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Abstract: A feasibility study of a novel configuration for a super-wide impedance planar antenna is
presented based on a 2× 2 microstrip patch antenna (MPA) using CST Microwave Studio. The antenna
comprises a symmetrical arrangement of four-square patches that are interconnected to each other with
cross-shaped high impedance microstrip lines. The antenna array is excited through a single feedline
connected to one of the patches. The proposed antenna array configuration overcomes the main
drawback of conventional MPA with a narrow bandwidth that is typically <5%. The antenna exhibits
a super-wide frequency bandwidth from 20 GHz to 120 GHz for S11 < −15 dB, which corresponds
to a fractional bandwidth of 142.85%. The antenna’s performance of bandwidth, impedance match,
and radiation gain were enhanced by etching slots on the patches. With the inclusion of the slot,
the maximum radiation gain and efficiency of the MPA increased to 15.11 dBi and 85.79% at 80 GHz,
which showed an improvement of 2.58 dBi and 12.54%, respectively. The dimension of each patch
antenna was 4.3 × 5.3 mm2. The results showed that the proposed MPA is useful for various
existing and emerging communication systems such as ultra-wideband (UWB) communications,
RFID systems, massive multiple-output multiple-input (MIMO) for 5G, and radar systems.

Keywords: array antenna; microstrip patch antenna (MPA); slot antenna; simplified composite
right/left-handed metamaterial (SCRLH MTM); multiple-output multiple-input (MIMO); radar; radio
frequency identification (RFID) systems; millimeter-wave band

1. Introduction

Demand for antennas that possess desirable characteristics such as light weight, low profile,
and high gain have burgeoned significantly with the rapid development of modern wireless
communication systems [1,2]. Antennas implemented on a microstrip medium exhibit some of
these desirable properties, which makes them very popular in RF/microwave transceiver systems
as they are compatible with integrated circuit technology and are relatively cheap and easy to
fabricate [3–10]. In addition, microstrip patch antennas (MPAs) can be made to conform to planar
and non-planar surfaces. The radiation mechanism arises from discontinuities at each truncated edge
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of the microstrip transmission line. The radiation at the edges causes the antenna to act slightly
larger electrically than its physical dimensions, so in order for the antenna to be resonant, a length
of microstrip transmission line slightly shorter than one-half a wavelength at the frequency is used.
Various techniques have been previously developed to enhance the antenna’s impedance bandwidth
and reduce its physical footprint, hence the MPA has become extensively used in various wireless
communication applications. Nevertheless, conventional microstrip patch antennas still suffer from
a narrow impedance bandwidth that is typically less than 5% with low radiation efficiency [1–4].
In addition, the operation of MPA is restricted to the microwave band.

In this paper, we propose a simple method to overcome the main drawback of the conventional
microstrip patch antenna, and thereby realized a super-wide impedance bandwidth antenna.
The design of the antenna was based on implementing four interconnected square patches in close
proximity and arranged in an array configuration. Each patch constituting the antenna was loaded
with a rectangular slot to improve its performance without increasing the size of the patches. This was
implemented by simply etching a slot inside each radiating patch. The slot acts essentially like a series of
left-handed capacitance and the resulting patch exhibits simplified composite right/left-handed (SCRLH)
metamaterial properties [11–13]. The proposed microstrip patch antenna design is applicable for
various existing and emerging communication systems such as ultra-wideband (UWB) communications,
RFID systems, massive multiple-output multiple-input (MIMO) for 5G, and radar systems.

2. Proposed Microstrip Antenna Structure

The proposed antenna structure was composed of four-square patches in a 2 × 2 arrangement,
as shown in Figure 1. The antennas were interconnected with a cross-shaped high-impedance line.
The design of the square patches was based on conventional theory. The width and length of the patch
were calculated using the following standard design equations [14].
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The microstrip patch was designed at 20 GHz on standard theory on a high frequency ceramic-filled
PTFE composite dielectric substrate by Rogers RO3003 with a dielectric constant of 3.0, loss-tangent
of 0.001, and thickness of 0.13 mm. The physical dimensions of the proposed antenna configuration
are given in Table 1. The resulting antenna had a low profile and was simple to design and fabricate.
Unlike conventional microstrip antenna arrays, the proposed antenna array was excited through a
single feedline connected to one of the antennas.

Table 1. Antenna structural parameters.

L1 14.7 mm W1 17.5 mm

L2 4.3 mm W2 5.3 mm

L3 4.5 mm (λ0/4) W3 0.3 mm (50 Ω)

L4 4.3 mm (0.52 × L2) W4 0.52 mm (0.1 ×W2)

L5 2.4 mm (λ0/4) W5 0.3 mm (50 Ω)

L6 2.4 mm (λ0/4) W6 0.32 mm (0.6 ×W2)

The reflection-coefficient response in Figure 2 of the proposed MPA array structure shows that
its impedance bandwidth extended from 20 GHz to 120 GHz for S11 < −10 dB with four narrow
band-notches at 62.5, 77.5, 97.5, and 120 GHz.Sensors 2019, 19, x FOR PEER REVIEW 4 of 10 
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Figure 2. Reflection-coefficient (S11 < −10 dB) response of the microstrip antenna array “without” slots
and “with” slots using two different commercially available 3D full wave electromagnetics simulation
tools (CST Microwave Studio® and HFSS™).

To improve the array’s performances and extend its effective aperture area, the four patches
were loaded with a rectangular slot, as shown in Figure 3. With the addition of the slots,
the reflection-coefficient was significantly improved. Now, an impedance bandwidth from 20 GHz to
120 GHz was achieved for S11 < −17.5 dB with no narrow band-notches. In the patch structure, the slot
essentially acts like a series of left-handed capacitance and the resulting patch exhibited simplified
composite right/left-handed (SCRLH) metamaterial properties [11–13]. It is evident from Figure 2 that
there was a distinct improvement in the reflection-coefficient from 20–120 GHz. The improvement
in the antenna’s performance can be attributed to a combination of the metamaterial effects and the
complex interaction resulting from the surface currents over the antenna and electromagnetic fields.
With the proposed technique, the dimensions of the antenna structure remained unaffected. It was,
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however, necessary to optimize the dimensions of the slots to enhance the reflection-coefficient response
of the antenna array, and the optimized dimensions are given in Table 1.
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The radiation gain and efficiency of the antenna array with no slots and with slots are shown in
Figures 4 and 5, respectively. These figures show that with no slots, the antenna gain and efficiency
reached a peak of around 12.53 dBi and 73.25% at 80 GHz, respectively, however, with the application
of the slot, the optimum gain and efficiency improved to 15.11 dBi and 85.79% at 80 GHz, respectively.
Therefore, an average improvement of 2.58 dBi and 12.54% in the maximum radiation gain and
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Table 2. Radiation performance parameters.

Radiation Gain (with No Slot)

Minimum Maximum Average

5.75 dBi 12.53 dBi 8 dBi

Radiation Gain (with Slot)

7.88 dBi 15.11 dBi 12 dBi

Improvement

2.13 dBi 2.58 dBi 4 dBi

Radiation Efficiency (with No Slot)

Minimum Maximum Average

60.82% 73.25% 66%

Radiation Efficiency (with Slot)

67.41% 85.79% 78%

Improvement

6.95% 12.54% 12%

Co- and cross (X) polarization radiation patterns of the proposed microstrip antenna array in the
E- and H-planes are shown in Figure 6 at spot frequencies of 30, 60, 90, and 120 GHz in its operating
range. This shows that the antenna was directional in the E-plane with sidebands at about 15 dB down
from the main beam. It was observed that at 60 GHz, the beamwidth doubled and the gain dropped by
an average of 3 dB. In the H-plane, the beamwidth extended from around −50 to +80 degrees and the
radiation gain varied with frequency. In both planes, the cross polarization was significantly below the
main beam.
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Figure 7. Surface current distributions at the spot frequency of 80 GHz, (a) “without” slots, and (b)
“with” slots.

It is worth commenting that to validate the results, we modeled and simulated the proposed
structure with two different 3D full-wave electromagnetic simulation tools (CST Microwave Studio®

and HFSS™). There was excellent correlation between the CST Microwave Studio® and HFSS™ results.
CST Microwave Studio® uses method of moments (MoM) to arrive at the solution whereas HFSS™
uses the finite element method (FEM).

3. Comparison with Other Recent Designs

The proposed antenna was compared to the planar wideband antennas reported to date in terms of
design technique, size, dielectric constant, and operating frequency. The comparison is summarized in
Table 3. Compared to other antennas, the proposed antenna has a much smaller footprint and operates
over a significantly wider impedance bandwidth. In addition, it is simple to design and implement.
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Table 3. Comparison with recently reported antennas.

Refs. Technique Antenna Size
(mm3)

Dielectric
Constant

Operating
Frequency (GHz)

[15] CPW-fed antenna 24 × 30.5 × 1.5 3.38 3.1–10.6

[16] Inverted L-resonator & circular
slotted GND 40 × 30 × 1.2 4.4 3.1–10.6

[17] Annular slot 26 × 24 × 1.6 4.6 3–10.6

[18] Rectangular slots 16 × 14 × 1 4.4 3.2–10

[19] Circular slots 30 × 26 × 1.6 4.4 2.5–11

[20] Inverted U-strip 45 × 50 × 1.27 6.0 3.1–10.6

[21] Split ring resonators 30 × 26 × 1.6 3.5 2.4–10.1

[22] lamp shaped antenna 28×15× 1.6 4.4 2.7–14

[23] Cap. Integrated antenna 30.5 × 24 × 1.5 3.3 3.1–10.6

[24] L-shaped stub 46 × 42 × 1 4.4 3.1–10.6

[25] Loading quarter wavelength
resonating strip 38 × 30 × 1.6 4.4

3.1–10.6
and

2.4–2.5

[26] Loading TL-MTM within UWB
antenna 38.5 × 46.4 × 1.6 4.4

3.1–10.6
and

2.43–2.49

[27] Half elliptical ring with a
U-shaped slot 32 × 32.6 × 1.6 4.4 3.1–10.6

[28]
Loading quarter wavelength

resonating strip at the center of
the patch

50 × 24 × 1.6 4.4
3.1–11.4

and
2.18–2.59

[29] Loading parasitic strip 46 × 20 × 1.0 2.4
3.1–10.6

and
2.40–2.48

[30]
Loading quarter wavelength

resonating strip at the center of
the patch

42 × 24 × 1.6 4.4
3.1–12.0

and
2.30–2.50

[31] Loading strip-line to the patch 45 × 32 × 1.0 4.4
3.1–10.6

and
2.40–2.50

[32]
Capacitors loaded miniaturized

resonator in
the ground plane

30 × 31 × 1.5 3.38
3.1–10.6

and
2.4–2.48

[33]
Band-pass filter integration with
combination of GCPW, grounded

reflector, and CPW feed line
35 × 24.4 × 2 3.38 2.8–6

[34] Dielectric loading 61 × 61 × 8 ~4.0 1.6–12

This paper SCRLH metamaterial 14.7 × 17.5 × 0.13 3.0 20–120

4. Conclusions

The feasibility of a novel configuration for a 2 × 2 microstrip patch antenna based on the
metamaterial concept using CST Microwave Studio was shown to exhibit a super-wide impedance
bandwidth, extending from 20 GHz to 120 GHz for S11 < −15 dB, which corresponded to a fractional
bandwidth of 142.85%. The average gain and radiation efficiency of the antenna were 12 dBi
and 78%, respectively, which showed a 4.0 dBi and 12% improvement after applying the slots.
The proposed antenna structure overcomes the narrow bandwidth of conventional microstrip patch
designs. The antenna can be used at microwaves and millimeter-wave applications including UWB,
RFID systems, massive MIMO for 5G, and radar systems.
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