Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems
Abstract
:1. Introduction
2. Antenna Configurations
3. Parametric Study and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, K.F.; Luk, K.M. Microstrip Patch Antennas; Imperial College Press: London, UK, 2011. [Google Scholar]
- Xu, K.-D.; Xu, H.; Liu, Y.; Li, J.; Liu, Q.H. Microstrip Patch Antennas with Multiple Parasitic Patches and Shorting Vias for Bandwidth Enhancement. IEEE Access 2018, 6, 11624–11633. [Google Scholar] [CrossRef]
- Lee, K.F.; Tong, K.-F. Microstrip Patch Antennas—Basic Characteristics and Some Recent Advances. Proc. IEEE 2012, 100, 2169–2180. [Google Scholar] [CrossRef]
- Deshmukh, A.A. Broadband slot cut shorted sectoral microstrip antennas. IET Microwaves Antennas Propag. 2017, 11, 1280–1287. [Google Scholar] [CrossRef]
- Kandwal, A.; Khah, S.K. A Novel Design of Gap-Coupled Sectoral Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 674–677. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, J.; Zhang, Y.; Long, Y. A Novel Microstrip Quasi Yagi Array Antenna with Annular Sector Directors. IEEE Trans. Antennas Propag. 2015, 63, 4524–4529. [Google Scholar] [CrossRef]
- Wu, J.; Yin, Y.; Wang, Z.; Lian, R. Broadband Circularly Polarized Patch Antenna with Parasitic Strips. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 559–562. [Google Scholar] [CrossRef]
- Wong, K.-L.; Sze, J.-Y. Slotted rectangular microstrip antenna for bandwidth enhancement. IEEE Trans. Antennas Propag. 2000, 48, 1149–1152. [Google Scholar] [CrossRef]
- Lu, J.-H. Bandwidth enhancement design of single-layer slotted circular microstrip antennas. IEEE Trans. Antennas Propag. 2003, 51, 1126–1129. [Google Scholar] [CrossRef]
- Gaspari, F.; Quaranta, S. Nanostructured Materials for RFID Sensors. In Nanomaterials Design for Sensing Applications; Elsevier BV, 2019; pp. 93–128. Available online: https://www.sciencedirect.com/science/article/pii/B9780128145050000035 (accessed on 13 December 2020). [CrossRef]
- Al-Saif, H.; Usman, M.; Chughtai, M.T.; Nasir, J. Compact Ultra-Wide Band MIMO Antenna System for Lower 5G Bands. Wirel. Commun. Mob. Comput. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Matinmikko, M.; Latva-Aho, M.; Ahokangas, P.; Seppänen, V. On regulations for 5G: Micro licensing for locally operated networks. Telecommun. Policy 2018, 42, 622–635. [Google Scholar] [CrossRef] [Green Version]
- Marsden, R.; Ihle, H.-M. Mechanisms to incentivise shared-use of spectrum. Telecommun. Policy 2018, 42, 315–322. [Google Scholar] [CrossRef]
- Dighriri, M.; Lee, G.M.; Baker, T. Measurement and Classification of Smart Systems Data Traffic Over 5G Mobile Networks. In Technology for Smart Futures; Dastbaz, M., Arabnia, H., Akhgar, B., Eds.; Springer: Cham, Switzerland; Available online: https://link.springer.com/chapter/10.1007/978-3-319-60137-3_9 (accessed on 20 December 2020)ISBN 978-3-319-60136-6. [CrossRef]
- Qualcomm Technolgies, On the Path to Opening More Spectrum for 5G in the U.S. Available online: www.qualcomm.com, (accessed on 4 October 2017).
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. Super-Wide Impedance Bandwidth Planar Antenna for Microwave and Millimeter-Wave Applications. Sensors 2019, 19, 2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, K.; Zhang, B.; Li, J.; Wu, D.; Wang, K. Design of a Compact UWB MIMO Antenna without Decoupling Structure. Int. J. Antennas Propag. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Duan, Z.; Li, S.; Wang, Z.-L.; Gong, Y. COMPACT UWB MIMO ANTENNA WITH METAMATERIAL-INSPIRED ISOLATOR. Prog. Electromagn. Res. C 2018, 84, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Xia, Y.; Cao, X.; Xu, Z. A miniaturized UWB-MIMO antenna with quadruple band-notched characteristics. Int. J. Microw. Wirel. Technol. 2018, 10, 948–955. [Google Scholar] [CrossRef]
- Usman, M.; Abd-Alhameed, R.A.; Dama, Y.A.; Excell, P.S.; Zhou, D.; Ibrahim, B.; Elkhazmi, E.A. New compact dual polarised dipole antenna for MIMO communications. In 2010 International ITG Workshop on Smart Antennas (WSA); IEEE: New York, NY, USA, 2010; pp. 326–330. [Google Scholar]
- Waterhouse, R. Microstrip Patch Antennas: A Designer’s Guide; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- NejatiJahromi, M.; Naghshvarianjahromi, M.; Rahman, M. Switchable planar monopole antenna between ultra-wideband and narrow band behaviour. Prog. Electromagn. Lett. 2018, 75, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Saraereh, O.A.; Ahmed, A.W.; Bashir, S. Mutual Coupling reduction usingF-shaped stubs in UWB-MIMO antenna. IEEE 2018, 6, 2755–2759. [Google Scholar]
- Yadav, S.; Gautam, A.K.; Kanaujia, B.K. Design of dual band-notched lamp-shaped antenna with UWB characteristics. Int. J. Microw. Wirel. Technol. 2015, 9, 395–402. [Google Scholar] [CrossRef]
- Labade, R.; Deosarkar, S.; Pisharoty, N.; Malhotra, A. Compac tintegrated Bluetooth UWB band notchantenna for personal wireless communication. Microw. Opt. Technol. Lett. 2016, 58, 540–546. [Google Scholar] [CrossRef]
- Rahman, M.; Naghshvarianjahromi, M.; Mirjavadi, S.S.; Hamouda, A.M. Compact UWB Band-Notched Antenna with Integrated Bluetooth for Personal Wireless Communication and UWB Applications. Electron. 2019, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Lu, Y. Communication A Super-Wide Bandwidth Low-Profile Monocone Antenna with Dielectric Loading. IEEE Trans. Antennas Propag. 2019, 1. [Google Scholar]
Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|
W | 11.2 | Wp | 4.3 |
L | 15.25 | Lp | 5.3 |
W1 | 2.6 | Lg | 3.1 |
L1 | 3.75 | Lgs | 2.9 |
Wf | 0.3 | Wg | 1 |
Lf | 3.3 | h | 0.13 |
Reference | Structure Size (mm3) | Operating Frequency (GHz) | BW (GHz) |
---|---|---|---|
[23] | 24 × 30.5 × 1.5 | 3.1–10.6 | 7.5 |
[24] | 50 × 30 × 1.6 | 2.5–14.5 | 12 |
[25] | 28 × 15 × 1.6 | 2.7–14 | 11.3 |
[26] | 38 × 30 × 1.6 | 2.4–2.5 and 3.1–10.6 | 0.1 and 7.5 |
[27] | 30 × 31 × 1.5 | 2.4–2.48 and 3.1–10.6 | 0.08 and 7.5 |
[28] | 61 × 61 × 8 | 1.6–12 | 10.4 |
This work | 11.2 × 15.25 × 0.12 | 15.2–62 | 46.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaif, H.; Eleiwa, M.A.H. Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems. Symmetry 2021, 13, 233. https://doi.org/10.3390/sym13020233
Alsaif H, Eleiwa MAH. Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems. Symmetry. 2021; 13(2):233. https://doi.org/10.3390/sym13020233
Chicago/Turabian StyleAlsaif, Haitham, and Mohamed A. H. Eleiwa. 2021. "Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems" Symmetry 13, no. 2: 233. https://doi.org/10.3390/sym13020233
APA StyleAlsaif, H., & Eleiwa, M. A. H. (2021). Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems. Symmetry, 13(2), 233. https://doi.org/10.3390/sym13020233