You are currently viewing a new version of our website. To view the old version click .
Symmetry
  • Article
  • Open Access

12 August 2020

Limit Cycles of a Class of Polynomial Differential Systems Bifurcating from the Periodic Orbits of a Linear Center

,
,
and
1
Laboratory of Analysis and Control of Differential Equations “ACED”, Department of Maths, University of Guelma, P.O. Box 401, Guelma 24000, Algeria
2
Department of Mathematics, College of Sciences and Arts, Al-Rass, Qassim University, Buraydah 51452, Saudi Arabia
3
Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Benbella, Oran 31000, Algeria
4
Department of Computer Science, College of Sciences and Arts, Al-Rass, Qassim University, Buraydah 51452, Saudi Arabia
This article belongs to the Special Issue Advanced Calculus in Problems with Symmetry

Abstract

In this paper, we study the number of limit cycles of a new class of polynomial differential systems, which is an extended work of two families of differential systems in systems considered earlier. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a center using the averaging theory of first and second order.
JEL Classification:
34C29; 34C25; 47H11

1. Introduction

One of the more difficult problems in the qualitative theory of polynomial differential equations in the plane R 2 is the study of their limit cycles. Thus a classical problem related to these polynomial differential systems is the second part of the unsolved 16th Hilbert problem [1,2], which essentially consists of finding a uniform upper bound for the maximum number of limit cycles that a planar polynomial differential system of a given degree can have.
The limit cycles problem and the center problem are concentrated on specific classes of systems. For instance, much has been written on Kolmogorov systems, Liénard systems and Kukles systems, that is, systems of the form
x ˙ = y , y ˙ = x + λ y + g ( x , y ) ,
where Q ( x , y ) is a polynomial with real coefficients of degree n. Bifurcation of limit cycles in Kukles systems have been tackled by several authors and by using different approaches.
In [3], Kukles gave necessary and sufficient conditions in order that (1) with n = 3 has a center at the origin. This cubic system without the term y 3 was also studied in [4] and the authors called it reduced. Christopher and Lloyd [5] presented some systems that yield at most five limit cycles bifurcating from the origin. In [6], Chavarriga et al. studied the maximum number of small amplitude limit cycles for Kukles systems which can coexist with some invariant algebraic curves. By averaging theory, bifurcation of limit cycles for a family of perturbed Kukles differential systems was studied in [7,8,9,10,11]. In [8], Llibre and Mereu studied the maximum number of limit cycles of the Kukles polynomial differential systems
x ˙ = y y ˙ = x f ( x ) g ( x ) y h ( x ) y 2 d 0 y 3 ,
where the polynomials f ( x ) , g ( x ) and h ( x ) have degree n 1 , n 2 and n 3 respectively, d 0 k 0 is a real number.
Sáez and Szántó, in [12] introduced the following system
x ˙ = y y ˙ = x + ε ( x 2 + y 2 ) A + i = 1 n 2 q i , 0 x i + q 0 , i y i ,
where A l > 0 , q i , 0 , q 0 , i R , and ε is a small parameter, thy proved the following result.
Theorem 1
(See [12]). If either n = 2 k or n = 2 k 1 for k 2 , then system (2) has at most ( k 2 ) global limit cycles bifurcated from the unperturbed Hamiltonian center.
In [13], Rabanal computed the maximum number of limit cycles of the following differential systems
x ˙ = y y ˙ = x + x 2 + y 2 l 1 ε l q l ( x , y ) A l ,
where for every l = 1 , 2 , 3 , A l > 0 and the polynomial q l ( x , y ) has degree n l 2 1 with q l ( 0 , 0 ) = 0 , and ε is a small parameter. For n l = 2 k l or n l = 2 k l 1 , k l 2 , thy obtained the maximum number of limit cycles of the polynomial differential systems (3) bifurcating from the periodic orbits of the linear centre x ˙ = y , y ˙ = x , using averaging theory
a
of first order k 1 2 .
b
of second order is k 2 2 , n 2 2 2 2 .
c
of third order is k 3 2 , n 2 2 2 1 .
where . denotes the integer part function.
By using the averaging theory, we shall study in this work the maximum number of limit cycles which can bifurcate from the periodic orbits of a linear center perturbed inside the following differential systems
x ˙ = y + l 1 ε l f n l l ( x ) y ˙ = x + x 2 + y 2 l 1 ε l A l + i = 1 m l 2 q i , l x i + q ˜ i , l y i ,
where A l > 0 , q i , l , q ˜ i , l R , the polynomial f n l l ( x ) has degree n l and ε is a small parameter. More precisely our main result is the following.
Theorem 2.
Assume that for l = 1 , 2 the constants A l > 0 , the polynomials f n l l ( x ) have degree n l , with n l 1 . Suppose that m l = 2 k l or m l = 2 k l 1 and k l 2 Then for ε sufficiently small the maximum number of limit cycles of the polynomial differential systems (4) bifurcating from the periodic orbits of the linear centre x ˙ = y , y ˙ = x , using averaging theory
(a) 
of first order is λ 1 = max n 1 1 2 , k 1 1 limit cycles
(b) 
of second order is
λ 2 = max { m 1 2 2 + n 1 2 , m 1 2 2 + μ , n 1 2 , n 2 1 2 , k 2 1 , k 1 + μ + 1 , 2 μ + 1 } ,
where
μ = min n 1 1 2 , k 1 1 .
The proof of Theorem 2 is given in Section 3. The results that we shall use from the averaging theory of first and second order for computing limit cycles are presented in Section 2.

2. The Averaging Theory of First and Second Order

Now we summarize the basic results from averaging theory that we need for proving the results of this paper.
Consider the differential system
x ˙ ( t ) = ε F 1 ( x , t ) + ε 2 F 2 ( x , t ) + ε 3 R ( x , t , ε ) ,
where F 1 , F 2 : D × R R n , R : D × R × ε f , ε f R n are continuous functions, T-periodic in the first variable, and D is an open subset of R n . Assume that the following hypotheses (i) and (ii) hold.
(i) F 1 ( . , t ) C 1 ( D ) for all t R , F 1 , F 2 , R and D x F 1 are locally Lipschitz with respect to x, and R is differentiable with respect to ε , where D x F 1 indicate the Jacobian matrix of F 1 with respect to x.
We define F n 0 : D R for n = 1 , 2 as
F 10 ( z ) = 1 T 0 T F 1 ( z , s ) d s ,
F 20 ( z ) = 1 T 0 T D z F 1 ( z , s ) y ( z , s ) + F 2 ( z , s ) d s ,
where
y ( z , s ) = 0 s F 1 ( z , t ) d t .
(ii) For V D an open and bounded set and for each ε ε f , ε f 0 , there exists a ε V such that
F 10 ( a ε ) + F 20 a ε = 0 and d B ( F 10 + ε F 20 , V , a ε ) 0 .
Then, for ε > 0 sufficiently small there exists a T-periodic solution φ ( . , ε ) of system (5) such that φ ( 0 , ε ) = a ε .
The expression d B ( F 10 + ε F 20 , V , a ε ) 0 means that the Brouwer degree of the function F 10 + ε F 20 : V R n at the fixed point a ε is not zero. A sufficient condition for the inequality to be true is that the Jacobian of the function F 10 + ε F 20 at a ε is not zero.
If F 10 is not identically zero, then the zeros of F 10 + ε F 20 at mainly the zeros of F 10 for ε sufficiently small. In this case the previous result provides the averaging theory of first order.
If F 10 is identically zero and F 20 is not identically zero, then the zeros of F 10 + ε F 20 are mainly the zeros of F 20 for ε sufficiently small. In this case the previous result provides the averaging theory of second order. For additional information on the averaging theory see for instance [14,15,16].

3. Proof of Theorem 2

3.1. Proof of Statement (a) of Theorem 2

In order to apply the first order averaging method we write system (4) with l = 1 , in polar coordinates ( r , θ ) where x = r cos θ , y = r sin θ , r > 0 .
If we take f n 1 1 ( x ) = i = 0 n 1 a i x i system (4) can be written as follows
r ˙ = ε i = 0 n 1 a i r i cos i + 1 θ + r 2 g 1 ( r cos θ , r sin θ ) sin θ θ ˙ = 1 + ε 1 r i = 0 n 1 a i r i cos i θ sin θ + r g 1 ( r cos θ , r sin θ ) cos θ ,
where
g 1 ( r cos θ , r sin θ ) = A 1 + i = 1 m 1 2 q i , 1 r i cos i θ + q ˜ i , 1 r i sin i θ .
Now taking θ as the new independent variable, system (6) becomes
d r d θ = ε F 1 ( r , θ ) + o ( ε 2 ) ,
where
F 1 ( r , θ ) = i = 0 n 1 a i r i cos i + 1 θ + r 2 g 1 ( r cos θ , r sin θ ) sin θ .
By using the notation introduced in Section 2 we have that
F 10 ( r ) = 1 2 π 0 2 π F 1 ( r , θ ) d θ ,
F 10 ( r ) = 1 2 π i = 0 n 1 a i r i 0 2 π cos i + 1 θ d θ + r 2 2 π i = 1 m 1 2 q ˜ i , 1 r i 0 2 π sin i + 1 θ d θ .
We know that
1 2 π 0 2 π cos i θ sin j θ d θ = 0 , if i odd or j is odd I i , j 0 , if i and j are even .
Hence
F 10 ( r ) = r 2 π i = 0 n 1 1 2 a 2 i + 1 r 2 i 0 2 π cos 2 i + 2 θ d θ + i = 0 k 1 2 q ˜ 2 i + 1 , 1 r 2 i + 2 0 2 π sin 2 i + 2 θ d θ ,
for every m 1 2 k 1 , 2 k 1 1 .
Now using the expressions of the integrals in Appendix A, we obtain
F 10 ( r ) = r i = 0 n 1 1 2 α i + 1 2 i + 1 i + 1 ! a 2 i + 1 r 2 i + i = 0 k 1 2 α i + 1 2 i + 1 i + 1 ! q ˜ 2 i + 1 , 1 r 2 i + 2 .
For n 1 1 , the polynomial F 10 ( r ) has at most λ 1 = max n 1 1 2 , k 1 1 positive roots. Hence (a) of Theorem 2 is proved.

3.2. Proof of Statement (b) of Theorem 2

For proving statement (b) of Theorem 2 we shall use the second-ordre averaging theory. If we write
f n 2 2 ( x ) = i = 0 n 2 b i x i .
Then system (4) with l = 2 in polar coordinates ( r , θ ) , r > 0 becomes
r ˙ = ε i = 0 n 1 a i r i cos i + 1 θ + r 2 g 1 ( r cos θ , r sin θ ) sin θ + + ε 2 i = 0 n 2 b i r i cos i + 1 θ + r 2 g 2 ( r cos θ , r sin θ ) sin θ θ ˙ = 1 + ε 1 r i = 0 n 1 a i r i cos i θ sin θ + r g 1 ( r cos θ , r sin θ ) cos θ + ε 2 1 r i = 0 n 2 b i r i cos i θ sin θ + r g 2 ( r cos θ , r sin θ ) cos θ , ,
where
g 2 ( r cos θ , r sin θ ) = A 2 + i = 1 m 2 2 q i , 2 r i cos i θ + q ˜ i , 2 r i sin i θ .
Taking θ as the new independent variable system, (9) can be written as
d r d θ = ε F 1 ( r , θ ) + ε 2 F 2 ( r , θ ) + o ( ε 3 ) ,
where
F 1 ( r , θ ) = i = 0 n 1 a i r i cos i + 1 θ + r 2 sin θ g 1 ( r cos θ , r sin θ ) ,
and
F 2 ( r , θ ) = i = 0 n 2 b i r i cos i + 1 θ + r 2 sin θ g 2 ( r cos θ , r sin θ ) + cos θ sin θ r i = 0 n 1 a i r i cos i θ 2 r 3 sin θ cos θ g 1 ( r cos θ , r sin θ ) 2 r 2 cos 2 θ 1 g 1 ( r cos θ , r sin θ ) i = 0 n 1 a i r i cos i θ .
In order to compute F 20 ( r ) , we need that F 10 ( r ) be identically zero. Then from (8), we have
a 2 i + 1 = 2 i + 2 2 i + 1 q ˜ 2 i 1 , 1 , 1 i μ , a 2 i + 1 = q ˜ 2 i 1 , 1 = 0 , μ + 1 i λ 1 , a 1 = 0 , i = 0 ,
where
μ = min n 1 1 2 , k 1 1 , λ 1 = max n 1 1 2 , k 1 1 .
First, using (12) and, by substituting in (10), we obtain
F 1 ( r , θ ) = A 1 r 2 sin θ + i = 0 n 1 2 a 2 i r 2 i cos 2 i + 1 θ + sin θ i = 1 m 1 2 q i , 1 r i + 2 cos i θ + i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 sin 2 i + 1 θ + i = 1 μ q ˜ 2 i 1 , 1 r 2 i + 1 2 i + 2 2 i + 1 cos 2 i + 2 θ + sin 2 i θ ,
then
d d r F 1 ( r , θ ) = 2 r A 1 sin θ + i = 0 n 1 2 2 i a 2 i r 2 i 1 cos 2 i + 1 θ + sin θ i = 1 m 1 2 ( i + 2 ) q i , 1 r i + 1 cos i θ + i = 1 m 1 2 2 ( 2 i + 2 ) q ˜ 2 i , 1 r 2 i + 1 sin 2 i + 1 θ + i = 1 μ 2 i + 1 q ˜ 2 i 1 , 1 r 2 i 2 i + 2 2 i + 1 cos 2 i + 2 θ + sin 2 i θ .
Again, using the integrals of Appendix A, we obtain
y ( r , θ ) = 0 θ F 1 ( r , ϕ ) d ϕ = i = 0 n 1 2 a 2 i r 2 i l = 1 i γ i , l sin 2 l + 1 θ + i = 1 m 1 2 q i , 1 r i + 2 1 i + 1 ( 1 cos i + 1 θ ) + i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 l = 1 i ξ i , l cos 2 l + 1 θ + i = 1 μ q ˜ 2 i 1 , 1 r 2 i + 1 [ 2 i + 2 2 i + 1 1 2 2 i + 2 2 i + 2 i + 1 θ 2 i + 2 2 i + 1 l = 1 i + 1 β i , l sin 2 l θ + 1 2 2 i 2 i i θ + l = 1 i ρ i , l sin 2 l θ ] A 1 r 2 1 cos θ .
Then, taking into account that
1 2 2 i 2 i i 2 i + 2 2 i + 1 1 2 2 i + 2 2 i + 2 i + 1 = 0 ,
y ( r , θ ) = i = 0 n 1 2 a 2 i r 2 i l = 1 i γ i , l sin 2 l + 1 θ + i = 1 m 1 2 q i , 1 r i + 2 1 i + 1 ( 1 cos i + 1 θ ) + i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 l = 1 i ξ i , l cos 2 l + 1 θ + i = 1 μ q ˜ 2 i 1 , 1 r 2 i + 1 l = 1 i + 1 β ˜ i , l sin 2 l θ A 1 r 2 1 cos θ ,
β ˜ i , l = ρ i , l 2 i + 2 2 i + 1 β i , l , 1 l i , 2 i + 2 2 i + 1 β i , i + 1 , l = i + 1 ,
where ξ i , l , γ k , j , β ˜ i , l , ρ i , l and β i , l are constants.
In order to apply the second order averaging method we need to compute the corresponding function F 20 ( r ) that we rewrite as
F 20 ( r ) = F 20 1 ( r ) + F 20 2 ( r ) ,
with
F 20 1 ( r ) = 1 2 π 0 2 π d d r F 1 ( r , θ ) y ( r , θ ) d θ ,
and
F 20 2 ( r ) = 1 2 π 0 2 π F 2 ( r , θ ) d θ .
Lemma 1.
The integral F 20 1 ( r ) is a polynomial in the variable r given by
F 20 1 ( r ) = i = 1 m 1 2 2 j = 0 n 1 2 W i j q 2 i , 1 + W ˜ i j q ˜ 2 i , 1 a 2 j r 2 i + 2 j + 1 + i = 0 k 1 2 j = 1 μ V i j q 2 i + 1 , 1 q ˜ 2 j 1 , 1 r 2 i + 2 j + 3 j = 1 μ i = 1 m 1 2 1 i + 1 H j q i , 1 q ˜ 2 j 1 , 1 r i + 2 j + 2 + j = 1 μ V ˜ i j A 1 q ˜ 2 j 1 , 1 r 2 j + 2 + i = 0 n 1 2 Z i A 1 a 2 i r 2 i + 1 ,
where
W i j = 2 j 2 i + 1 I 2 i + 2 j + 2 , 0 + ( 2 i + 2 ) S i j , W ˜ i j = ( 2 i + 2 ) F i j + 2 j Q i j ,
V i j = ( 2 i + 3 ) D i j + 1 i + 1 K i j , V ˜ i j = 2 i + 2 I 2 j + 2 2 j + 1 I 2 j , 0 ,
and
Z i = 2 i I 2 i + 2 , 0 R i ,
where S i j , F i j , Q i j , D i j and K i j are real constants and I s , l = 1 2 π 0 2 π cos s θ sin l θ d θ .
Proof. 
From (14) and (15) we have
F 20 1 ( r ) = h 1 ( r ) + h 2 ( r ) + h 3 ( r ) + h 4 ( r ) + h 5 ( r ) ,
where
h 1 ( r ) = 1 2 π 0 2 π i = 0 n 1 2 2 i a 2 i r 2 i 1 cos 2 i + 1 θ y ( r , θ ) d θ ,
h 2 ( r ) = 1 2 π 0 2 π i = 1 m 1 2 ( i + 2 ) q i , 1 r i + 1 cos i θ sin θ y ( r , θ ) d θ ,
h 3 ( r ) = 1 2 π 0 2 π i = 1 m 1 2 2 ( 2 i + 2 ) q ˜ 2 i , 1 r 2 i + 1 sin 2 i + 1 θ y ( r , θ ) d θ ,
h 4 ( r ) = 1 2 π 0 2 π i = 1 μ 2 i + 1 q ˜ 2 i 1 , 1 r 2 i 2 i + 2 2 i + 1 cos 2 i + 2 θ + sin 2 i θ y ( r , θ ) d θ ,
h 5 ( r ) = 1 π 0 2 π r A 1 sin θ y ( r , θ ) d θ .
For simplifying the expression of the polynomial h 1 ( r ) , using the integrals of Appendix A, we have
( Δ 1 ) 1 2 π 0 2 π j = 0 n 1 2 2 j a 2 j r 2 j 1 cos 2 j + 1 θ i = 0 n 1 2 a 2 i r 2 i l = 1 i γ i , l sin 2 l + 1 θ d θ = 0 ,
( Δ 2 ) 1 2 π 0 2 π j = 0 n 1 2 2 j a 2 j r 2 j 1 cos 2 j + 1 θ s = 1 m 1 2 q s , 1 r s + 2 1 s + 1 ( 1 cos s + 1 θ ) d θ = j = 0 n 1 2 i = 1 m 1 2 2 2 j 2 i + 1 I 2 i + 2 j + 2 , 0 a 2 j q 2 i , 1 r 2 i + 2 j + 1 ,
( Δ 3 ) 1 2 π 0 2 π j = 0 n 1 2 2 j a 2 j r 2 j 1 cos 2 j + 1 θ i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 l = 1 i ξ i , l cos 2 l + 1 θ d θ = j = 0 n 1 2 i = 1 m 1 2 2 2 j Q i j a 2 j q ˜ 2 i , 1 r 2 i + 2 j + 1 ,
where
Q i j = 1 2 π 0 2 π cos 2 j + 1 θ l = 1 i ξ j , l cos 2 l + 1 θ d θ ,
( Δ 4 ) 0 2 π j = 0 n 1 2 2 j a 2 j r 2 j 1 cos 2 j + 1 θ i = 1 μ q ˜ 2 i 1 , 1 r 2 i + 1 l = 1 i + 1 β ˜ i , l sin 2 l θ d θ = 0
( Δ 5 ) 1 2 π 0 2 π j = 0 n 1 2 2 j a 2 j r 2 j 1 cos 2 j + 1 θ A 1 r 2 1 cos θ d θ = j = 0 n 1 2 2 j I 2 j + 2 , 0 a 2 j A 1 r 2 j + 1 .
We have that the sum of the integrals Δ 1 ( Δ 5 ) is the polynomial h 1 ( r ) .
From the integrals of Appendix A, we have
( Δ 6 ) 1 2 π 0 2 π s = 1 m 1 2 ( l + 2 ) q s , 1 r s + 1 cos s θ sin θ j = 0 n 1 2 a 2 j r 2 j l = 1 j γ j , l sin 2 l + 1 θ d θ = i = 1 m 1 2 2 j = 0 n 1 2 ( 2 i + 2 ) S i j a 2 j q 2 i , 1 r 2 i + 2 j + 1 ,
where
S i j = 1 2 π 0 2 π cos 2 i θ sin θ l = 1 j γ j , l sin 2 l + 1 θ d θ .
( Δ 7 ) 1 2 π 0 2 π j = 1 m 1 2 ( j + 2 ) q j , 1 r j + 1 cos j θ sin θ i = 1 m 1 2 q i , 1 r i + 2 1 i + 1 ( 1 cos i + 1 θ ) d θ = 0
( Δ 8 ) 1 2 π 0 2 π j = 1 m 1 2 ( j + 2 ) q j , 1 r j + 1 cos j θ sin θ i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 l = 1 i ξ i , l cos 2 l + 1 θ d θ = 0
( Δ 9 ) 1 2 π 0 2 π s = 1 m 1 2 ( s + 2 ) q s , 1 r s + 1 cos s θ sin θ j = 1 μ q ˜ 2 j 1 , 1 r 2 j + 1 l = 1 j + 1 β ˜ j , l sin 2 l θ d θ = i = 0 k 1 2 j = 1 μ 1 ( 2 i + 3 ) D i j q 2 i + 1 , 1 q ˜ 2 j 1 , 1 r 2 i + 2 j + 3 ,
where
D i j = 1 2 π 0 2 π cos 2 i + 1 θ sin θ l = 1 j + 1 β ˜ j , l sin 2 l θ d θ .
( Δ 10 ) 1 2 π 0 2 π j = 1 m 1 2 ( j + 2 ) q j , 1 r j + 1 cos j θ sin θ A 1 r 2 1 cos θ d θ = 0
The sum of the integrals Δ 6 ( Δ 10 ) is the polynomial h 2 ( r ) .
For finding the expression of the polynomial h 3 ( r ) , using the integrals of Appendix A, we have
( Δ 11 ) 1 2 π 0 2 π i = 1 m 1 2 2 ( 2 i + 2 ) q ˜ 2 i , 1 r 2 i + 1 sin 2 i + 1 θ j = 0 n 1 2 a 2 j r 2 j l = 1 j γ j , l sin 2 l + 1 θ d θ = i = 1 m 1 2 2 j = 0 n 1 2 ( 2 i + 2 ) F i j a 2 j q ˜ 2 i , 1 r 2 i + 2 j + 1 ,
where
F i j = 1 2 π 0 2 π sin 2 i + 1 θ l = 1 j γ j , l sin 2 l + 1 θ d θ ,
( Δ 12 ) 1 2 π 0 2 π j = 1 m 1 2 2 ( 2 i + 2 ) q ˜ 2 j , 1 r 2 j + 1 sin 2 j + 1 θ i = 1 m 1 2 q i , 1 r i + 2 1 i + 1 ( 1 cos i + 1 θ ) d θ = 0
( Δ 13 ) 1 2 π 0 2 π j = 1 m 1 2 2 ( 2 i + 2 ) q ˜ 2 j , 1 r 2 j + 1 sin 2 j + 1 θ i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 l = 1 i ξ i , l cos 2 l + 1 θ d θ = 0
( Δ 14 ) 1 2 π 0 2 π j = 1 m 1 2 2 ( 2 i + 2 ) q ˜ 2 j , 1 r 2 j + 1 sin 2 j + 1 θ i = 1 μ q ˜ 2 i 1 , 1 r 2 i + 1 l = 1 i + 1 β ˜ i , l sin 2 l θ d θ = 0
( Δ 15 ) 1 2 π 0 2 π j = 1 m 1 2 2 ( 2 i + 2 ) q ˜ 2 j , 1 r 2 j + 1 sin 2 j + 1 θ A 1 r 2 1 cos θ d θ = 0
We have that the sum of the integrals Δ 11 ( Δ 15 ) is the polynomial h 3 ( r ) .
From the integrals of Appendix A, we have
( Δ 16 ) 1 2 π 0 2 π j = 1 μ 2 j + 1 q ˜ 2 j 1 , 1 r 2 j 2 j + 2 2 j + 1 cos 2 j + 2 θ + sin 2 j θ × i = 0 n 1 2 a 2 i r 2 i l = 1 i γ i , l sin 2 l + 1 θ d θ = 0 ,
( Δ 17 ) 1 2 π 0 2 π j = 1 μ 2 j + 1 q ˜ 2 j 1 , 1 r 2 j 2 j + 2 2 j + 1 cos 2 j + 2 θ + sin 2 j θ × i = 1 m 1 2 q i , 1 r i + 2 1 i + 1 ( 1 cos i + 1 θ ) d θ = j = 1 μ i = 1 m 1 2 1 i + 1 H j q i , 1 q ˜ 2 j 1 , 1 r i + 2 j + 2 + j = 1 μ i = 0 k 1 2 1 i + 1 K i j q 2 i + 1 , 1 q ˜ 2 j 1 , 1 r 2 i + 2 j + 3 ,
where
H j = ( 2 j + 2 ) I 2 j + 2 , 0 + ( 2 j + 1 ) I 0 , 2 j ,
and
K i j = ( 2 j + 2 ) I 2 i + 2 j + 4 , 0 ( 2 j + 1 ) I 2 i + 2 , 2 j ,
( Δ 18 ) 1 2 π 0 2 π j = 1 μ 2 j + 1 q ˜ 2 j 1 , 1 r 2 j 2 j + 2 2 j + 1 cos 2 j + 2 θ + sin 2 j θ × i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 l = 1 i ξ i , l cos 2 l + 1 θ d θ = 0 ,
( Δ 19 ) 1 2 π 0 2 π j = 1 μ 2 j + 1 q ˜ 2 j 1 , 1 r 2 j 2 j + 2 2 j + 1 cos 2 j + 2 θ + sin 2 j θ × i = 1 μ q ˜ 2 i 1 , 1 r 2 i + 1 l = 1 i + 1 β ˜ i , l sin 2 l θ d θ = 0 ,
( Δ 20 ) 1 2 π 0 2 π j = 1 μ 2 j + 1 q ˜ 2 j 1 , 1 r 2 j 2 j + 2 2 j + 1 cos 2 j + 2 θ + sin 2 j θ A 1 r 2 1 cos θ d θ = j = 1 μ 2 i + 2 I 2 j + 2 2 j + 1 I 2 j , 0 A 1 q ˜ 2 j 1 , 1 r 2 j + 2 .
We have that the sum of the integrals Δ 16 ( Δ 20 ) is the polynomial h 4 ( r ) .
Finally, for computing the polynomial h 5 ( r ) , using the integrals of Appendix A, we have
( Δ 21 ) 1 2 π 0 2 π 2 r A 1 sin θ i = 0 n 1 2 a 2 i r 2 i l = 1 i γ i , l sin 2 l + 1 θ d θ = 2 i = 0 n 1 2 A 1 R i a 2 i r 2 i + 1 ,
where
R i = 1 2 π 0 2 π l = 1 i γ i , l sin θ sin 2 l + 1 θ d θ ,
( Δ 22 ) 1 2 π 0 2 π 2 r A 1 sin θ i = 1 m 1 2 q i , 1 r i + 2 1 i + 1 ( 1 cos i + 1 θ ) d θ = 0 ,
( Δ 23 ) 1 2 π 0 2 π 2 r A 1 sin θ i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 l = 1 i ξ i , l cos 2 l + 1 θ d θ = 0 ,
( Δ 24 ) 1 2 π 0 2 π 2 r A 1 sin θ i = 1 μ q ˜ 2 i 1 , 1 r 2 i + 1 l = 1 i + 1 β ˜ i , l sin 2 l θ d θ = 0 ,
( Δ 25 ) 1 2 π 0 2 π 2 r A 1 sin θ A 1 r 2 1 cos θ d θ = 0 .
We have that the sum of the integrals Δ 21 ( Δ 25 ) is the polynomial h 5 ( r ) . Hence Lemma 1 is proved. □
Lemma 2.
The integral F 20 2 ( r ) is a polynomial in the variable r given by
F 20 2 ( r ) = s = 0 n 2 1 2 I 2 s + 2 , 0 b 2 s + 1 r 2 s + 1 + s = 0 k 2 2 I 0 , 2 s + 2 q ˜ 2 s + 1 , 2 r 2 s + 3 2 s = 0 k 1 2 j = 1 μ q 2 s + 1 , 1 q ˜ 2 j 1 , 1 I 2 s + 2 , 2 j + 2 r 2 s + 2 j + 7 + i = 1 μ j = 1 μ i j + 1 2 i + 2 i + j + 2 2 i + 1 I 2 i + 2 , 2 j q ˜ 2 i 1 , 1 q ˜ 2 j 1 , 1 r 2 i + 2 j + 3 .
Proof. 
Using (12) and, substituting in (11) we have
F 2 ( r , θ ) = g 1 ( r , θ ) + g 2 ( r , θ ) + g 3 ( r , θ ) + g 4 ( r , θ ) ,
where
g 1 ( r , θ ) = i = 0 n 2 b i r i cos i + 1 θ + r 2 i = 1 m 2 2 q i , 2 r i cos i θ + q ˜ i , 2 r i sin i θ A 2 sin θ ,
g 2 ( r , θ ) = cos θ sin θ r i = 0 n 1 2 a 2 i r 2 i cos 2 i + 1 θ + i = 1 μ 2 i + 2 2 i + 1 q ˜ 2 i 1 , 1 r 2 i + 1 cos 2 i + 2 θ 2 ,
g 3 ( r , θ ) = r 3 sin θ cos θ ( i = 1 m 1 2 q i , 1 r i + 2 cos i θ sin θ + i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 sin 2 i + 1 θ + i = 1 μ q ˜ 2 i 1 , 1 r 2 i + 1 sin 2 i θ A 1 r 2 sin θ ) 2 ,
and
g 4 ( r , θ ) = r 2 cos 2 θ 1 i = 0 n 1 2 a 2 i r 2 i cos 2 i + 1 θ + i = 1 μ 2 i + 2 2 i + 1 q ˜ 2 i 1 , 1 r 2 i + 1 cos 2 i + 2 θ × ( i = 1 m 1 2 q i , 1 r i + 2 cos i θ sin θ + i = 1 m 1 2 2 q ˜ 2 i , 1 r 2 i + 2 sin 2 i + 1 θ + i = 1 μ q ˜ 2 i 1 , 1 r 2 i + 1 sin 2 i θ r 2 sin θ A 1 ) .
For an explicit expression of the polynomial F 20 2 ( r ) , using (7), we have
Δ ˜ 1 = 1 2 π 0 2 π g 1 ( r , θ ) d θ = s = 0 n 2 1 2 I 2 s + 2 , 0 b 2 s + 1 r 2 s + 1 + s = 0 k 2 2 I 0 , 2 s + 2 q ˜ 2 s + 1 , 2 r 2 s + 3 ,
for every m 2 2 k 2 , 2 k 2 1 ,
Δ ˜ 2 = 1 2 π 0 2 π g 2 ( r , θ ) d θ = 1 2 π r 0 2 π cos θ sin θ i = 0 n 1 2 a 2 i r 2 i cos 2 i + 1 θ 2 d θ + 1 2 π r 0 2 π cos θ sin θ i = 1 μ 2 i + 2 2 i + 1 q ˜ 2 i 1 , 1 r 2 i + 1 cos 2 i + 2 θ 2 d θ 1 2 π r 0 2 π cos θ sin θ i = 0 n 1 2 j = 1 μ 2 j + 2 2 j + 1 a 2 i q ˜ 2 j 1 , 1 r 2 i + 2 j + 1 cos 2 i + 2 j + 3 θ d θ = 0 ,
Δ ˜ 3 = 1 2 π 0 2 π g 3 ( r , θ ) d θ = 1 2 π 0 2 π i = 1 m 1 2 i = 1 μ 1 q i , 1 q ˜ 2 i 1 , 1 r i + 2 i + 6 cos i + 1 θ sin 2 i + 2 θ d θ = 2 s = 0 k 1 2 j = 1 μ q 2 s + 1 , 1 q ˜ 2 j 1 , 1 I 2 s + 2 , 2 j + 2 r 2 s + 2 j + 7 ,
Δ ˜ 4 = 1 2 π 0 2 π g 4 ( r , θ ) d θ = 2 i = 1 μ j = 1 μ 2 i + 2 2 i + 1 I 2 i + 4 , 2 j q ˜ 2 i 1 , 1 q ˜ 2 j 1 , 1 r 2 i + 2 j + 3 i = 1 μ j = 1 μ 2 i + 2 2 i + 1 I 2 i + 2 , 2 j q ˜ 2 i 1 , 1 q ˜ 2 j 1 , 1 r 2 i + 2 j + 3 .
From I 2 i + 4 , 2 j = 2 i + 3 2 i + 2 j + 4 I 2 i + 2 , 2 j , we have that
Δ ˜ 4 = i = 1 μ j = 1 μ i j + 1 2 i + 2 i + j + 2 2 i + 1 I 2 i + 2 , 2 j q ˜ 2 i 1 , 1 q ˜ 2 j 1 , 1 r 2 i + 2 j + 3 .
The sum of the integrals Δ ˜ 1 , Δ ˜ 2 , Δ ˜ 3 and Δ ˜ 4 is the polynomial F 20 2 ( r ) . Hence Lemma 2 is proved. □
By Lemmas 1 and 2, we have
F 20 ( r ) = r ( i = 1 m 1 2 2 j = 0 n 1 2 W i j q 2 i , 1 + W ˜ i j q ˜ 2 i , 1 a 2 j r 2 i + 2 j + i = 0 k 1 2 j = 1 μ V i j q 2 i + 1 , 1 q ˜ 2 j 1 , 1 r 2 i + 2 j + 2 j = 1 μ i = 1 m 1 2 1 i + 1 H j q i , 1 q ˜ 2 j 1 , 1 r i + 2 j + 1 + i = 0 n 1 2 Z i A 1 a 2 i r 2 i + j = 1 μ V ˜ i j A 1 q ˜ 2 j 1 , 1 r 2 j + 1 + s = 0 n 2 1 2 I 2 s + 2 , 0 b 2 s + 1 r 2 s
+ s = 0 k 2 2 I 0 , 2 s + 2 q ˜ 2 s + 1 , 2 r 2 s + 2 2 s = 0 k 1 2 j = 1 μ q 2 s + 1 , 1 q ˜ 2 j 1 , 1 I 2 s + 2 , 2 j + 2 r 2 s + 2 j + 6 + i = 1 μ j = 1 μ i j + 1 2 i + 2 i + j + 2 2 i + 1 I 2 i + 2 , 2 j q ˜ 2 i 1 , 1 q ˜ 2 j 1 , 1 r 2 i + 2 j + 2 ) ,
we conclude that F 20 has at most
λ 2 = max { m 1 2 2 + n 1 2 , m 1 2 2 + μ , n 1 2 , n 2 1 2 , k 2 1 , k 1 + μ + 1 , 2 μ + 1 } ,
positive roots. Hence (b) of Theorem 2 is proved.

Author Contributions

The authors contributed equally in this article. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors are grateful to the anonymous referees for the careful reading and their important observations/suggestions for sake of improving this paper. Moreover, the first and second author would like to thank his Professors/Scientists: Ammar Makhlouf, Mohamed Haiour, Ahmed-Salah Chibi and Azzedine Benchettah at Annaba University in Algeria for the important content of Bachelor, Masters and Ph.D. courses in pure and applied mathematics which he received during his studies. Moreover, he thanks them for the additional help they provided to him during office hours in their office about the few concepts/difficulties he had encountered, and he appreciates their talent and dedication for their postgraduate students currently and previously!

Conflicts of Interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript. The authors declare that they have no competing interests.

Appendix A. Formulae

In this appendix we recall some formulae that will be used during the paper, (see [17]). For i , j , k 0 we have
0 θ cos 2 i + 1 ϕ d ϕ = l = 1 i γ i , l sin 2 l + 1 θ ,
0 θ cos i ϕ sin ϕ d ϕ = 1 i + 1 ( 1 cos i + 1 θ ) ,
0 θ sin 2 i + 1 ϕ d ϕ = l = 1 i ξ i , l cos 2 l + 1 θ ,
0 θ cos 2 i + 2 ϕ d ϕ = 1 2 2 i + 2 2 i + 2 i + 1 θ + l = 1 i + 1 β i , l sin 2 l θ ,
0 θ sin 2 i ϕ d ϕ = 1 2 2 i 2 i i θ + l = 1 i ρ i , l sin 2 l θ ,
where γ i , l , ξ i , l , β i , l and ρ i , l are non-zero constants.
0 2 π sin 2 i θ d θ = 0 2 π cos 2 i θ d θ = π α i 2 i 1 i ! ,
where α i = 3.5 . ( 2 i 1 ) , α i + 1 = ( 2 i + 1 ) α i ,
0 2 π sin i θ cos ( 2 l + 1 ) θ d θ = 0 2 π cos i θ sin ( 2 l + 1 ) θ d θ = 0 , l 0 ,
0 2 π sin i θ sin 2 l θ d θ = 0 2 π cos i θ sin ( 2 l θ ) d θ = 0 , l 0 ,
0 2 π sin i θ sin ( 2 l + 1 ) θ d θ = 0 , if i = 2 k Γ k , l , if i = 2 k + 1 , l 0 ,
0 2 π cos i θ cos ( 2 l + 1 ) θ d θ = 0 , if i = 2 k Λ k , l , if i = 2 k + 1 , l 0 ,
0 2 π cos i θ sin θ sin ( 2 l + 1 ) θ d θ = 0 , if i = 2 k + 1 Γ ¯ k , l , if i = 2 k , l 0 ,
0 2 π cos i θ sin θ sin ( 2 l θ ) d θ = 0 , if i = 2 k Λ ¯ k , l , if i = 2 k + 1 , l 1 ,
0 2 π cos i θ sin θ cos ( 2 l + 1 ) θ d θ = 0 , l 0 ,
where Γ k , l , Λ k , l , Γ ¯ k , l and Λ ¯ k , l are real constants.

References

  1. Hilbert, D. Mathematische Problems, Lecture in: Second Internat. Congr. Math. Paris, 1900. Nachr. Ges. Wiss. Gttingen Math. Phys. ki 1900, 5, 253–297, English transl. Bull. Am. Math. Soc. 1902, 8, 437–479. [Google Scholar]
  2. Smale, S. Mathematical problems for the next century. In Mathematics: Frontiers and Perspectives; Amer. Math. Soc.: Providence, RI, USA, 2000; pp. 271–294. [Google Scholar]
  3. Kukles, I.S. Sur quelques cas de distinction entre un foyer et un centre. Dokl. Akad. Nauk. SSSR 1944, 42, 208–211. [Google Scholar]
  4. Rousseau, C.; Schlomiuk, D.; Thibaudeau, P. The centres in the reduced Kukles system. Nonlinearity 1995, 8, 541–569. [Google Scholar] [CrossRef]
  5. Christopher, C.J.; Lloyd, N.G. On the paper of X. Jin and D. Wang concerning the conditions for a centre in certain cubic systems. Bull. Lond. Math. Soc. 1990, 22, 5–12. [Google Scholar] [CrossRef]
  6. Chavarriga, J.; Sáez, E.; Szántó, I.; Grau, M. Coexistence of limit cycles and invariant algebraic curves on a Kukles system. Nonlinear Anal. 2004, 59, 673–693. [Google Scholar] [CrossRef]
  7. Agarwal, R.P.; Gala, S.; Ragusa, M.A. A regularity criterion in weak spaces to Boussinesq equations. Mathematics 2020, 8, 920. [Google Scholar] [CrossRef]
  8. Llibre, J.; Mereu, A.C. Limit cycles for generalized Kukles polynomial systems. Nonlinear Anal. 2011, 74, 1261–1271. [Google Scholar] [CrossRef]
  9. Makhlouf, A.; Menaceur, A. On the Limit cycles of a class of generalized Kukles polynomial differential systems via averaging theory. Int. J. Differ. Equ. 2015, 2015, 325102. [Google Scholar] [CrossRef]
  10. Liu, Z.; Szanto, I. Limit cycles and invariant centers for an extended Kukles system. Miskolc Math. Notes 2017, 18, 947–952. [Google Scholar] [CrossRef][Green Version]
  11. Rebollo-Perdomo, S.; Vidal, C. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discret. Contin. Syst. 2018, 38, 4189–4202. [Google Scholar] [CrossRef]
  12. Sáez, E.; Szántó, I. Bifurcations of limit cycles in Kukles systems of arbitrary degree with invariant ellipse. Appl. Math. Lett. 2012, 25, 1695–1700. [Google Scholar] [CrossRef]
  13. Rabanal, R. On the limit cycles of a class of Kukles type differential systems. Nonlinear Anal. 2014, 95, 676–690. [Google Scholar] [CrossRef]
  14. Buică, A.; Llibre, J. Averaging methods for finding periodic orbits vai Brouwer degree. Bull. Sci. Math. 2004, 128, 7–22. [Google Scholar] [CrossRef]
  15. Sanders, J.A.; Verhulst, F. Averaging Methods in Nonlinear Dynamical Systems; Springer: New York, NY, USA, 1985; Volume 59. [Google Scholar]
  16. Verhulst, F. Nonlinear Differential Equations and Dynamical Systems, Universitex; Springer: Berlin, Germany, 1996. [Google Scholar]
  17. Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards Applied Mathematics Series, no.55; US Government Printing Office: Washington, DC, USA, 1964.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.