Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model
Abstract
1. Introduction
2. Model and Method
3. Calculation of the Effective Action
4. Anomaly Strengthening at The Nuclear Liquid–Gas Transition
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rept. Prog. Phys. 2011, 74, 014001. [Google Scholar] [CrossRef]
- Hooft, G. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 1976, 14, 3432. [Google Scholar]
- Gross, D.J.; Pisarski, R.D.; Yaffe, L.G. QCD and instantons at finite temperature. Rev. Mod. Phys. 1981, 53. [Google Scholar] [CrossRef]
- Mitter, M.; Schaefer, B.-J. Fluctuations and the axial anomaly with three quark flavors. Phys. Rev. D 2014, 89, 054027. [Google Scholar] [CrossRef]
- Cossu, G.; Fukaya, H.; Hashimoto, S.; Noaki, J.; Tomiya, A. On the Axial U(1) Symmetry at Finite Temperature. Available online: http://arxiv.org/abs/1511.05691 (accessed on 12 March 2021).
- Ishii, M.; Yonemura, K.; Takahashi, J.; Kouno, J.; Yahiro, M. Determination of U(1)A restoration from pion and a0-meson screening masses: Toward the chiral regime. Phys. Rev. D 2016, 93, 016002. [Google Scholar] [CrossRef]
- Nicola, A.G.; de Elvira, J.R. Chiral and U(1)A restoration for the scalar and pseudoscalar meson nonets. Phys. Rev. D 2018, 98, 014020. [Google Scholar] [CrossRef]
- Bottaro, S.; Meggiolaro, E. QCD axion and topological susceptibility in chiral effective Lagrangian models at finite temperature. Phys. Rev. D 2020, 102, 014048. [Google Scholar] [CrossRef]
- Dick, V.; Karsch, F.; Laermann, E.; Mukherjee, S.; Sharma, S. Microscopic origin of UA(1) symmetry violation in the high temperature phase of QCD. Phys. Rev. D 2015, 91, 094504. [Google Scholar] [CrossRef]
- Sharma, S.; Dick, V.; Karsch, F.; Laermann, E.; Mukherjee, S. The topological structures in strongly coupled QGP with chiral fermions on the lattice. Nucl. Phys. A 2016, 956, 793. [Google Scholar] [CrossRef][Green Version]
- Fejos, G.; Hosaka, A. Thermal properties and evolution of the UA(1) factor for 2+1 flavors. Phys. Rev. D 2016, 94, 036005. [Google Scholar] [CrossRef]
- Li, X.; Fu, W.; Liu, Y. New insight about the effective restoration of UA(1) symmetry. Phys. Rev. D 2020, 101, 054034. [Google Scholar] [CrossRef]
- Braun, J.; Leonhardt, M.; Pawlowski, J.M.; Rosenblüh, D. Chiral and Effective U(1)A Symmetry Restoration in QCD. Available online: http://arxiv.org/abs/2012.06231 (accessed on 12 March 2021).
- Fejos, G.; Hosaka, A. Axial anomaly and hadronic properties in a nuclear medium. Phys. Rev. D 2018, 98, 036009. [Google Scholar] [CrossRef]
- Pelissetto, A.; Vicari, E. Relevance of the axial anomaly at the finite-temperature chiral transition in QCD. Phys. Rev. D 2013, 88, 105018. [Google Scholar] [CrossRef]
- Horvatic, D.; Kekez, D.; Klabucar, D. Temperature dependence of the axion mass in a scenario where the restoration of chiral symmetry drives the restoration of the UA(1) Symmetry. Universe 2019, 10, 208. [Google Scholar] [CrossRef]
- Nagahiro, H.; Takizawa, M.; Hirenzaki, S. eta- and eta’-mesic nuclei and UA(1) anomaly at finite density. Phys. Rev. C 2006, 74, 045203. [Google Scholar] [CrossRef]
- Sakai, S.; Jido, D. In medium eta’ mass and eta’ N interaction based on chiral effective theory. Phys. Rev. C 2013, 88, 064906. [Google Scholar] [CrossRef]
- Sakai, S.; Hosaka, A.; Nagahiro, H. Effect of the final state interaction of eta’N on the eta’ photoproduction off nucleon. Phys. Rev. C 2017, 95, 045206. [Google Scholar] [CrossRef]
- Jido, D.; Masutani, H.; Hirenzaki, S. Structure of eta’ mesonic nuclei in a relativistic mean field theory. Prog. Theor. Exp. Phys. 2019, 2019, 053D02. [Google Scholar] [CrossRef]
- Horvatic, D.; Kekez, D.; Klabucar, D. Eta’ and eta mesons at high T when the UA(1) and chiral symmetry breaking are tied. Phys. Rev. D 2019, 99, 014007. [Google Scholar] [CrossRef]
- Rai, S.K.; Tiwari, V.K. Exploring axial U(1) restoration in a modified 2+1 flavor Polyakov quark meson model. Eur. Phys. J. Plus 2020, 135, 844. [Google Scholar] [CrossRef]
- Kopietz, P.; Bartosch, L.; Schütz, F. Introduction to the Functional Renormalization Group; Springer: New York, NY, USA, 2010. [Google Scholar]
- Litim, D. Optimisation of the exact renormalisation group. Phys. Lett. B 2000, 486, 92–99. [Google Scholar] [CrossRef]
- Pisarski, R.D.; Wilczek, F. Remarks on the chiral phase transition in chromodynamics. Phys. Rev. D 1984, 29, 338. [Google Scholar] [CrossRef]
- Floerchinger, S.; Wetterich, C. Chemical freeze-out in heavy ion collisions at large baryon densities. Nucl. Phys. A 2012, 890, 891. [Google Scholar] [CrossRef][Green Version]
- Drews, M.; Weise, W. Functional renormalization group studies of nuclear and neutron matter. Prog. Part. Nucl. Phys. 2017, 93, 69. [Google Scholar] [CrossRef]
- Pisarski, R.D.; Rennecke, F. Multi-instanton contributions to anomalous quark interactions. Phys. Rev. D 2020, 101, 114019. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fejős, G. Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model. Symmetry 2021, 13, 488. https://doi.org/10.3390/sym13030488
Fejős G. Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model. Symmetry. 2021; 13(3):488. https://doi.org/10.3390/sym13030488
Chicago/Turabian StyleFejős, Gergely. 2021. "Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model" Symmetry 13, no. 3: 488. https://doi.org/10.3390/sym13030488
APA StyleFejős, G. (2021). Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model. Symmetry, 13(3), 488. https://doi.org/10.3390/sym13030488