Does Brain Lateralization Affect the Performance in Binary Choice Tasks? A Study in the Animal Model Danio rerio
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Lateralization Test: Detour Test
2.2.1. Stimuli and Apparatus
2.2.2. Procedure
2.3. Color Discrimination Task
2.3.1. Apparatus and Stimuli
2.3.2. Procedure
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parrish, A.E.; Beran, M.J. When less is more: Like humans, chimpanzees (Pan troglodytes) misperceive food amounts based on plate size. Anim. Cogn. 2014, 17, 427–434. [Google Scholar] [CrossRef]
- Lucon-Xiccato, T.; Miletto Petrazzini, M.E.; Agrillo, C.; Bisazza, A. Guppies discriminate between two quantities of food items but prioritize item size over total amount. Anim. Behav. 2015, 107, 183–191. [Google Scholar] [CrossRef]
- Santacà, M.; Agrillo, C. Perception of the Müller—Lyer illusion in guppies. Curr. Zool. 2020, 66, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantlon, J.; Brannon, E. Basic math in monkeys and collegestudents. PLoS Biol. 2007, 5, e328. [Google Scholar] [CrossRef] [PubMed]
- Sovrano, V.A.; Bisazza, A.; Vallortigara, G. Modularity as a fish (Xenotoca eiseni) views it: Conjoining geometric and nongeometric information for spatial reorientation. J. Exp. Psych. Anim. Behav. Proc. 2003, 29, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robins, A.; Rogers, L.J. Complementary and lateralized forms of processing in Bufo marinus for novel and familiar prey. Neurobiol. Learn. Mem. 2006, 86, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Giljov, A.N.; Karenina, K.A.; Malashichev, Y.B. An eye for a worm: Lateralisation of feeding behaviour in aquatic anamniotes. Laterality 2009, 14, 273–286. [Google Scholar] [CrossRef]
- Peirce, J.W.; Leigh, A.E.; Kendrick, K.M. Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep. Neuropsychologia 2000, 38, 475–483. [Google Scholar] [CrossRef]
- Bortot, M.; Agrillo, C.; Avarguès-Weber, A.; Bisazza, A.; Miletto Petrazzini, M.E.; Giurfa, M. Honeybees use absolute rather than relative numerosity in number discrimination. Biol. Lett. 2019, 15, 20190138. [Google Scholar] [CrossRef]
- Adámková, J.; Svoboda, J.; Benediktová, K.; Martini, S.; Nováková, P.; Tůma, D.; Burda, H. Directional preference in dogs: Laterality and “pull of the north”. PLoS ONE 2017, 12, e0185243. [Google Scholar] [CrossRef] [Green Version]
- Bisazza, A.; De Santi, A.; Bonso, S.; Sovrano, V.A. Frogs and toads in front of a mirror: Lateralisation of response to social stimuli in tadpoles of five anuran species. Behav. Brain Res. 2002, 134, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Santacà, M.; Agrillo, C. Two halves are less than the whole: Evidence of a length bisection bias in fish (Poecilia reticulata). PLoS ONE 2020, 15, e0233157. [Google Scholar] [CrossRef]
- Gierszewski, S.; Bleckmann, H.; Schluessel, V. Cognitive abilities in Malawi cichlids (Pseudotropheus sp.): Matching-to-sample and image/mirror-image discriminations. PLoS ONE 2013, 8, e57363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuba, M.J.; Byrne, R.A.; Burghardt, G.M. A new method for studying problem solving and tool use in stingrays (Potamotrygon castexi). Anim. Cogn. 2010, 13, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Lebovich, L.; Darshan, R.; Lavi, Y.; Hansel, D.; Loewenstein, Y. Idiosyncratic choice bias naturally emerges from intrinsic stochasticity in neuronal dynamics. Nat. Hum. Behav. 2019, 3, 1190–1202. [Google Scholar] [CrossRef]
- Andrade, C.; Alwarshetty, M.; Sudha, S.J.; Suresh Chandra, J. Effect of innate direction bias on T-maze learning in rats: Implications for research. J. Neurosci. Methods 2001, 110, 31–35. [Google Scholar] [CrossRef]
- Danisman, E.; Bshary, R.; Bergmüller, R. Do cleaner fish learn to feed against their preference in a reverse reward contingency task? Anim. Cogn. 2010, 13, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrillo, C.; Parrish, A.E.; Beran, M.J. Do primates see the solitaire illusion differently? A comparative assessment of humans (Homo sapiens), chimpanzees (Pan troglodytes), rhesus mon-keys (Macaca mulatta), and capuchin monkeys (Cebus apella). J. Comp. Psychol. 2014, 128, 402–413. [Google Scholar] [CrossRef]
- Alves, C.; Chichery, R.; Boal, J.G.; Dickel, L. Orientation in the cuttlefish Sepia officinalis: Response versus place learning. Anim. Cogn. 2007, 10, 29–36. [Google Scholar] [CrossRef]
- Miletto Petrazzini, M.E.; Wynne, C.D. What counts for dogs (Canis lupus familiaris) in a quantity discrimination task? Behav. Proc. 2016, 122, 90–97. [Google Scholar] [CrossRef]
- Miletto Petrazzini, M.E.; Mantese, F.; Prato Previde, E. Food quantity discrimination in puppies (Canis lupus familiaris). Anim. Cogn. 2020, 23, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.L. When left-handed mice live in right-handed world. Science 1975, 187, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Ayroles, J.F.; Buchanan, S.M.; O’Leary, C.; Skutt-Kakaria, K.; Grenier, J.K.; Clark, A.G.; Hartl, D.L.; de Bivort, B.L. Behavioral idiosyncrasy reveals genetic control of phenotypic variability. Proc. Natl. Acad. Sci. USA 2015, 112, 6706–6711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iigaya, K.; Ahmadian, Y.; Sugrue, L.P.; Corrado, G.S.; Loewenstein, Y.; Newsome, W.T.; Fusi, S. Deviation from the matching law reflects an optimal strategy involving learning over multiple timescales. Nat. Commun. 2019, 10, 1466. [Google Scholar] [CrossRef]
- Frasnelli, E.; Ponte, G.; Vallortigara, G.; Fiorito, G. Visual lateralization in the cephalopod mollusk Octopus vulgaris. Symmetry 2019, 11, 1121. [Google Scholar] [CrossRef] [Green Version]
- Regaiolli, B.; Spiezo, C.; Hopkins, W.D. Asymmetries in mother-infant behaviour in Barbary macaques (Macaca sylvanus). PeerJ 2018, 6, e4736. [Google Scholar] [CrossRef] [Green Version]
- Dadda, M.; Agrillo, C.; Bisazza, A.; Brown, C. Laterality enhances numerical skills in the guppy, Poecilia reticulata. Front. Behav. Neurosci. 2015, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Bisazza, A.; Rogers, L.J.; Vallortigara, G. The origins of cerebral asymmetry: A review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neurosci. Biobehav. Rev. 1998, 22, 411–426. [Google Scholar] [CrossRef]
- Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain lateralization: A comparative perspective. Physiol. Rev. 2020, 100, 1019–1063. [Google Scholar] [CrossRef]
- Ströckens, F.; Güntürkün, O.; Ocklenburg, S. Limb preferences in non-human vertebrates. Laterality 2013, 18, 536–575. [Google Scholar] [CrossRef]
- Versace, E.; Caffini, M.; Werkhoven, Z.; de Bivort, B. Individual, but not population asymmetries, are modulated by social environment and genotype in Drosophila melanogaster. Sci. Rep. 2020, 10, 4480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miletto Petrazzini, M.E.; Sovrano, V.; Vallortigara, G.; Messina, A. Brain and behavioral asymmetry: A lesson from fish. Front. Neuroanat. 2020, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Dadda, M.; Zandonà, E.; Agrillo, C.; Bisazza, A. The costs of hemispheric specialization in a fish. Proc. R. Soc. B Biol. Sci. 2009, 276, 4399–4407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandmann, O.; Burton, E.A. Genetic zebrafish models of neurodege-nerative diseases. Neurobiol. Dis. 2010, 40, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Langenau, D.M.; Zon, L.I. The zebrafish: A new model of T-cell and thymic development. Nat. Rev. 2005, 5, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Agrillo, C.; Miletto Petrazzini, M.E.; Tagliapietra, C.; Bisazza, A. Inter-specific differences in numerical abilities among teleost fish. Front. Psychol. 2012, 3, 483. [Google Scholar] [CrossRef] [Green Version]
- Potrich, D.; Sovrano, V.A.; Stancher, G.; Vallortigara, G. Quantity discrimination by zebrafish (Danio rerio). J. Comp. Psychol. 2015, 129, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Potrich, D.; Rugani, R.; Sovrano, V.A.; Regolin, L.; Vallortigara, G. Use of numerical and spatial information in ordinal counting by zebrafish. Sci. Rep. 2019, 9, 18323. [Google Scholar] [CrossRef] [Green Version]
- Baratti, G.; Potrich, D.; Sovrano, V.A. The environmental geometry in spatial learning by zebrafish (Danio rerio). Zebrafish 2020, 17, 131–138. [Google Scholar] [CrossRef]
- Gori, S.; Agrillo, C.; Dadda, M.; Bisazza, A. Do fish perceive illusory motion. Sci. Rep. 2014, 4, 6443. [Google Scholar] [CrossRef]
- Santacà, M.; Lucon-Xiccato, T.; Agrillo, C. The Delboeuf illusion’s bias in food choice of teleost fishes: An interspecific study. Anim. Behav. 2020, 164, 105–112. [Google Scholar] [CrossRef]
- Facchin, L.; Burgess, H.A.; Siddiqi, M.; Granato, M.; Halpern, M.E. Determining the function of zebrafish epithalamic asymmetry. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1021–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stennett, C.R.; Strauss, R.E. Behavioural lateralization in zebrafish and four related species of minnows (Osteichthyes: Cyprinidae). Anim. Behav. 2010, 79, 1339–1342. [Google Scholar] [CrossRef]
- Hata, H.; Hori, M. Inheritance patterns of morphological laterality in mouth opening of zebrafish, Danio rerio. Laterality 2001, 17, 741–754. [Google Scholar] [CrossRef]
- Brown, C.; Western, J.; Braithwaite, V.A. The influence of early experience on, and inheritance of cerebral lateralization. Anim. Behav. 2007, 74, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Domenici, P.; Allan, B.; McCormick, M.I.; Munday, P.L. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol. Lett. 2012, 8, 78–81. [Google Scholar] [CrossRef]
- Sovrano, V.A.; Bisazza, A.; Vallortigara, G. Modularity and spatial reorientation in a simple mind: Encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition 2002, 85, B51–B59. [Google Scholar] [CrossRef]
- Agrillo, C.; Miletto Petrazzini, M.E.; Bisazza, A. Numerical abilities in fish: A methodological review. Behav. Proc. 2007, 141, 161–171. [Google Scholar] [CrossRef]
- Oliveira, J.; Silveira, M.; Chacon, D.; Luchiari, A. The zebrafish world of colors and shapes: Preference and discrimination. Zebrafish 2015, 12, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Savage, A.; Dronzek, L.A.; Snowden, C.T. Color discrimination by the cotton-top tamarin (Saguinus oedipus oedipus) and its relation to fruit coloration. Folia Primatol. 1987, 49, 57–69. [Google Scholar] [CrossRef]
- Giurfa, M. Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 2004, 91, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Dunn, T.W.; Fitzgerald, J.E. Correcting for physical distortions in visual stimuli improves reproducibility in zebrafish neuroscience. eLife 2020, 9, e53684. [Google Scholar] [CrossRef] [PubMed]
- Uller, C.; Lewis, J. Horses (Equus caballus) select the greater of two quantities in small numerical contrasts. Anim. Cogn. 2009, 12, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Bánszegi, O.; Urrutia, A.; Szenczi, P.; Hudson, R. More or less: Spontaneous quantity discrimination in the domestic cat. Anim. Cogn. 2016, 19, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Uller, C.; Jaeger, R.; Guidry, G.; Martin, C. Salamanders (Plethodon cinereus) go for more: Rudiments of number in an amphibian. Anim. Cogn. 2003, 6, 105–112. [Google Scholar] [CrossRef]
- Pritchard, V.L.; Lawrence, J.; Butlin, R.K.; Krause, J. Shoal size in zebrafish, Danio rerio: The influence of shoal size and activity. Anim. Behav. 2001, 62, 1085–1088. [Google Scholar] [CrossRef] [Green Version]
- Dadda, M.; Bisazza, A. Does brain asymmetry allow efficient performance of two simultaneous tasks? Anim. Behav. 2006, 72, 523–529. [Google Scholar] [CrossRef]
- Gatto, E.; Agrillo, C.; Brown, C.; Dadda, M. Individual differences in numerical skills are influenced by brain lateralization in guppies (Poecilia reticulata). Intelligence 2019, 74, 12–17. [Google Scholar] [CrossRef]
- Gatto, E.; Lucon-Xiccato, T.; Bisazza, A.; Manabe, K.; Dadda, M. The devil is in the detail: Zebrafish learn to discriminate visual stimuli only if salient. Behav. Proc. under review.
- Bisazza, A.; Agrillo, C.; Lucon-Xiccato, T. Extensive training extends numerical abilities of guppies. Anim. Cogn. 2014, 7, 1413–1419. [Google Scholar] [CrossRef]
- Sovrano, V.A.; Bisazza, A. Perception of subjective contours in fish. Perception 2009, 38, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Miletto Petrazzini, M.E.; Agrillo, C.; Izard, V.; Bisazza, A. Do humans (Homo sapiens) and fish (Pterophyllum scalare) make similar numerosity judgments? J. Comp. Psychol. 2016, 130, 380–390. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miletto Petrazzini, M.E.; Pecunioso, A.; Dadda, M.; Agrillo, C. Does Brain Lateralization Affect the Performance in Binary Choice Tasks? A Study in the Animal Model Danio rerio. Symmetry 2020, 12, 1294. https://doi.org/10.3390/sym12081294
Miletto Petrazzini ME, Pecunioso A, Dadda M, Agrillo C. Does Brain Lateralization Affect the Performance in Binary Choice Tasks? A Study in the Animal Model Danio rerio. Symmetry. 2020; 12(8):1294. https://doi.org/10.3390/sym12081294
Chicago/Turabian StyleMiletto Petrazzini, Maria Elena, Alessandra Pecunioso, Marco Dadda, and Christian Agrillo. 2020. "Does Brain Lateralization Affect the Performance in Binary Choice Tasks? A Study in the Animal Model Danio rerio" Symmetry 12, no. 8: 1294. https://doi.org/10.3390/sym12081294