Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems
Abstract
1. Introduction
2. Antenna Configurations
3. Parametric Study and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, K.F.; Luk, K.M. Microstrip Patch Antennas; Imperial College Press: London, UK, 2011. [Google Scholar]
- Xu, K.-D.; Xu, H.; Liu, Y.; Li, J.; Liu, Q.H. Microstrip Patch Antennas with Multiple Parasitic Patches and Shorting Vias for Bandwidth Enhancement. IEEE Access 2018, 6, 11624–11633. [Google Scholar] [CrossRef]
- Lee, K.F.; Tong, K.-F. Microstrip Patch Antennas—Basic Characteristics and Some Recent Advances. Proc. IEEE 2012, 100, 2169–2180. [Google Scholar] [CrossRef]
- Deshmukh, A.A. Broadband slot cut shorted sectoral microstrip antennas. IET Microwaves Antennas Propag. 2017, 11, 1280–1287. [Google Scholar] [CrossRef]
- Kandwal, A.; Khah, S.K. A Novel Design of Gap-Coupled Sectoral Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 674–677. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, J.; Zhang, Y.; Long, Y. A Novel Microstrip Quasi Yagi Array Antenna with Annular Sector Directors. IEEE Trans. Antennas Propag. 2015, 63, 4524–4529. [Google Scholar] [CrossRef]
- Wu, J.; Yin, Y.; Wang, Z.; Lian, R. Broadband Circularly Polarized Patch Antenna with Parasitic Strips. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 559–562. [Google Scholar] [CrossRef]
- Wong, K.-L.; Sze, J.-Y. Slotted rectangular microstrip antenna for bandwidth enhancement. IEEE Trans. Antennas Propag. 2000, 48, 1149–1152. [Google Scholar] [CrossRef]
- Lu, J.-H. Bandwidth enhancement design of single-layer slotted circular microstrip antennas. IEEE Trans. Antennas Propag. 2003, 51, 1126–1129. [Google Scholar] [CrossRef]
- Gaspari, F.; Quaranta, S. Nanostructured Materials for RFID Sensors. In Nanomaterials Design for Sensing Applications; Elsevier BV, 2019; pp. 93–128. Available online: https://www.sciencedirect.com/science/article/pii/B9780128145050000035 (accessed on 13 December 2020). [CrossRef]
- Al-Saif, H.; Usman, M.; Chughtai, M.T.; Nasir, J. Compact Ultra-Wide Band MIMO Antenna System for Lower 5G Bands. Wirel. Commun. Mob. Comput. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Matinmikko, M.; Latva-Aho, M.; Ahokangas, P.; Seppänen, V. On regulations for 5G: Micro licensing for locally operated networks. Telecommun. Policy 2018, 42, 622–635. [Google Scholar] [CrossRef]
- Marsden, R.; Ihle, H.-M. Mechanisms to incentivise shared-use of spectrum. Telecommun. Policy 2018, 42, 315–322. [Google Scholar] [CrossRef]
- Dighriri, M.; Lee, G.M.; Baker, T. Measurement and Classification of Smart Systems Data Traffic Over 5G Mobile Networks. In Technology for Smart Futures; Dastbaz, M., Arabnia, H., Akhgar, B., Eds.; Springer: Cham, Switzerland; Available online: https://link.springer.com/chapter/10.1007/978-3-319-60137-3_9 (accessed on 20 December 2020)ISBN 978-3-319-60136-6. [CrossRef]
- Qualcomm Technolgies, On the Path to Opening More Spectrum for 5G in the U.S. Available online: www.qualcomm.com, (accessed on 4 October 2017).
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. Super-Wide Impedance Bandwidth Planar Antenna for Microwave and Millimeter-Wave Applications. Sensors 2019, 19, 2306. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, K.; Zhang, B.; Li, J.; Wu, D.; Wang, K. Design of a Compact UWB MIMO Antenna without Decoupling Structure. Int. J. Antennas Propag. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Wang, F.; Duan, Z.; Li, S.; Wang, Z.-L.; Gong, Y. COMPACT UWB MIMO ANTENNA WITH METAMATERIAL-INSPIRED ISOLATOR. Prog. Electromagn. Res. C 2018, 84, 61–74. [Google Scholar] [CrossRef]
- Wu, L.; Xia, Y.; Cao, X.; Xu, Z. A miniaturized UWB-MIMO antenna with quadruple band-notched characteristics. Int. J. Microw. Wirel. Technol. 2018, 10, 948–955. [Google Scholar] [CrossRef]
- Usman, M.; Abd-Alhameed, R.A.; Dama, Y.A.; Excell, P.S.; Zhou, D.; Ibrahim, B.; Elkhazmi, E.A. New compact dual polarised dipole antenna for MIMO communications. In 2010 International ITG Workshop on Smart Antennas (WSA); IEEE: New York, NY, USA, 2010; pp. 326–330. [Google Scholar]
- Waterhouse, R. Microstrip Patch Antennas: A Designer’s Guide; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- NejatiJahromi, M.; Naghshvarianjahromi, M.; Rahman, M. Switchable planar monopole antenna between ultra-wideband and narrow band behaviour. Prog. Electromagn. Lett. 2018, 75, 131–137. [Google Scholar] [CrossRef]
- Iqbal, A.; Saraereh, O.A.; Ahmed, A.W.; Bashir, S. Mutual Coupling reduction usingF-shaped stubs in UWB-MIMO antenna. IEEE 2018, 6, 2755–2759. [Google Scholar]
- Yadav, S.; Gautam, A.K.; Kanaujia, B.K. Design of dual band-notched lamp-shaped antenna with UWB characteristics. Int. J. Microw. Wirel. Technol. 2015, 9, 395–402. [Google Scholar] [CrossRef]
- Labade, R.; Deosarkar, S.; Pisharoty, N.; Malhotra, A. Compac tintegrated Bluetooth UWB band notchantenna for personal wireless communication. Microw. Opt. Technol. Lett. 2016, 58, 540–546. [Google Scholar] [CrossRef]
- Rahman, M.; Naghshvarianjahromi, M.; Mirjavadi, S.S.; Hamouda, A.M. Compact UWB Band-Notched Antenna with Integrated Bluetooth for Personal Wireless Communication and UWB Applications. Electron. 2019, 8, 158. [Google Scholar] [CrossRef]
- Liu, A.; Lu, Y. Communication A Super-Wide Bandwidth Low-Profile Monocone Antenna with Dielectric Loading. IEEE Trans. Antennas Propag. 2019, 1. [Google Scholar]
Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|
W | 11.2 | Wp | 4.3 |
L | 15.25 | Lp | 5.3 |
W1 | 2.6 | Lg | 3.1 |
L1 | 3.75 | Lgs | 2.9 |
Wf | 0.3 | Wg | 1 |
Lf | 3.3 | h | 0.13 |
Reference | Structure Size (mm3) | Operating Frequency (GHz) | BW (GHz) |
---|---|---|---|
[23] | 24 × 30.5 × 1.5 | 3.1–10.6 | 7.5 |
[24] | 50 × 30 × 1.6 | 2.5–14.5 | 12 |
[25] | 28 × 15 × 1.6 | 2.7–14 | 11.3 |
[26] | 38 × 30 × 1.6 | 2.4–2.5 and 3.1–10.6 | 0.1 and 7.5 |
[27] | 30 × 31 × 1.5 | 2.4–2.48 and 3.1–10.6 | 0.08 and 7.5 |
[28] | 61 × 61 × 8 | 1.6–12 | 10.4 |
This work | 11.2 × 15.25 × 0.12 | 15.2–62 | 46.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaif, H.; Eleiwa, M.A.H. Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems. Symmetry 2021, 13, 233. https://doi.org/10.3390/sym13020233
Alsaif H, Eleiwa MAH. Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems. Symmetry. 2021; 13(2):233. https://doi.org/10.3390/sym13020233
Chicago/Turabian StyleAlsaif, Haitham, and Mohamed A. H. Eleiwa. 2021. "Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems" Symmetry 13, no. 2: 233. https://doi.org/10.3390/sym13020233
APA StyleAlsaif, H., & Eleiwa, M. A. H. (2021). Compact Design of 2 × 2 MIMO Antenna with Super-Wide Bandwidth for Millimeters Wavelength Systems. Symmetry, 13(2), 233. https://doi.org/10.3390/sym13020233