation, Nambu-Goldstone modes, and gravity. Phys. Rev. D 2005, 71, 065008. [Google Scholar] [CrossRef]
- Bluhm, R.; Fung, S.H.; Kostelecký, V.A. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity. Phys. Rev. D 2008, 77, 065020. [Google Scholar] [CrossRef]
- Bluhm, R. Explicit versus spontaneous diffeomorphism breaking in gravity. Phys. Rev. D 2015, 91, 065034. [Google Scholar] [CrossRef]
- Bluhm, R.; Sehic, A. Noether identities in gravity theories with nondynamical backgrounds and explicit spacetime symmetry breaking. Phys. Rev. D 2016, 94, 104034. [Google Scholar] [CrossRef]
- Bluhm, R.; Bossi, H.; Wen, Y. Gravity with explicit spacetime symmetry breaking and the standard-model extension. Phys. Rev. D 2019, 100, 084022. [Google Scholar] [CrossRef]
- Bluhm, R.; Yang, Y. Gravity with Explicit Diffeomorphism Breaking. Symmetry 2021, 13, 660. [Google Scholar] [CrossRef]
- Nutma, T. xTras: A field-theory inspired xAct package for Mathematica. Comput. Phys. Commun. 2014, 185, 1719. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Potting, R. Gravity from spontaneous Lorentz violation. Phys. Rev. D 2009, 79, 065018. [Google Scholar] [CrossRef]
- Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized Post-Newtonian Hydrodynamics, and the Nordtvedt Effect. Astrophys. J. 1971, 163, 611. [Google Scholar] [CrossRef]
- Will, C.M. Relativistic Gravity tn the Solar System. 111. Experimental Disproof of a Class of Linear Theories of Gravitation. Astrophys. J. 1973, 185, 31. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Samuel, S. Gravitational phenomenology in higher-dimensional theories and strings. Phys. Rev. D 1989, 40, 1886. [Google Scholar] [CrossRef]
- Jacobson, T.; Mattingly, D. Gravity with a dynamical preferred frame. Phys. Rev. D 2001, 64, 024028. [Google Scholar] [CrossRef]
- Casana, R.; Cavalcante, A.; Poulis, F.P.; Santos, E.B. Exact Schwarzschild-like solution in a bumblebee gravity model. Phys. Rev. D 2018, 97, 104001. [Google Scholar] [CrossRef]
- Maluf, R.V.; Neves, J.C.S. Black holes with a cosmological constant in bumblebee gravity. Phys. Rev. D 2021, 103, 044002. [Google Scholar] [CrossRef]
Term | Expression |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailey, Q.G. Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory. Symmetry 2021, 13, 834. https://doi.org/10.3390/sym13050834
Bailey QG. Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory. Symmetry. 2021; 13(5):834. https://doi.org/10.3390/sym13050834
Chicago/Turabian StyleBailey, Quentin G. 2021. "Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory" Symmetry 13, no. 5: 834. https://doi.org/10.3390/sym13050834
APA StyleBailey, Q. G. (2021). Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory. Symmetry, 13(5), 834. https://doi.org/10.3390/sym13050834