The Use of Fuzzy Linear Regression and ANFIS Methods to Predict the Compressive Strength of Cement
Abstract
:1. Introduction
2. Fuzzy Linear Regression (FLR)
3. Adaptive Neuro-Fuzzy Modeling (ANFIS)
4. Model Application
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Committee for Standardization (CEN). Cement Part 1: Composition, specifications and conformity criteria for common cements. Br. Stand. Inst. 2000, BS EN 197-1:2000, 12–15. [Google Scholar]
- Klieger, P.; Lamond, J.F. Significance of Tests and Properties of Concrete and Concrete-Making Materials, 4rd ed.; ASTM International: Philadelphia, PA, USA, 1994; pp. 464–465. [Google Scholar]
- Mohammed, S.; Safiullah, O. Optimization of the SO3 content of an Algerian Portland cement: Study on the effect of various amounts of gypsum on cement properties. Constr. Build. Mater. 2018, 164, 362–370. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford: London, UK, 1997; pp. 1–2. [Google Scholar]
- Gliozzi, A.S.; Scalerandi, M.; Anglani, G.; Antonaci, P.; Salini, L. Correlation of elastic and mechanical properties of consolidated granular media during microstructure evolution induced by damage and repair. Phys. Rev. Mater. 2018, 2, 013601. [Google Scholar] [CrossRef]
- Ouarabi, M.A.; Antonaci, P.; Boubenider, F.; Gliozzi, A.S.; Scalerandi, M. Ultrasonic monitoring of the interaction between cement matrix and alkaline silicate solution in self-healing systems. Materials 2017, 10, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmero, P.; Formia, A.; Tulliani, J.M.; Antonaci, P. Valorisation of alumino-silicate stone muds: From wastes to source materials for innovative alkali-activated materials. Cem. Concr. Compos. 2017, 83, 251–262. [Google Scholar] [CrossRef]
- Humad, A.M.; Habermehl-Cwirzen, K.; Cwirzen, A. Effects of Fineness and Chemical Composition of Blast Furnace Slag on Properties of Alkali-Activated Binder. Materials 2019, 12, 3447. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Gao, K.; Zhang, P. Experimental and Statistical Study on Mechanical Characteristics of Geopolymer Concrete. Materials 2020, 13, 1651. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, N.A.; Ching, D.L.C.; Khan, I.; Ahmad, A.; Ammad, S. Concrete Based Jeffrey Nanofluid Containing Zinc Oxide Nanostructures: Application in Cement Industry. Symmetry 2020, 12, 1037. [Google Scholar] [CrossRef]
- Khademi, F.; Akbari, M.; Jamal, S.M.; Nikoo, Μ. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front. Struct. Civ. Eng. 2017, 1, 90–99. [Google Scholar] [CrossRef]
- Ahmad, S.S.S.; Othman, Z.; Kasmin, F.; Borah, S. Modeling of Concrete Strength Prediction using Fuzzy Type-2 Techniques. J. Theor. Appl. Inf. Technol. 2018, 96, 7973–7983. [Google Scholar]
- Behfarnia, Κ.; Khademi, F. A comprehensive study on the concrete compressive strength estimation using artificial neural network and adaptive neuro-fuzzy inference system. Int. J. Optim. Civ. Eng. 2017, 7, 71–80. [Google Scholar]
- Asteris, P.G.; Kolovos, K.G.; Douvika, M.G.; Roinos, K. Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civil Eng. 2016, 20, 102–122. [Google Scholar] [CrossRef]
- Naderpour, H.; Kheyroddin, A.; Godrati-Amiri, G. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Compos. Struct. 2010, 92, 2817–2829. [Google Scholar] [CrossRef]
- Akkurt, S.; Tayfur, G.; Can, S. Fuzzy logic model for the prediction of cement compressive strength. Cem. Concr. Res. 2004, 34, 1429–1433. [Google Scholar] [CrossRef] [Green Version]
- Akkurt, S.; Ozdemir, S.; Tayfur, G.; Akyol, B. The use of GA-ANNs in the modelling of compressive strength of cement mortar. Cem. Concr. Res. 2003, 33, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Asteris, P.G.; Armaghani, D.J.; Hatzigeorgiou, G.D.; Karayannis, C.G.; Pilakoutas, K. Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks. Comput. Concr. 2019, 24, 469–488. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks A Comprehensive Foundation, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Jantzen, J. Design of Fuzzy Controllers; Technical Report (98-E864); Department of Automation. Technical University of Denmark: Lyngby, Denmark, 1998. [Google Scholar]
- Papadopoulos, B.K.; Sirpi, M.A. Similarities in Fuzzy Regression Models. J. Optim. Theory Appl. 1999, 102, 373–383. [Google Scholar] [CrossRef]
- Tanaka, H.; Uejima, S.; Asai, Κ. Linear Regression Analysis with Fuzzy Model. IEEE Trans. Syst. Man Cybern. 1982, 12, 903–907. [Google Scholar]
- Terano, Τ.; Asai, Κ.; Sugeno, Ν. Fuzzy Systems Theory and Its Applications; Academic Press: London, UK, 1992; pp. 69–80. [Google Scholar]
- Klir, G.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice-Hall: Upper Saddle River, NJ, USA, 1995; pp. 454–459. [Google Scholar]
Variable | Estimate Ri | Estimate Ci | SE | T | P-Value |
---|---|---|---|---|---|
A0 | 13.624 | 0.000 | 12.268 | 1.111 | 0.273 |
A1 | 0.411 | 0.056 | 0.135 | 3.047 | 0.004 |
A2 | 6.633 | 0.000 | 1.482 | 4.475 | 0.000 |
A3 | −0.002 | 0.000 | 0.002 | −0.802 | 0.427 |
A4 | 4.192 | 0.000 | 3.813 | 1.099 | 0.277 |
Model with Included Inputs | F(Mh) |
---|---|
SO3, Blaine, alkali | 1.355 |
C3S, Blaine, alkali | 0.639 |
C3S, SO3, alkali | 0.577 |
C3S, SO3, Blaine | 1.283 |
C3S | SO3 | Blaine | Alkali | Strength | FLR (Left) | FLR (Center) | FLR (Right) | μA(yi) | ANFIS |
---|---|---|---|---|---|---|---|---|---|
54 | 3 | 3530 | 1.1 | 53.9 | 50.7 | 53.7 | 56.8 | 0.9 | 53.9 |
54.8 | 2.9 | 3680 | 0.9 | 51.9 | 49.2 | 52.3 | 55.3 | 0.9 | 51.9 |
57.3 | 2.8 | 3560 | 1 | 53.9 | 50.1 | 53.3 | 56.5 | 0.8 | 53.9 |
64.6 | 2.6 | 3850 | 1 | 50.8 | 50.8 | 54.4 | 58 | 0 | 50.8 |
56.9 | 2.7 | 3580 | 0.8 | 54.5 | 48.4 | 51.6 | 54.8 | 0.1 | 54.5 |
61.3 | 2.3 | 3780 | 0.9 | 50.4 | 47.3 | 50.8 | 54.2 | 0.9 | 50.5 |
62.3 | 2.8 | 3640 | 0.9 | 55.4 | 51.3 | 54.8 | 58.3 | 0.8 | 55.4 |
62.4 | 2.8 | 3590 | 0.9 | 58.4 | 51.4 | 54.9 | 58.4 | 0 | 58.4 |
64.6 | 2.5 | 4090 | 0.8 | 54.8 | 48.8 | 52.5 | 56.1 | 0.4 | 54.7 |
59.3 | 2.8 | 3500 | 1.1 | 51.8 | 51.3 | 54.6 | 58 | 0.1 | 51.8 |
61.8 | 2.7 | 3630 | 1.1 | 51.3 | 51.3 | 54.8 | 58.2 | 0 | 51.3 |
61.3 | 3 | 3580 | 1 | 54.7 | 52.8 | 56.2 | 59.7 | 0.6 | 54.7 |
60.4 | 2.6 | 3680 | 1 | 54.1 | 49.6 | 53 | 56.4 | 0.7 | 54.1 |
55.6 | 3.1 | 3510 | 1 | 54.5 | 51.6 | 54.7 | 57.8 | 0.9 | 54.6 |
62.4 | 2.5 | 3590 | 1.1 | 51.5 | 50.3 | 53.8 | 57.2 | 0.4 | 51.5 |
63.1 | 2.6 | 3540 | 0.9 | 52.1 | 50.4 | 54 | 57.5 | 0.5 | 52.1 |
61.2 | 2.7 | 3610 | 0.9 | 51.7 | 50.3 | 53.7 | 57.1 | 0.4 | 51.7 |
55.6 | 2.7 | 3620 | 0.9 | 54.2 | 48.3 | 51.4 | 54.5 | 0.1 | 54.2 |
67.3 | 2.6 | 4020 | 0.8 | 53.8 | 50.6 | 54.4 | 58.1 | 0.8 | 53.8 |
58.7 | 3 | 3550 | 0.9 | 51.5 | 51.5 | 54.8 | 58.1 | 0 | 51.5 |
65.4 | 2.3 | 3730 | 0.9 | 48.9 | 48.9 | 52.6 | 56.2 | 0 | 48.9 |
58 | 2.7 | 3420 | 1 | 53.2 | 49.9 | 53.2 | 56.4 | 0.99 | 53.3 |
65 | 2.5 | 4070 | 0.8 | 54.7 | 49 | 52.7 | 56.3 | 0.4 | 54.7 |
62 | 2.9 | 3720 | 1 | 54.3 | 52.1 | 55.6 | 59.1 | 0.6 | 54.3 |
61.4 | 2.7 | 3840 | 0.9 | 52.5 | 49.9 | 53.4 | 56.8 | 0.7 | 52.5 |
63.5 | 2.5 | 3540 | 1 | 51.3 | 50.3 | 53.9 | 57.4 | 0.3 | 51.3 |
62.8 | 2.3 | 3580 | 0.9 | 51.1 | 48.3 | 51.8 | 55.3 | 0.8 | 51.1 |
56.4 | 3 | 3370 | 1.1 | 52.5 | 51.9 | 55 | 58.2 | 0.2 | 52.5 |
62.8 | 3 | 3750 | 1.1 | 54.1 | 53.4 | 56.9 | 60.5 | 0.2 | 54.1 |
58.9 | 3 | 3540 | 1 | 53.5 | 52 | 55.3 | 58.6 | 0.5 | 53.5 |
62.3 | 2.5 | 3910 | 0.9 | 53.6 | 48.8 | 52.3 | 55.8 | 0.6 | 53.6 |
57.7 | 2.7 | 3480 | 1 | 55.4 | 49.7 | 52.9 | 56.2 | 0.2 | 55.5 |
55.8 | 3.1 | 3420 | 0.9 | 53.7 | 51.4 | 54.5 | 57.6 | 0.7 | 53.7 |
55.9 | 2.8 | 3620 | 1 | 55.6 | 49.5 | 52.6 | 55.7 | 0.04 | 55.6 |
60.7 | 2.8 | 3740 | 1.1 | 55.2 | 51.4 | 54.8 | 58.2 | 0.9 | 55.2 |
50.3 | 2.5 | 3750 | 1.1 | 55.5 | 48.9 | 52.2 | 55.5 | 0 | 55.5 |
60.8 | 2.2 | 3520 | 1.1 | 49.8 | 47.8 | 51.2 | 54.6 | 0.6 | 49.8 |
60.7 | 3 | 3840 | 0.9 | 55.6 | 51.7 | 55.1 | 58.5 | 0.8 | 55.6 |
63.2 | 2.5 | 4010 | 0.9 | 52.1 | 48.9 | 52.5 | 56 | 0.9 | 52.1 |
59.3 | 2.6 | 3450 | 1 | 51.6 | 49.7 | 53 | 56.3 | 0.6 | 51.6 |
65.8 | 2.6 | 4050 | 0.9 | 53 | 50.4 | 54.1 | 57.8 | 0.7 | 53 |
57.4 | 2.5 | 3390 | 1.1 | 50.5 | 48.9 | 52.1 | 55.3 | 0.5 | 50.7 |
62 | 2.4 | 3490 | 1 | 54 | 49.2 | 52.7 | 56.2 | 0.6 | 54 |
59.7 | 2.2 | 3890 | 1 | 52.1 | 46.3 | 49.7 | 53 | 0.3 | 52.1 |
56.8 | 2.7 | 3620 | 1 | 53.8 | 49.1 | 52.3 | 55.5 | 0.5 | 53.8 |
61.7 | 2.4 | 3630 | 0.9 | 53.6 | 48.4 | 51.9 | 55.3 | 0.5 | 53.6 |
63.9 | 2.8 | 3680 | 0.9 | 53 | 51.7 | 55.2 | 58.8 | 0.4 | 53 |
61.6 | 2.8 | 3630 | 1.1 | 53.5 | 51.9 | 55.3 | 58.8 | 0.5 | 53.5 |
64.9 | 2.4 | 3900 | 1 | 49.9 | 49.5 | 53.1 | 56.8 | 0.1 | 49.9 |
61 | 2.8 | 3700 | 0.9 | 54.2 | 50.7 | 54.1 | 57.5 | 0.98 | 54.2 |
Metric | ANN | Fuzzy | Fuzzy Linear Regression | ANFIS |
---|---|---|---|---|
RMSE | 1.70 | 1.84 | 2.04 | 0.04 |
MAPE | 2.41% | 2.69% | 3.28% | 0.0270% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkountakou, F.; Papadopoulos, B. The Use of Fuzzy Linear Regression and ANFIS Methods to Predict the Compressive Strength of Cement. Symmetry 2020, 12, 1295. https://doi.org/10.3390/sym12081295
Gkountakou F, Papadopoulos B. The Use of Fuzzy Linear Regression and ANFIS Methods to Predict the Compressive Strength of Cement. Symmetry. 2020; 12(8):1295. https://doi.org/10.3390/sym12081295
Chicago/Turabian StyleGkountakou, Fani, and Basil Papadopoulos. 2020. "The Use of Fuzzy Linear Regression and ANFIS Methods to Predict the Compressive Strength of Cement" Symmetry 12, no. 8: 1295. https://doi.org/10.3390/sym12081295