Some Dynamic Hilbert-Type Inequalities on Time Scales
Abstract
:1. Introduction
- (i)
- if , then
- (ii)
- if , then
2. Main Results
2.1. The One Dimension Version
2.2. The Two Dimension Version
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Abd El-Hamid, H.A.; Rezk, H.M.; Ahmed, A.M.; AlNemer, G.; Zakarya, M.; El Saify, H.A. Dynamic Inequalities in Quotients with General Kernels and Measures. J. Funct. Spaces 2020, 2020, 5417084. [Google Scholar] [CrossRef]
- Saker, S.H.; Kenawy, M.R.; AlNemer, G.; Zakarya, M. Some Fractional Dynamic Inequalities of Hardys Type Via Conformable Calculus. Mathematics 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Cheung, W.-S.; Hanjš, Ž.; Pečarić, J. Some Hardy-type inequalities. J. Math. Anal. Appl. 2000, 250, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Yang, B. On the extended Hilbert’s inequality. Proc. Am. Math. Soc. 1998, 126, 751–759. [Google Scholar]
- Jichang, K. On New Extensions of Hilbert’s Integral Inequality. J. Math. Anal. Appl. 1999, 235, 608–614. [Google Scholar] [CrossRef] [Green Version]
- Handley, G.D.; Koliha, J.J.; Pečarić, J.E. New Hilbert-Pachpatte type integral inequalities. J. Math. Anal. Appl. 2001, 257, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Pachpatte, B.G. On some new inequalities similar to Hilbert’s inequality. J. Math. Anal. Appl. 1998, 226, 166–179. [Google Scholar] [CrossRef] [Green Version]
- Yang, B. On new generalizations of Hilbert’s inequality. J. Math. Anal. Appl. 2000, 248, 29–40. [Google Scholar]
- Handley, G.D.; Koliha, J.J.; Pečarić, J.E. A Hilbert type inequality. Tamkang J. Math. 2000, 31, 311–315. [Google Scholar]
- Yang, B.; Rassias, T.M. On the way of weight coefficient and research for the Hilbert-type inequalities. Math. Appl. 2003, 6, 625–658. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.-J. Generalization on two new Hilbert type inequalities. J. Math. 2000, 20, 413–416. [Google Scholar]
- Pachpatte, B.G. A note on Hilbert type inequality. Tamkang J. Math. 1998, 29, 293–298. [Google Scholar]
- Pachpatte, B.G. Inequalities Similar to Certain Extensions of Hilbert’s Inequality. J. Math. Anal. Appl. 2000, 243, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Kim, B.I. An Analogue of Hilbert’s inequality and its extensions. Bull. Korean Math. Soc. 2002, 39, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 1988. [Google Scholar]
- O’Regan, D.; Rezk, H.M.; Saker, S.H. Some Dynamic Inequalities Involving Hilbert and Hardy–Hilbert Operators with Kernels. Results Math. 2018, 73, 146. [Google Scholar] [CrossRef]
- Saker, S.H.; Ahmed, A.M.; Rezk, H.M.; O’Regan, D.; Agarwal, R.P. New Hilbert’s dynamic inequalities on time scales. Math. Inequalities Appl. 2017, 20, 1017–1039. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M.; Abohela, I.; Baleanu, D. Refinement multidimensional dynamic inequalities with general kernels and measures. J. Inequalities Appl. 2019, 2019, 306. [Google Scholar] [CrossRef] [Green Version]
- Saker, S.H.; Rezk, H.M.; O’Regan, D.; Agarwal, R.P. A variety of inverse Hilbert type inequality on time scales. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2017, 24, 347–373. [Google Scholar]
- Saker, S.; Rezk, H.M.; Krnić, M. More accurate dynamic Hardy-type inequalities obtained via superquadraticity. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2019, 113, 2691–2713. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. (Eds.) Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Agarwal, R.; O’Regan, D.; Saker, S.H. Dynamic Inequalities on Time Scales; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Ozkan, U.M.; Yildirim, H. Hardy-Knopp-type inequalities on time scales. Dyn. Syst. Appl. 2008, 17, 477–486. [Google Scholar]
- Bibi, R.; Bohner, M.; Pečarić, J.; Varosanec, S. Minkowski and Beckenbach-Dresher inequalities and functionals on time scales. J. Math. Inequalities 2013, 7, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic: Dordrech, The Netherlands, 1993. [Google Scholar]
- Ahmed, A.M.; AlNemer, G.; Zakarya, M.; Rezk, H.M. Some Dynamic Inequalities of Hilbert’s Type. J. Funct. Spaces 2020, 2020, 4976050. [Google Scholar] [CrossRef] [Green Version]
- Saker, S.H.; El-Deeb, A.A.; Rezk, H.M.; Agarwal, R.P. On Hilbert’s inequality on time scales. Appl. Anal. Discret. Math. 2017, 11, 399–423. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlNemer, G.; Zakarya, M.; Abd El-Hamid, H.A.; Agarwal, P.; Rezk, H.M. Some Dynamic Hilbert-Type Inequalities on Time Scales. Symmetry 2020, 12, 1410. https://doi.org/10.3390/sym12091410
AlNemer G, Zakarya M, Abd El-Hamid HA, Agarwal P, Rezk HM. Some Dynamic Hilbert-Type Inequalities on Time Scales. Symmetry. 2020; 12(9):1410. https://doi.org/10.3390/sym12091410
Chicago/Turabian StyleAlNemer, Ghada, Mohammed Zakarya, Hoda A. Abd El-Hamid, Praveen Agarwal, and Haytham M. Rezk. 2020. "Some Dynamic Hilbert-Type Inequalities on Time Scales" Symmetry 12, no. 9: 1410. https://doi.org/10.3390/sym12091410
APA StyleAlNemer, G., Zakarya, M., Abd El-Hamid, H. A., Agarwal, P., & Rezk, H. M. (2020). Some Dynamic Hilbert-Type Inequalities on Time Scales. Symmetry, 12(9), 1410. https://doi.org/10.3390/sym12091410