Next Article in Journal
A Time-Motion Analysis of the Cross-Over Step Block Technique in Volleyball: Non-Linear and Asymmetric Performances
Next Article in Special Issue
New Bounds for Topological Indices on Trees through Generalized Methods
Previous Article in Journal
A Multicriteria Decision Aid-Based Model for Measuring the Efficiency of Business-Friendly Cities
Previous Article in Special Issue
M-Polynomial and Degree Based Topological Indices of Some Nanostructures
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs

by
Juan L. G. Guirao
1,
Muhammad Imran
2,*,
Muhammad Kamran Siddiqui
3 and
Shehnaz Akhter
4
1
Department of Applied Mathematics and Statistics, Technical University of Cartagena, Hospital de Marina, 30203 Cartagena, Spain
2
Department of Mathematical Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, UAE
3
Department of Mathematics, COMSATS University Islamabad, Lahore Campus 54000, Pakistan
4
Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
*
Author to whom correspondence should be addressed.
Symmetry 2020, 12(6), 1026; https://doi.org/10.3390/sym12061026
Submission received: 12 May 2020 / Revised: 1 June 2020 / Accepted: 8 June 2020 / Published: 17 June 2020
(This article belongs to the Special Issue Analytical and Computational Properties of Topological Indices)

Abstract

:
In the studies of quantitative structure–activity relationships (QSARs) and quantitative structure–property relationships (QSPRs), graph invariants are used to estimate the biological activities and properties of chemical compounds. In these studies, degree-based topological indices have a significant place among the other descriptors because of the ease of generation and the speed with which these computations can be accomplished. In this paper, we give the results related to the first, second, and third Zagreb indices, forgotten index, hyper Zagreb index, reduced first and second Zagreb indices, multiplicative Zagreb indices, redefined version of Zagreb indices, first reformulated Zagreb index, harmonic index, atom-bond connectivity index, geometric-arithmetic index, and reduced reciprocal Randić index of a new graph operation named as “subdivision vertex-edge join” of three graphs.
MSC:
05C12; 05C90

1. Introduction

In mathematical chemistry and chemical graph theory, a topological index is a numerical criterion that is computed based on the molecular graph of a chemical structure. In the study of QSARs/QSPRs, several topological indices (TIs) are frequently applied to gain the correlations between various properties of molecules or the biological activity with their shape [1,2,3]. TIs have also been used in spectral graph theory to quantify the robustness and resilience of complex networks [4]. TIs are two-dimensional descriptors, which consider the internal atomic setting of compounds and give the facts in the numerical form regarding the branching, molecular size, shape, existence of multiple bonds, and heteroatoms. TIs have gained appreciable significance in the previous few years because of the ease of generation and the speed with which these assessments can be accomplished.
There are several graphical invariants, which are valuable in theoretical chemistry and nanotechnology. Thereby, the computation of these TIs is one of the effective lines of research. Suppose that T represents the set of all finite, simple, and connected graphs. Then, a function F : T R + is called a topological index if, for any set of two isomorphic graphs G 1 and G 2 , we have F ( G 1 ) = F ( G 2 ) . Some impressive types of TIs of graphs are distance-based, spectral-based, degree-based, and counting-related graphs. Among these, degree-based are the most eye-catching and can perform the leading rule to characterize the chemical compounds and predict their different physiochemical properties such as density, refractive index, boiling point, molecular weight, etc. For the comprehensive discussions of these indices and other well-known TIs, we refer the reader to [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25].
Throughout this article, we assume that all graphs are finite, simple, and connected. For a graph Z , V ( Z ) and E ( Z ) represent the vertex and edge sets, respectively. For a given graph Z , the order and size are represented by n and e, respectively. An edge with end vertices z i and z j is denoted by z i z j E ( Z ) . For a vertex z V ( Z ) , the number of edges having z as an end vertex is called the degree of z in Z and it is expressed by deg Z ( z ) , and, if z = z 1 z 2 E ( Z ) , then deg Z ( z ) = deg Z ( z 1 ) + deg Z ( z 2 ) with z 1 , z 2 V ( Z ) , . The notations δ Z and Z stand for the minimum and maximum degrees of a graph Z , respectively. We denote the path, cycle, and complete graph, each of order n, by P n , C n , and K n , respectively.
Using graph operations, one can construct a new graph from the given graphs, and it is established that some chemically interesting graphs can be achieved as an outcome of graph operations of some simple graphs. From the relations of various TIs of graph operations in the form of TIs of their components, it is beneficial to determine the TIs of some nanostructures and molecular graphs.
There are several studies regarding TIs of different graph operations (see, e.g., [26,27,28,29,30,31,32]). Very recently, another graph operation, named as the subdivision vertex-edge join (SVE-join), has been introduced [33]. For a graph Z 1 , S ( Z 1 ) is the subdividing graph of Z 1 whose vertex set has two portions: the original set of vertices V ( Z 1 ) and the set I ( Z 1 ) consisting of the inserting vertices that are end vertices of the edges of Z 1 . Let Z 2 and Z 3 are the two other disjoint graphs. The S V E j o i n of Z 1 with Z 2 and Z 3 , denoted by Z 1 S ( Z 2 V Z 3 I ) , is the graph consisting of S ( Z 1 ) , Z 2 and Z 3 , all vertex-disjoint, then joining the ith vertex of V ( Z 1 ) to every vertex in V ( Z 2 ) and the ith vertex of I ( Z 1 ) to each vertex in V ( Z 3 ) . Furthermore, we see that Z 1 S ( Z 2 V Z 3 I ) is Z 1 ˙ Z 2 (is obtained from S ( Z 1 ) and Z 2 by linking each vertex of V ( Z 1 ) to every vertex of V ( Z 2 ) [34]) if Z 3 is the null graph, and is Z 1 ̲ Z 3 (is obtained from S ( Z 1 ) and Z 3 by linking each vertex of I ( Z 1 ) to every vertex of V ( Z 3 ) [34]) if Z 2 is the null graph. The graphs P 4 ˙ C 3 , P 4 ̲ K 4 and P 4 S ( C 3 V K 4 I ) are illustrated in Figure 1.
The Zagreb indices are well considered molecular structure descriptors, and they have appreciable applications in chemistry. In 1972, Gutman and Trinajstić [1] introduced the first Zagreb index based on the degree of vertices of Z . The first and second Zagreb indices of a graph Z can be defined in the following way:
M 1 ( Z ) = z V ( Z ) deg Z 2 ( z ) , M 2 ( Z ) = z 1 z 2 E ( Z ) deg Z ( z 1 ) deg Z ( z 2 ) .
The third Zagreb index (also called irregular index) [35] of Z can be stated as:
M 3 ( Z ) = z 1 z 2 E ( Z ) deg Z ( z 1 ) deg Z ( z 2 ) .
Inspired by the first and second Zagreb indices, Furtula and Gutman [36] proposed the forgotten topological index (or F-index) of Z in the following way:
F ( Z ) = z V ( Z ) deg Z 3 ( z ) .
Shirdel et al. [37] put forward a new degree based Zagreb index of Z in 2013 and they named it “hyper-Zagreb index”, which is specified as follows:
HM ( Z ) = z 1 z 2 E ( Z ) ( deg Z ( z 1 ) + deg Z ( z 2 ) ) 2 = F ( Z ) + 2 M 2 ( Z ) .
The reduced first Zagreb index of Z , introduced by Ediz [38], and the reduced second Zagreb index, defined by Furtula et al. [39], are as follows:
RM 1 ( Z ) = z V ( Z ) ( deg Z ( z ) 1 ) 2 , RM 2 ( Z ) = z 1 z 2 E ( Z ) ( deg Z ( z 1 ) 1 ) ( deg Z ( z 2 ) 1 ) .
In 2010, Todeshine et al. [40,41] proposed the multiplicative variants of ordinary Zagreb indices of Z , which are defined as follows:
1 ( Z ) = z V ( Z ) deg Z 2 ( z ) , 2 ( Z ) = z 1 z 2 E ( Z ) deg Z ( z 1 ) deg Z ( z 2 ) .
The first, second, and third redefined versions of Zagreb indices of Z brought by Ranjini et al. [42] and Usha et al. [43] are, respectively:
R e Z e 1 ( Z ) = z 1 z 2 E ( Z ) deg Z ( z 1 ) + deg Z ( z 2 ) deg Z ( z 1 ) deg Z ( z 2 ) .
R e Z e 2 ( Z ) = z 1 z 2 E ( Z ) deg Z ( z 1 ) deg Z ( z 2 ) deg Z ( z 1 ) + deg Z ( z 2 ) .
R e Z e 3 ( Z ) = z 1 z 2 E ( Z ) deg Z ( z 1 ) deg Z ( z 2 ) ( deg Z ( z 1 ) + deg Z ( z 2 ) ) .
In [44], Milićević et al. introduced new versions of Zagreb indices called reformulated Zagreb indices. The first reformulated Zagreb index of Z is as follows:
EM 1 ( Z ) = f E ( Z ) deg Z ( f ) 2 = f = z 1 z 2 E ( Z ) ( deg Z ( z 1 ) + deg Z ( z 2 ) 2 ) 2 .
For a graph Z , the harmonic index was presented by Fajtlowicz [45] as:
H ( Z ) = z 1 z 2 E ( Z ) 2 deg Z ( z 1 ) + deg Z ( z 2 ) .
Estrada [46] described atom-bond connectivity index of Z as follows:
ABC ( Z ) = z 1 z 2 E ( Z ) deg Z ( z 1 ) + deg Z ( z 2 ) 2 deg Z ( z 1 ) deg Z ( z 2 ) .
The geometric-arithmetic index of Z was defined by Vukičević et al. [47] as:
GA ( Z ) = z 1 z 2 E ( Z ) 2 deg Z ( z 1 ) deg Z ( z 2 ) deg Z ( z 1 ) + deg Z ( z 2 ) .
Reduced reciprocal Randić index ( RRR index) of Z was introduced by Gutman et al. in [48] as follows:
RRR ( Z ) = z 1 z 2 E ( Z ) ( deg Z ( z 1 ) 1 ) ( deg Z ( z 2 ) 1 ) .
Now, we state certain properties of the subdivision vertex-edge join of three graphs in the next lemma.
Lemma 1
([33]). Let Z 1 , Z 2 , and Z 3 be graphs. Then, we have:
  • | V ( Z 1 S ( Z 2 V Z 3 I ) ) | = n 1 + e 1 + n 2 + n 3 and | E ( Z 1 S ( Z 2 V Z 3 I ) ) | = 2 e 1 + n 1 n 2 + e 1 n 3 + e 2 + e 3 .
  • deg Z 1 S ( Z 2 V Z 3 I ) ( z ) = deg Z 1 ( z ) + n 2 , z V ( Z 1 ) , n 3 + 2 , z I ( Z 1 ) , deg Z 2 ( z ) + n 1 , z V ( Z 2 ) , deg Z 3 ( z ) + e 1 , z V ( Z 3 ) .
By using these graph operation, one can construct new (chemical) graphs from existing graphs. Therefore, it is important to know which physico-chemical properties are carried from original graphs to the newly constructed graph via this new operation. Moreover, many molecular characteristics of newly formed compound via this operation can be predicted by computing the expression for their additive degree-based indices.

2. Applications of Topological Indices

The atom-bond connectivity ( ABC ) index provides a very good correlation for the stability of linear alkanes as well as the branched alkanes and for computing the strain energy of cyclo alkanes [49]. The Randić index is a topological descriptor that has correlated with a lot of chemical characteristics of the molecules and has been found to the parallel to computing the boiling point and Kovats constants of the molecules. To correlate with certain physico-chemical properties, GA index has much better predictive power than the predictive power of the Randić connectivity index [50]. The Zagreb indices were found to occur for the computation of the total π -electron energy of the molecules within specific approximate expressions [51]. These are among the graph invariants which were proposed for the measurement of the skeleton of the branching of the carbon atom [52].

3. Main Results

The present section provides the results related to the first, second, and third Zagreb indices, forgotten index, hyper Zagreb index, reduced first and second Zagreb indices, multiplicative Zagreb indices, redefined version of Zagreb indices, first reformulated Zagreb index, harmonic index, atom-bond connectivity index, geometric-arithmetic index, and reduced reciprocal Randić index of the subdivision vertex-edge join of three graphs.
In the following theorem, we present the closed formulae for the first, second, and third Zagreb indices of subdivision vertex-edge join for three graphs.
Theorem 1.
Let Z 1 , Z 2 and Z 3 be three graphs. Then, we have
  • M 1 ( Z 1 S ( Z 2 V Z 3 I ) ) = M 1 ( Z 1 ) + M 1 ( Z 2 ) + M 1 ( Z 3 ) + n 1 n 2 ( n 1 + n 2 ) + 4 ( n 2 e 1 + n 1 e 2 ) + n 3 e 1 ( e 1 + n 3 ) + 4 e 1 ( 1 + e 3 + n 3 ) .
  • M 2 ( Z 1 S ( Z 2 V Z 3 I ) ) = M 2 ( Z 2 ) + M 2 ( Z 3 ) + ( n 3 + 2 ) M 1 ( Z 1 ) + n 1 M 1 ( Z 2 ) + e 1 M 1 ( Z 3 ) + 2 n 1 n 2 ( e 1 + e 2 ) + e 1 ( n 3 + 2 ) ( 2 e 3 + n 3 e 1 + 2 n 2 ) + n 1 2 ( e 2 + n 2 2 ) + e 1 ( 4 e 2 + e 1 e 3 ) .
  • M 3 ( Z 1 S ( Z 2 V Z 3 I ) ) M 3 ( Z 2 ) + M 3 ( Z 3 ) + M 1 ( Z 1 ) + n 1 n 2 ( n 1 + n 2 ) + 2 n 1 ( e 2 + e 3 ) + e 1 n 3 ( n 3 + e 1 + 2 ) + 2 e 1 ( 2 n 2 + n 3 + 2 ) .
Proof. 
  • By using Lemma 1 in Equation (1), we get
    M 1 ( Z 1 S ( Z 2 V Z 3 I ) ) = z V ( Z 1 ) ( deg Z 1 2 ( z ) + n 2 2 + 2 n 2 deg Z 1 ( z ) ) + z I ( Z 1 ) ( n 3 2 + 4 + 4 n 3 ) + z V ( Z 2 ) ( deg Z 2 2 ( z ) + n 1 2 + 2 n 1 deg Z 2 ( z ) ) + z V ( Z 3 ) ( deg Z 3 2 ( z ) + e 1 2 + 2 e 1 deg Z 3 ( z ) ) = M 1 ( Z 1 ) + n 2 2 n 1 + 4 n 2 e 1 + e 1 ( n 3 2 + 4 + 4 n 3 ) + M 1 ( Z 2 ) + n 1 2 n 2 + 4 n 1 e 2 + M 1 ( Z 3 ) + e 1 2 n 3 + 4 e 1 e 3 .
    After some simplifications, we get the required result.
  • By using Lemma 1 in Equation (1), we obtain
    M 2 ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) + z 1 z 2 E ( Z 3 ) ( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( deg Z 1 ( z 1 ) + n 2 ) ( deg Z 2 ( z 2 ) + n 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( n 3 + 2 ) ( deg Z 3 ( z 2 ) + e 1 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) ( deg Z 1 ( z 1 ) + n 2 ) ( n 3 + 2 ) = M 2 ( Z 2 ) + n 1 M 1 ( Z 2 ) + n 1 2 e 2 + M 2 ( Z 3 ) + e 1 M 1 ( Z 3 ) + e 1 2 e 3 + 4 e 1 e 2 + 2 n 1 n 2 e 2 + 2 n 1 n 2 e 1 + n 1 2 n 2 2 + ( n 3 + 2 ) ( 2 e 1 e 3 + n 3 e 1 2 ) + ( n 3 + 2 ) ( M 1 ( Z 1 ) + 2 n 2 e 1 ) .
    After some simplifications, we acquire the required result.
  • By using Lemma 1 in Equation (2), we get
    M 3 ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) + z 1 z 2 E ( Z 3 ) deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) deg Z 1 ( z 1 ) deg Z 2 ( z 2 ) n 1 + n 2 + z 1 I ( Z 1 ) z 2 V ( Z 3 ) deg Z 3 ( z 2 ) + e 1 n 3 2 + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) deg Z 1 ( z 1 ) + n 2 n 3 2 M 3 ( Z 2 ) + M 3 ( Z 3 ) + 2 e 1 n 2 + 2 e 2 n 1 + n 1 2 n 2 + n 1 n 2 2 + 2 e 3 n 1 + e 1 2 n 3 + n 3 2 e 1 + 2 e 1 n 3 + z V ( Z 1 ) deg Z 1 ( z 1 ) deg Z 1 ( z ) + n 2 n 3 2 M 3 ( Z 2 ) + M 3 ( Z 3 ) + 2 e 1 n 2 + n 1 n 2 ( n 1 + n 2 ) + 2 n 1 ( e 2 + e 3 ) + e 1 n 3 ( n 3 + e 1 + 2 ) + M 1 ( Z 1 ) + 2 n 2 e 1 + 2 e 1 ( n 3 + 2 ) .
This completes the proof. □
Now, we set up the precise value of the F-index of subdivision vertex-edge join for three graphs.
Theorem 2.
Let Z 1 , Z 2 and Z 3 be three graphs. Then, we have
F ( Z 1 S ( Z 2 V Z 3 E ) ) = F ( Z 1 ) + F ( Z 2 ) + F ( Z 3 ) + 3 ( n 2 M 1 ( Z 1 ) + n 1 M 1 ( Z 2 ) + e 1 M 1 ( Z 3 ) ) + n 1 n 2 ( n 1 2 + n 2 2 ) + n 3 e 1 ( n 3 2 + e 1 2 ) + 6 ( n 2 2 e 1 + n 1 2 e 2 + e 1 2 e 3 ) + 8 e 1 + 6 n 3 e 1 ( n 3 + 2 ) .
Proof. 
By Lemma 1 in Equation (3), we get
F ( Z 1 S ( Z 2 V Z 3 I ) ) = z V ( Z 1 ) ( deg Z 1 3 ( z ) + n 2 3 + 3 n 2 deg Z 1 2 ( z ) + 3 n 2 2 deg Z 1 ( z ) ) + z I ( Z 1 ) ( n 3 3 + 8 + 6 n 3 2 + 12 n 3 ) + z V ( Z 2 ) ( deg Z 2 3 ( z ) + n 1 3 + 3 n 1 deg Z 2 2 ( z ) + 3 n 1 2 deg Z 2 ( z ) ) + z V ( Z 3 ) ( deg Z 3 3 ( z ) + e 1 3 + 3 e 1 deg Z 3 2 ( z ) + 3 e 1 2 deg Z 3 ( z ) ) = F ( Z 1 ) + n 2 3 n 1 + 3 n 2 M 1 ( Z 1 ) + 6 n 2 2 e 1 + e 1 ( n 3 3 + 8 + 6 n 3 2 + 12 n 3 ) + F ( Z 2 ) + n 1 3 n 2 + 3 n 1 M 1 ( Z 2 ) + 6 n 1 2 e 2 + F ( Z 3 ) + e 1 3 n 3 + 3 e 1 M 1 ( Z 3 ) + 6 e 1 2 e 3 .
This finishes the proof. □
Now, we give the exact expression for the hyper-Zagreb index of subdivision vertex-edge join for three graphs.
Theorem 3.
Let Z 1 , Z 2 and Z 3 be three graphs. Then, we have
HM ( Z 1 S ( Z 2 V Z 3 I ) ) = F ( Z 1 ) + F ( Z 2 ) + F ( Z 3 ) + 2 ( M 2 ( Z 2 ) + M 2 ( Z 3 ) ) + M 1 ( Z 1 ) ( 3 n 2 + 2 n 3 + 4 ) + 5 n 1 M 1 ( Z 2 ) + 5 e 1 M 1 ( Z 3 ) + n 1 n 2 ( n 1 + n 2 ) 2 + 4 n 1 n 2 ( e 1 + e 2 ) + n 3 e 1 ( n 3 + e 1 ) 2 + 4 e 1 e 3 ( n 3 + 2 e 1 + 2 ) + 4 n 3 e 1 ( n 2 + e 1 ) + 8 e 2 ( n 1 2 + e 1 ) + 8 e 1 + 2 n 2 e 1 ( 4 + 3 n 2 ) + 6 n 3 e 1 ( n 3 + 2 ) .
Proof. 
By definition of hyper-Zagreb index, we have HM ( Z 1 S ( Z 2 V Z 3 I ) ) = F ( Z 1 S ( Z 2 V Z 3 I ) ) + 2 M 2 ( Z 1 S ( Z 2 V Z 3 I ) ) . Hence, the result follows from Theorems 1 and 2. □
In the next result, we provide the closed formulas of the reduced first and second Zagreb indices of subdivision vertex-edge join for three graphs.
Theorem 4.
Let Z 1 , Z 2 and Z 3 be three graphs. Then, we have
  • RM 1 ( Z 1 S ( Z 2 V Z 3 I ) ) = RM 1 ( Z 1 ) + RM 1 ( Z 2 ) + RM 1 ( Z 3 ) + n 1 n 2 ( n 1 + n 2 4 ) + 4 ( n 2 e 1 + n 1 e 2 ) + e 1 ( n 3 + 1 ) 2 + e 1 ( e 1 n 3 + 4 e 3 2 n 3 ) .
  • RM 2 ( Z 1 S ( Z 2 V Z 3 I ) ) = RM 2 ( Z 2 ) + RM 2 ( Z 3 ) + ( n 3 + 1 ) M 1 ( Z 1 ) + n 1 M 1 ( Z 2 ) + e 1 M 1 ( Z 3 ) + e 1 ( n 3 + 1 ) ( 2 e 3 + n 3 ( e 1 1 ) + 2 ( n 2 1 ) ) + n 1 e 2 ( n 1 2 ) + e 1 e 3 ( e 1 2 ) + ( 2 e 1 + n 1 ( n 2 1 ) ) ( 2 e 2 + n 2 ( n 1 ) ) .
Proof. 
By using Lemma 1 in Equation (5), we get
RM 1 ( Z 1 S ( Z 2 V Z 3 I ) ) = z V ( Z 1 ) ( deg Z 1 ( z ) + n 2 1 ) 2 + z I ( Z 1 ) ( n 3 + 2 1 ) 2 + z V ( Z 2 ) ( deg Z 2 ( z ) + n 1 1 ) 2 + z V ( Z 3 ) ( deg Z 3 ( z ) + e 1 1 ) 2 = z V ( Z 1 ) ( ( deg Z 1 ( z ) 1 ) 2 + n 2 2 + 2 n 2 ( deg Z 1 ( z ) 1 ) ) + z I ( Z 1 ) ( n 3 + 1 ) 2 + z V ( Z 2 ) ( ( deg Z 2 ( z ) 1 ) 2 + n 1 2 + 2 n 1 ( deg Z 2 ( z ) 1 ) ) + z V ( Z 3 ) ( ( deg Z 3 ( z ) 1 ) 2 + e 1 2 + 2 e 1 ( deg Z 3 ( z ) 1 ) ) = RM 1 ( Z 1 ) + n 2 2 n 1 + 2 n 2 ( 2 e 1 n 1 ) + e 1 ( n 3 + 1 ) 2 + RM 1 ( Z 2 ) + n 1 2 n 2 + 2 n 1 ( 2 e 2 n 2 ) + RM 1 ( Z 3 ) + e 1 2 n 3 + 2 e 1 ( 2 e 3 n 3 ) .
By means of some simplifications, we get the required result. Now, using Lemma 1 in Equation (5), we have
RM 2 ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) ( deg Z 2 ( z 1 ) + n 1 1 ) ( deg Z 2 ( z 2 ) + n 1 1 ) + z 1 z 2 E ( Z 3 ) ( deg Z 3 ( z 1 ) + e 1 1 ) ( deg Z 3 ( z 2 ) + e 1 1 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( deg Z 1 ( z 1 ) + n 2 1 ) ( deg Z 2 ( z 2 ) + n 1 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( n 3 + 2 1 ) ( deg Z 2 ( z 2 ) + e 1 1 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) ( deg Z 1 ( z 1 ) + n 2 1 ) ( n 3 + 2 1 ) = z 1 z 2 E ( Z 2 ) ( ( deg Z 2 ( z 1 ) 1 ) ( deg Z 2 ( z 2 ) 1 ) + n 1 ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) ) 2 n 1 + n 1 2 ) + z 1 z 2 E ( Z 3 ) ( ( deg Z 3 ( z 1 ) 1 ) ( deg Z 3 ( z 2 ) 1 ) + e 1 ( deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) ) 2 e 1 + e 1 2 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( deg Z 1 ( z 1 ) deg Z 2 ( z 2 ) + ( n 1 1 ) deg Z 1 ( z 1 ) + ( n 2 1 ) deg Z 2 ( z 2 ) + ( n 1 1 ) ( n 2 1 ) ) + ( n 3 + 1 ) z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( deg Z 3 ( z 2 ) + e 1 1 ) + ( n 3 + 1 ) z V ( Z 1 ) deg Z 1 ( z ) ( deg Z 1 ( z ) + n 2 1 ) = RM 2 ( Z 2 ) + n 1 M 1 ( Z 2 ) + e 2 n 1 ( n 1 2 ) + RM 2 ( Z 3 ) + e 1 M 1 ( Z 3 ) + e 3 e 1 ( e 1 2 ) + 4 e 1 e 2 + 2 n 2 e 1 ( n 1 1 ) + 2 n 1 e 2 ( n 2 1 ) + n 1 n 2 ( n 1 1 ) ( n 2 1 ) + ( n 3 + 1 ) ( 2 e 1 e 3 + n 3 e 1 ( e 1 1 ) ) + ( n 3 + 1 ) ( M 1 ( Z 1 ) + 2 e 1 ( n 2 1 ) )
By means of some simplifications, we obtain the required result. This finishes the proof. □
Now, we give the following lemma that is used in the proof of next result.
Lemma 2
((AM-GM inequality) [53]). Let b 1 , b 2 , , b n be non-negative numbers. Then,
b 1 + b 2 + + b n n b 1 b 2 b n n
holds with equality if and only if b 1 = b 2 = = b n .
In the upcoming result, we give the upper bounds of multiplicative Zagreb indices of subdivision vertex-edge join for three graphs.
Theorem 5.
Let Z 1 , Z 2 and Z 3 be three graphs. Then,
  • 1 ( Z 1 S ( Z 2 V Z 3 I ) ) n 3 + 2 2 e 1 n 1 n 1 n 2 n 2 n 3 n 3 M 1 ( Z 1 ) + n 2 2 n 1 + 4 n 2 e 1 n 1 M 1 ( Z 2 ) + n 1 2 n 2 + 4 n 1 e 2 n 2
    M 1 ( Z 3 ) + e 1 2 n 3 + 4 e 1 e 3 n 3 ,
  • 2 ( Z 1 S ( Z 2 V Z 3 I ) ) ( n 3 + 2 ) n 3 + 2 e 1 2 e 3 + n 3 e 1 e 1 n 3 n 3 M 2 ( Z 2 ) + n 1 M 1 ( Z 1 ) + n 1 2 e 2 e 2 e 2
    2 e 1 + n 2 2 e 1 2 e 1 M 2 ( Z 3 ) + e 1 M 1 ( Z 3 ) + e 1 2 e 3 e 3 e 3 4 e 1 e 2 + 2 n 1 n 2 ( e 1 + e 2 ) + n 1 2 n 2 2 n 1 n 2 n 1 n 2 ,
holds with equality if and only if Z 1 , Z 2 and Z 3 are regular graphs.
Proof. 
By Equation (6) and Lemma 1, we have
1 ( Z 1 S ( Z 2 V Z 3 I ) ) = z V ( Z 1 ) ( deg Z 1 ( z ) + n 2 ) 2 z I ( Z 1 ) ( n 3 + 2 ) 2 z V ( Z 2 ) ( deg Z 2 ( z ) + n 1 ) 2 z V ( Z 3 ) ( deg Z 3 ( z ) + e 1 ) 2 z V ( Z 1 ) ( deg Z 1 2 ( z ) + n 2 2 + 2 n 2 deg Z 1 ( z ) ) n 1 n 1 z I ( Z 1 ) ( n 3 + 2 ) 2 e 1 e 1 z V ( Z 2 ) ( deg Z 2 2 ( z ) + n 1 2 + 2 n 1 deg Z 2 ( z ) ) n 2 n 2 z V ( Z 3 ) ( deg Z 3 2 ( z ) + e 1 2 + 2 e 1 deg Z 3 ( z ) ) n 3 n 3
By means of some simplifications, we obtain the required result. Now, by Equation (6) and Lemma 1, we have
2 ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) z 1 z 2 E ( Z 3 ) ( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( deg Z 1 ( z 1 ) + n 2 ) ( deg Z 2 ( z 2 ) + n 1 ) z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( n 3 + 2 ) ( deg Z 3 ( z 2 ) + e 1 ) z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) ( deg Z 1 ( z 1 ) + n 2 ) ( n 3 + 2 ) .
By Lemma 2, we get
2 ( Z 1 S ( Z 2 V Z 3 I ) ) M 2 ( Z 2 ) + n 1 M 1 ( Z 2 ) + n 1 2 e 2 e 2 e 2 M 2 ( Z 3 ) + e 1 M 1 ( Z 3 ) + e 1 2 e 3 e 3 e 3 4 e 1 e 2 + 2 n 1 n 2 e 1 + 2 n 1 n 2 e 2 + n 1 2 n 2 2 n 1 n 2 n 1 n 2 e 1 ( n 3 + 2 ) ( 2 e 3 + n 3 e 1 ) e 1 n 3 e 1 n 3 ( n 3 + 2 ) z V ( Z 1 ) deg Z 1 ( z ) ( deg Z 1 ( z 1 ) + n 2 ) 2 e 1 2 e 1 = M 2 ( Z 2 ) + n 1 M 1 ( Z 2 ) + n 1 2 e 2 e 2 e 2 M 2 ( Z 3 ) + e 1 M 1 ( Z 3 ) + e 1 2 e 3 e 3 e 3 4 e 1 e 2 + 2 n 1 n 2 e 1 + 2 n 1 n 2 e 2 + n 1 2 n 2 2 n 1 n 2 n 1 n 2 e 1 ( n 3 + 2 ) ( 2 e 3 + n 3 e 1 ) e 1 n 3 e 1 n 3 ( n 3 + 2 ) ( M 1 ( Z 1 ) + 2 n 2 e 1 ) 2 e 1 2 e 1
After some simplifications, we get the required result. Additionally, if Z 1 , Z 2 , and Z 3 , are regular graphs, then the equalities in Equations (15) and (16) hold. □
In the next three theorems, we give the upper and lower bounds of the redefined versions of Zagreb indices of subdivision vertex-edge join for three graphs.
Theorem 6.
Let Z 1 , Z 2 and Z 3 be three graphs. Then,
δ Z 2 2 ( Z 2 + n 1 ) 2 R e Z e 1 ( Z 2 ) + 2 n 1 e 2 ( Z 2 + n 1 ) 2 + δ Z 3 2 ( Z 3 + e 1 ) 2 R e Z e 1 ( Z 3 ) + 2 e 1 e 3 ( Z 3 + e 1 ) 2 + n 1 n 2 δ Z 1 + δ Z 2 + n 1 + n 2 ( Z 1 + n 2 ) ( Z 2 + n 1 ) + e 1 n 3 δ Z 3 + e 1 + n 3 + 2 ( Z 3 + e 1 ) ( n 3 + 2 ) + 2 e 1 δ Z 1 + n 2 + n 3 + 2 ( Z 1 + n 2 ) ( n 3 + 2 ) R e Z e 1 ( Z 1 S ( Z 2 V Z 3 I ) ) Z 2 2 ( δ Z 2 + n 1 ) 2 R e Z e 1 ( Z 2 ) + 2 n 1 e 2 ( δ Z 2 + n 1 ) 2 + Z 3 2 ( δ Z 3 + e 1 ) 2 R e Z e 1 ( Z 3 ) + 2 e 1 e 3 ( δ Z 3 + e 1 ) 2 + n 1 n 2 Z 1 + Z 2 + n 1 + n 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) + e 1 n 3 Z 3 + e 1 + n 3 + 2 ( δ Z 3 + e 1 ) ( n 3 + 2 ) + 2 e 1 Z 1 + n 2 + n 3 + 2 ( δ Z 1 ( z 1 ) + n 2 ) ( n 3 + 2 ) .
hold with equalities if and only if Z 1 , Z 2 and Z 3 are regular graphs.
Proof. 
By using Lemma 1 in Equation (7), we get
R e Z e 1 ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) + z 1 z 2 E ( Z 3 ) deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 ( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) deg Z 1 ( z 1 ) + deg Z 2 ( z 2 ) + n 1 + n 2 ( deg Z 1 ( z 1 ) + n 2 ) ( deg Z 2 ( z 2 ) + n 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) deg Z 3 ( z 2 ) + e 1 + n 3 + 2 ( deg Z 3 ( z 2 ) + e 1 ) ( n 3 + 2 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) deg Z 1 ( z 1 ) + n 2 + n 3 + 2 ( deg Z 1 ( z 1 ) + n 2 ) ( n 3 + 2 ) .
Now,
deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) = deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) × deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) + 2 n 1 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) Z 2 2 ( δ Z 2 + n 1 ) 2 × deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) + 2 n 1 ( δ Z 2 + n 1 ) 2 .
Similarly,
deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 ( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) Z 3 2 ( δ Z 3 + e 1 ) 2 × deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) + 2 e 1 ( δ Z 3 + e 1 ) 2 .
By using Equations (18) and (19) in Equation (17), we obtain
R e Z e 1 ( Z 1 S ( Z 2 V Z 3 I ) ) z 1 z 2 E ( Z 2 ) Z 2 2 ( δ Z 2 + n 1 ) 2 × deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) + 2 n 1 ( δ Z 2 + n 1 ) 2 + z 1 z 2 E ( Z 3 ) Z 3 2 ( δ Z 3 + e 1 ) 2 × deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) + 2 e 1 ( δ Z 3 + e 1 ) 2 + z 1 V ( Z 1 ) z 2 V ( Z 2 ) Z 1 + Z 2 + n 1 + n 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) Z 3 + e 1 + n 3 + 2 ( δ Z 3 + e 1 ) ( n 3 + 2 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) Z 1 + n 2 + n 3 + 2 ( δ Z 1 + n 2 ) ( n 3 + 2 ) = Z 2 2 ( δ Z 2 + n 1 ) 2 R e Z e 1 ( Z 2 ) + 2 n 1 e 2 ( δ Z 2 + n 1 ) 2 + Z 3 2 ( δ Z 3 + e 1 ) 2 R e Z e 1 ( Z 3 ) + 2 e 1 e 3 ( δ Z 3 + e 1 ) 2 + n 1 n 2 Z 1 + Z 2 + n 1 + n 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) + e 1 n 3 Z 3 + e 1 + n 3 + 2 ( δ Z 3 + e 1 ) ( n 3 + 2 ) + 2 e 1 Z 1 + n 2 + n 3 + 2 ( δ Z 1 ( z 1 ) + n 2 ) ( n 3 + 2 ) .
Similarly, we can compute
R e Z e 1 ( Z 1 S ( Z 2 V Z 3 I ) ) δ Z 2 2 ( Z 2 + n 1 ) 2 R e Z e 1 ( Z 2 ) + 2 n 1 e 2 ( Z 2 + n 1 ) 2 + δ Z 3 2 ( Z 3 + e 1 ) 2 R e Z e 1 ( Z 3 ) + 2 e 1 e 3 ( Z 3 + e 1 ) 2 + n 1 n 2 δ Z 1 + δ Z 2 + n 1 + n 2 ( Z 1 + n 2 ) ( Z 2 + n 1 ) + e 1 n 3 δ Z 3 + e 1 + n 3 + 2 ( Z 3 + e 1 ) ( n 3 + 2 ) + 2 e 1 δ Z 1 + n 2 + n 3 + 2 ( Z 1 ( z 1 ) + n 2 ) ( n 3 + 2 ) .
Furthermore, if Z 1 , Z 2 , and Z 3 are regular graphs, then the above equalities hold. This finishes the proof. □
Theorem 7.
Let Z 1 , Z 2 , and Z 3 be three graphs. Then,
δ Z 2 Z 2 + n 1 R e Z e 2 ( Z 2 ) + n 1 2 ( Z 2 + n 1 ) M 1 ( Z 2 ) + n 1 2 e 2 2 ( Z 2 + n 1 ) + δ Z 3 Z 3 + e 1 R e Z e 2 ( Z 3 ) + e 1 2 ( Z 3 + e 1 ) M 1 ( Z 3 ) + e 1 2 e 3 2 ( Z 3 + e 1 ) + n 1 n 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) Z 1 + Z 2 + n 1 + n 2 + e 1 n 3 ( δ Z 3 + e 1 ) ( n 3 + 2 ) Z 3 + e 1 + n 3 + 2 + 2 e 1 ( δ Z 1 + n 2 ) ( n 3 + 2 ) Z 1 + n 2 + n 3 + 2 R e Z e 2 ( Z 1 S ( Z 2 V Z 3 I ) ) Z 2 δ Z 2 + n 1 R e Z e 2 ( Z 2 ) + n 1 2 ( δ Z 2 + n 1 ) M 1 ( Z 2 ) + n 1 2 e 2 2 ( δ Z 2 + n 1 ) + Z 3 δ Z 3 + e 1 R e Z e 2 ( Z 3 ) + e 1 2 ( δ Z 3 + e 1 ) M 1 ( Z 3 ) + e 1 2 e 3 2 ( δ Z 3 + e 1 ) + n 1 n 2 ( Z 1 + n 2 ) ( Z 2 + n 1 ) δ Z 1 + δ Z 2 + n 1 + n 2 + e 1 n 3 ( Z 3 + e 1 ) ( n 3 + 2 ) δ Z 3 + e 1 + n 3 + 2 + 2 e 1 ( Z 1 + n 2 ) ( n 3 + 2 ) δ Z 1 + n 2 + n 3 + 2 .
hold with equalities if and only if Z 1 , Z 2 , and Z 3 are regular graphs.
Proof. 
By using Lemma 1 in Equation (8), we get the following
R e Z e 2 ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 + z 1 z 2 E ( Z 3 ) ( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( deg Z 1 ( z 1 ) + n 2 ) ( deg Z 2 ( z 2 ) + n 1 ) deg Z 1 ( z 1 ) + deg Z 2 ( z 2 ) + n 1 + n 2 + z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( deg Z 3 ( z 2 ) + e 1 ) ( n 3 + 2 ) deg Z 3 ( z 2 ) + e 1 + n 3 + 2 + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) ( deg Z 1 ( z 1 ) + n 2 ) ( n 3 + 2 ) deg Z 1 ( z 1 ) + n 2 + n 3 + 2 .
Now,
( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 = deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) + n 1 ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) ) + n 1 2 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1
By multiplying and dividing the first term of above expression by deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) , we get
( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 = deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) × deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 + n 1 ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) ) ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 + n 1 2 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1
By using Z deg Z ( z ) δ Z , we acquire following
( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) × Z 2 δ Z 2 + n 1 + n 1 ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) ) 2 ( δ Z 2 + n 1 ) + n 1 2 2 ( δ Z 2 + n 1 ) .
Similarly,
( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 Z 3 δ Z 3 + e 1 × deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + e 1 ( deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) ) 2 ( δ Z 2 + e 1 ) + e 1 2 2 ( δ Z 3 + e 1 ) .
By using Equations (21) and (22) in Equation (20), we obtain
R e Z e 2 ( Z 1 S ( Z 2 V Z 3 I ) ) z 1 z 2 E ( Z 2 ) ( Z 2 δ Z 2 + n 1 × deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + n 1 ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) ) 2 ( δ Z 2 + n 1 ) + n 1 2 2 ( δ Z 2 + n 1 ) ) + z 1 z 2 E ( Z 3 ) ( Z 3 δ Z 3 + e 1 × deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + e 1 ( deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) ) 2 ( δ Z 3 + e 1 ) + e 1 2 2 ( δ Z 3 + e 1 ) ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( Z 1 + n 2 ) ( Z 2 + n 1 ) δ Z 1 + δ Z 2 + n 1 + n 2 + z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( Z 3 + e 1 ) ( n 3 + 2 ) δ Z 3 + e 1 + n 3 + 2 + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) ( Z 1 + n 2 ) ( n 3 + 2 ) δ Z 1 + n 2 + n 3 + 2 = Z 2 δ Z 2 + n 1 R e Z e 2 ( Z 2 ) + n 1 2 ( δ Z 2 + n 1 ) M 1 ( Z 2 ) + n 1 2 e 2 2 ( δ Z 2 + n 1 ) + Z 3 δ Z 3 + e 1 R e Z e 2 ( Z 3 ) + e 1 2 ( δ Z 3 + e 1 ) M 1 ( Z 3 ) + e 1 2 e 3 2 ( δ Z 3 + e 1 ) + n 1 n 2 ( Z 1 + n 2 ) ( Z 2 + n 1 ) δ Z 1 + δ Z 2 + n 1 + n 2 + e 1 n 3 ( Z 3 + e 1 ) ( n 3 + 2 ) δ Z 3 + e 1 + n 3 + 2 + 2 e 1 ( Z 1 + n 2 ) ( n 3 + 2 ) δ Z 1 + n 2 + n 3 + 2 .
Similarly, we calculate
R e Z e 2 ( Z 1 S ( Z 2 V Z 3 I ) ) δ Z 2 Z 2 + n 1 R e Z e 2 ( Z 2 ) + n 1 2 ( Z 2 + n 1 ) M 1 ( Z 2 ) + n 1 2 e 2 2 ( Z 2 + n 1 ) + δ Z 3 Z 3 + e 1 R e Z e 2 ( Z 3 ) + e 1 2 ( Z 3 + e 1 ) M 1 ( Z 3 ) + e 1 2 e 3 2 ( Z 3 + e 1 ) + n 1 n 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) Z 1 + Z 2 + n 1 + n 2 + e 1 n 3 ( δ Z 3 + e 1 ) ( n 3 + 2 ) Z 3 + e 1 + n 3 + 2 + 2 e 1 ( δ Z 1 + n 2 ) ( n 3 + 2 ) Z 1 + n 2 + n 3 + 2 .
Additionally, the above equalities hold if and only if Z 1 , Z 2 , and Z 3 are regular graphs. This finishes the proof. □
Theorem 8.
Let Z 1 , Z 2 and Z 3 be three graphs. Then,
R e Z e 3 ( Z 1 S ( Z 2 V Z 3 I ) ) = R e Z e 3 ( Z 2 ) + R e Z e 3 ( Z 3 ) + n 1 HM 1 ( Z 2 ) + e 1 HM 1 ( Z 3 ) + 2 n 1 M 2 ( Z 2 ) + 2 e 1 M 2 ( Z 3 ) + ( 3 n 1 + 2 e 1 + n 1 n 2 ) M 1 ( Z 2 ) + ( 3 n 1 + e 1 ( n 3 + 2 ) ) M 1 ( Z 3 ) + ( n 3 + 2 ) F ( Z 1 ) + ( 2 e 2 + n 1 n 2 + ( n 3 + 2 ) ( 2 n 2 + n 3 + 2 ) ) M 1 ( Z 1 ) + 2 n 1 3 e 2 + 2 e 1 3 e 3 + ( 8 e 1 e 2 + n 1 2 n 2 2 ) ( n 1 + n 2 ) + 2 n 1 n 2 ( n 1 + n 2 ) ( e 1 + e 2 ) + 2 n 1 n 2 ( n 2 e 1 + n 1 e 2 ) + e 1 ( n 3 + 2 ) ( e 1 + n 3 + 2 ) ( 2 e 3 + n 3 e 1 ) + 2 e 1 2 e 3 ( n 3 + 2 ) + 2 n 2 e 1 ( n 2 + n 3 + 2 ) .
Proof. 
By using Lemma 1 in Equation (9), we get the following:
R e Z e 3 ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) ( deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) ) + 2 n 1 deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) + n 1 ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) ) 2 + 3 n 1 2 ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) ) + 2 n 1 3 ) + z 1 z 2 E ( Z 3 ) ( deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) ( deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) ) + 2 e 1 deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) + e 1 ( deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) ) 2 + 3 e 1 2 ( deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) ) + 2 e 1 3 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( deg Z 1 2 ( z 1 ) ( deg Z 2 ( z 2 ) + n 1 ) + deg Z 2 2 ( z 2 ) ( deg Z 1 ( z 1 ) + n 2 ) + 2 ( n 1 + n 2 ) deg Z 1 ( z 1 ) deg Z 2 ( z 2 ) + ( n 1 + n 2 ) ( n 1 deg Z 1 ( z 1 ) + n 2 deg Z 2 ( z 2 ) ) + n 1 n 2 ( deg Z 1 ( z 1 ) + deg Z 2 ( z 2 ) ) + n 1 n 2 ( n 1 + n 2 ) ) + ( n 3 + 2 ) z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( deg Z 3 2 ( z 2 ) + deg Z 3 ( z 2 ) ( n 3 + 2 e 1 + 2 ) + e 1 ( n 3 + e 1 + 2 ) ) + ( n 3 + 2 ) z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) ( deg Z 1 2 ( z 2 ) + deg Z 1 ( z 2 ) ( 2 n 2 + n 3 + 2 ) + ( n 2 + n 3 + 2 ) ) = R e Z e 3 ( Z 2 ) + 2 n 1 M 2 ( Z 2 ) + n 1 HM 1 ( Z 2 ) + 3 n 1 M 1 ( Z 2 ) + 2 n 1 3 e 2 + R e Z e 3 ( Z 3 ) + 2 e 1 M 2 ( Z 3 ) + e 1 HM 1 ( Z 3 ) + 3 n 1 M 1 ( Z 3 ) + 2 e 1 3 e 3 + ( 2 e 2 + n 1 n 2 ) M 1 ( Z 1 ) + ( 2 e 1 + n 1 n 2 ) M 1 ( Z 2 ) + 8 e 1 e 2 ( n 1 + n 2 ) + 2 n 1 n 2 ( n 1 + n 2 ) ( e 1 + e 2 ) + 2 n 1 n 2 ( n 2 e 1 + n 1 e 2 ) + n 1 2 n 2 2 ( n 1 + n 2 ) + ( n 3 + 2 ) ( e 1 M 1 ( Z 3 ) + 2 e 1 e 3 ( 2 e 1 + n 3 + 2 ) + n 3 e 1 2 ( e 1 + n 3 + 2 ) ) + ( n 3 + 2 ) ( F ( Z 1 ) + M 1 ( Z 1 ) ( 2 n 2 + n 3 + 2 ) + 2 n 2 e 1 ( n 2 + n 3 + 2 ) ) .
This completes the proof. □
In the following theorem, we present the exact value of first reformulated Zagreb index of subdivision vertex-edge join for three graphs.
Theorem 9.
Let Z 1 , Z 2 and Z 3 be three graphs. Then, we have
EM 1 ( Z 1 S ( Z 2 V Z 3 I ) ) = EM 1 ( Z 2 ) + EM 1 ( Z 3 ) + 5 n 1 M 1 ( Z 2 ) + 5 e 1 M 1 ( Z 3 ) + F ( Z 1 ) + ( 3 n 2 + 2 n 3 ) M 1 ( Z 1 ) + 4 n 1 e 2 ( n 1 2 ) + 4 e 1 e 3 ( e 1 2 ) + 8 e 1 e 3 + 4 ( n 1 + n 2 + 2 ) ( n 2 e 1 + n 1 e 2 ) + n 1 n 2 ( n 1 + n 2 + 2 ) 2 + e 1 n 3 ( e 1 + n 3 ) 2 + 4 e 1 e 3 ( e 1 + n 3 ) + 2 e 1 ( n 2 + n 3 ) 2 .
Proof. 
By using Lemma 1 in Equation (10), we get the following:
EM 1 ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) ( ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 ) 2 + 4 n 1 2 + 4 n 1 ( deg Z 2 ( z 1 ) + deg Z 2 ( z 1 ) ) 8 n 1 ) + z 1 z 2 E ( Z 3 ) ( ( deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) 2 ) 2 + 4 e 1 2 + 4 e 1 ( deg Z 3 ( z 1 ) + deg Z 3 ( z 1 ) ) 8 e 1 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( deg Z 1 2 ( z 1 ) + deg Z 2 2 ( z 2 ) + 2 deg Z 1 ( z 1 ) deg Z 2 ( z 2 ) + 2 ( n 1 + n 2 2 ) ( deg Z 1 ( z 1 ) + deg Z 2 ( z 2 ) ) + ( n 1 + n 2 2 ) 2 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( deg Z 3 2 ( z 2 ) + ( e 1 + n 3 ) 2 + 2 ( e 1 + n 3 ) deg Z 3 ( z 2 ) ) + z V ( Z 1 ) deg Z 1 ( z ) ( deg Z 1 2 ( z ) + ( n 2 + n 3 ) 2 + 2 ( n 2 + n 3 ) deg Z 1 ( z ) ) = EM 1 ( Z 2 ) + 4 e 2 n 1 2 + 4 n 1 M 1 ( Z 2 ) 8 n 1 e 2 + EM 1 ( Z 3 ) + 4 e 3 e 1 2 + 4 e 1 M 1 ( Z 3 ) 8 e 1 e 3 + n 2 M 1 ( Z 1 ) + n 1 M 1 ( Z 2 ) + 8 e 1 e 2 + 4 ( n 1 + n 2 + 2 ) ( n 2 e 1 + n 1 e 2 ) + n 1 n 2 ( n 1 + n 2 + 2 ) 2 + e 1 M 1 ( Z 3 ) + e 1 n 3 ( e 1 + n 3 ) 2 + 4 e 1 e 3 ( e 1 + n 3 ) + F ( Z 1 ) + 2 e 1 ( n 2 + n 3 ) 2 + 2 ( n 2 + n 3 ) M 1 ( Z 1 ) .
After some simplifications, we get the required result. This completes the proof. □
In the following theorem, we provide the lower and upper bounds of the Harmonic index of subdivision vertex-edge join for three graphs.
Theorem 10.
Let Z 1 , Z 2 and Z 3 be three graphs. Then,
δ Z 2 Z 2 + n 1 H ( Z 2 ) + δ Z 3 Z 3 + e 1 H ( Z 3 ) + 2 n 1 n 2 Z 1 + Z 2 + n 1 + n 2 + 2 e 1 n 3 Z 3 + e 1 + n 3 + 2 + 4 e 1 Z 1 + n 2 + n 3 + 2 H ( Z 1 S ( Z 2 V Z 3 I ) ) Z 2 δ Z 2 + n 1 H ( Z 2 ) + Z 3 δ Z 3 + e 1 H ( Z 3 ) + 2 n 1 n 2 δ Z 1 + δ Z 2 + n 1 + n 2 + 2 e 1 n 3 δ Z 3 + e 1 + n 3 + 2 + 4 e 1 δ Z 1 + n 2 + n 3 + 2 ,
hold with equalities if and only if Z 1 , Z 2 and Z 3 are regular graphs.
Proof. 
By using Lemma 1 in Equation (11), we get the following:
H ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) 2 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 + z 1 z 2 E ( Z 3 ) 2 deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 + z 1 V ( Z 1 ) z 2 V ( Z 2 ) 2 deg Z 1 ( z 1 ) + deg Z 2 ( z 2 ) + n 1 + n 2 + z 1 I ( Z 1 ) z 2 V ( Z 3 ) 2 deg Z 3 ( z 2 ) + e 1 + n 3 + 2 + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) 2 deg Z 1 ( z 1 ) + n 2 + n 3 + 2 H ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) 2 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) × deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 + z 1 z 2 E ( Z 3 ) 2 deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) × deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 + z 1 V ( Z 1 ) z 2 V ( Z 2 ) 2 deg Z 1 ( z 1 ) + deg Z 2 ( z 2 ) + n 1 + n 2 + z 1 E ( Z 1 ) z 2 V ( Z 3 ) 2 deg Z 3 ( z 2 ) + e 1 + n 3 + 2 + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) 2 deg Z 1 ( z 1 ) + n 2 + n 3 + 2 Z 2 δ Z 2 + n 1 H ( Z 2 ) + Z 3 δ Z 3 + e 1 H ( Z 3 ) + 2 n 1 n 2 δ Z 1 + δ Z 2 + n 1 + n 2 + 2 e 1 n 3 δ Z 3 + e 1 + n 3 + 2 + 4 e 1 δ Z 1 + n 2 + n 3 + 2 .
Similarly, we have
H ( Z 1 S ( Z 2 V Z 3 I ) ) δ Z 2 Z 2 + n 1 H ( Z 2 ) + δ Z 3 Z 3 + e 1 H ( Z 3 ) + 2 n 1 n 2 Z 1 + Z 2 + n 1 + n 2 + 2 e 1 n 3 Z 3 + e 1 + n 3 + 2 + 4 e 1 Z 1 + n 2 + n 3 + 2 .
Additionally, if Z 1 , Z 2 , and Z 3 are regular graphs, then the above equalities hold. □
In the next result, we give the lower and upper bounds of the ABC index of subdivision vertex-edge join for three graphs.
Theorem 11.
Let Z 1 , Z 2 and Z 3 be three graphs. Then,
δ Z 2 Z 2 + n 1 ABC ( Z 2 ) 2 n 1 e 2 Z 2 + n 1 + δ Z 3 Z 3 + e 1 ABC ( Z 3 ) 2 e 1 e 3 Z 3 + e 1 + n 1 n 2 δ Z 1 + δ Z 2 + n 1 + n 2 2 ( Z 1 + n 2 ) ( Z 2 + n 1 ) e 1 n 3 δ Z 3 + e 1 + n 3 ( Z 3 + e 1 ) ( n 3 + 2 ) + 2 e 1 δ Z 1 + n 2 + n 3 ( Z 1 + n 2 ) ( n 3 + 2 )
ABC ( Z 1 S ( Z 2 V Z 3 I ) ) Z 2 δ Z 2 + n 1 ABC ( Z 2 ) + Z 3 δ Z 3 + e 1 ABC ( Z 3 ) + 2 n 1 e 2 δ Z 2 + n 1 + 2 e 1 e 3 δ Z 3 + e 1 + n 1 n 2 Z 1 + Z 2 + n 1 + n 2 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) + e 1 n 3 Z 3 + e 1 + n 3 ( δ Z 3 + e 1 ) ( n 3 + 2 ) + 2 e 1 Z 1 + n 2 + n 3 ( δ Z 1 + n 2 ) ( n 3 + 2 ) .
hold with equalities if and only if Z 1 is a regular graph and Z 2 = Z 3 = P 2 .
Proof. 
By using Lemma 1 in Equation (12), we get the following:
ABC ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 2 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) + z 1 z 2 E ( Z 3 ) deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 2 ( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) deg Z 1 ( z 1 ) + deg Z 2 ( z 2 ) + n 1 + n 2 2 ( deg Z 1 ( z 1 ) + n 2 ) ( deg Z 2 ( z 2 ) + n 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) deg Z 3 ( z 2 ) + e 1 + n 3 + 2 2 ( deg Z 3 ( z 2 ) + e 1 ) ( n 3 + 2 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) deg Z 1 ( z 1 ) + n 2 + n 3 + 2 2 ( deg Z 1 ( z 1 ) + n 2 ) ( n 3 + 2 ) .
Now,
deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 2 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) = deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) × deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) + 2 n 1 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) Z 2 2 ( δ Z 2 + n 1 ) 2 × deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) + 2 n 1 ( δ Z 2 + n 1 ) 2 .
Since a + b a + b with equality if and only if a = 0 or b = 0 . Therefore,
deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 2 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) Z 2 δ Z 2 + n 1 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) + 2 n 1 δ Z 2 + n 1 .
Equality holds if and only if deg Z 2 ( z 1 ) = deg Z 2 ( z 2 ) = 1 . Similarly, we have
deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 2 ( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) Z 3 δ Z 3 + e 1 deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) 2 deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) + 2 e 1 δ Z 3 + e 1 .
Equality holds if and only if deg Z 3 ( z 1 ) = deg Z 3 ( z 2 ) = 1 . By the above calculations, we get
ABC ( Z 1 S ( Z 2 V Z 3 I ) ) z 1 z 2 E ( Z 2 ) Z 2 δ Z 2 + n 1 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) + 2 n 1 δ Z 2 + n 1 + z 1 z 2 E ( Z 3 ) Z 3 δ Z 3 + e 1 deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) 2 deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) + 2 e 1 δ Z 3 + e 1
+ z 1 V ( Z 1 ) z 2 V ( Z 2 ) Z 1 + Z 2 + n 1 + n 2 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) Z 3 + e 1 + n 3 ( δ Z 3 + e 1 ) ( n 3 + 2 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) Z 1 + n 2 + n 3 ( δ Z 1 + n 2 ) ( n 3 + 2 ) ABC ( Z 1 S ( Z 2 V Z 3 I ) ) = Z 2 δ Z 2 + n 1 ABC ( Z 2 ) + 2 n 1 e 2 δ Z 2 + n 1 + Z 3 δ Z 3 + e 1 ABC ( Z 3 ) + 2 e 1 e 3 δ Z 3 + e 1 + n 1 n 2 Z 1 + Z 2 + n 1 + n 2 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) + e 1 n 3 Z 3 + e 1 + n 3 ( δ Z 3 + e 1 ) ( n 3 + 2 ) + 2 e 1 Z 1 + n 2 + n 3 ( δ Z 1 + n 2 ) ( n 3 + 2 ) .
Now,
deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 2 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) δ Z 2 2 ( Z 2 + n 1 ) 2 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) + 2 n 1 ( Z 2 + n 1 ) 2 .
Since a + b | a b | with equality if and only if a = 0 or b = 0 ,
deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 2 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) δ Z 2 Z 2 + n 1 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) 2 n 1 Z 2 + n 1 .
Equality holds if and only if deg Z 2 ( z 1 ) = deg Z 2 ( z 2 ) = 1 . By a similar argument as those are given above, we get:
deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 2 ( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) δ Z 3 Z 3 + e 1 deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) 2 deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) 2 e 1 Z 3 + e 1 .
Equality holds if and only if deg Z 3 ( z 1 ) = deg Z 3 ( z 2 ) = 1 . By the above calculations, we get
ABC ( Z 1 S ( Z 2 V Z 3 I ) ) z 1 z 2 E ( Z 2 ) δ Z 2 Z 2 + n 1 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 deg Z 2 ( z 1 ) deg Z 2 ( z 2 ) 2 n 1 Z 2 + n 1 + z 1 z 2 E ( Z 3 ) δ Z 3 Z 3 + e 1 deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) 2 deg Z 3 ( z 1 ) deg Z 3 ( z 2 ) 2 e 1 Z 3 + e 1 + z 1 V ( Z 1 ) z 2 V ( Z 2 ) δ Z 1 + δ Z 2 + n 1 + n 2 2 ( Z 1 + n 2 ) ( Z 2 + n 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) δ Z 3 + e 1 + n 3 ( Z 3 + e 1 ) ( n 3 + 2 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) δ Z 1 + n 2 + n 3 ( Z 1 + n 2 ) ( n 3 + 2 ) = δ Z 2 Z 2 + n 1 ABC ( Z 2 ) 2 n 1 e 2 Z 2 + n 1 + δ Z 3 Z 3 + e 1 ABC ( Z 3 ) 2 e 1 e 3 Z 3 + e 1 + n 1 n 2 δ Z 1 + δ Z 2 + n 1 + n 2 2 ( Z 1 + n 2 ) ( Z 2 + n 1 ) + e 1 n 3 δ Z 3 + e 1 + n 3 ( Z 3 + e 1 ) ( n 3 + 2 ) + 2 e 1 δ Z 1 + n 2 + n 3 ( Z 1 + n 2 ) ( n 3 + 2 ) .
Additionally, if Z 1 is a regular graph and Z 2 = Z 3 = P 2 , then the above equalities hold. This completes the proof. □
In the following theorem, we give the lower and upper bounds of the GA index of subdivision vertex-edge join for three graphs.
Theorem 12.
Let Z 1 , Z 2 , and Z 3 be three graphs. Then,
e 2 ( δ Z 2 + n 1 ) Z 2 + n 1 + e 3 ( δ Z 3 + e 1 ) Z 3 + e 1 + 2 n 1 n 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) Z 1 + Z 2 + n 1 + n 2 + 2 e 1 n 3 ( δ Z 3 + e 1 ) ( n 3 + 2 ) Z 3 + e 1 + n 3 + 2 + 4 e 1 ( δ Z 3 + e 1 ) ( n 3 + 2 ) Z 3 + e 1 + n 3 + 2 GA ( Z 1 S ( Z 2 V Z 3 I ) ) e 2 ( Z 2 + n 1 ) δ Z 2 + n 1 + e 3 ( Z 3 + e 1 ) δ Z 3 + e 1 + 2 n 1 n 2 ( Z 1 + n 2 ) ( Z 2 + n 1 ) δ Z 1 + δ Z 2 + n 1 + n 2 + 2 e 1 n 3 ( Z 3 + e 1 ) ( n 3 + 2 ) δ Z 3 + e 1 + n 3 + 2 + 4 e 1 ( Z 1 + n 2 ) ( n 3 + 2 ) δ Z 1 + n 2 + n 3 + 2 .
hold with equalities if and only if Z 1 , Z 2 , and Z 3 are regular graphs.
Proof. 
By using Lemma 1 in Equation (13), we get the following:
GA ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) 2 ( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) + 2 n 1 + z 1 z 2 E ( Z 3 ) 2 ( deg Z 3 ( z 1 ) + e 1 ) ( deg Z 3 ( z 2 ) + e 1 ) deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) + 2 e 1 + z 1 V ( Z 1 ) z 2 V ( Z 2 ) 2 ( deg Z 1 ( z 1 ) + n 2 ) ( deg Z 2 ( z 2 ) + n 1 ) deg Z 1 ( z 1 ) + deg Z 2 ( z 2 ) + n 1 + n 2 + z 1 I ( Z 1 ) z 2 V ( Z 3 ) 2 ( deg Z 3 ( z 2 ) + e 1 ) ( n 3 + 2 ) deg Z 3 ( z 2 ) + e 1 + n 3 + 2 + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) 2 ( deg Z 1 ( z 1 ) + n 2 ) ( n 3 + 2 ) deg Z 1 ( z 1 ) + n 2 + n 3 + 2 e 2 ( Z 2 + n 1 ) δ Z 2 + n 1 + e 3 ( Z 3 + e 1 ) δ Z 3 + e 1 + 2 n 1 n 2 ( Z 1 + n 2 ) ( Z 2 + n 1 ) δ Z 1 + δ Z 2 + n 1 + n 2 + 2 e 1 n 3 ( Z 3 + e 1 ) ( n 3 + 2 ) δ Z 3 + e 1 + n 3 + 2 + 4 e 1 ( Z 1 + n 2 ) ( n 3 + 2 ) δ Z 1 + n 2 + n 3 + 2 .
Similarly,
GA ( Z 1 S ( Z 2 V Z 3 I ) ) e 2 ( δ Z 2 + n 1 ) Z 2 + n 1 + e 3 ( δ Z 3 + e 1 ) Z 3 + e 1 + 2 n 1 n 2 ( δ Z 1 + n 2 ) ( δ Z 2 + n 1 ) Z 1 + Z 2 + n 1 + n 2 + 2 e 1 n 3 ( δ Z 3 + e 1 ) ( n 3 + 2 ) Z 3 + e 1 + n 3 + 2 + 4 e 1 ( δ Z 3 + e 1 ) ( n 3 + 2 ) Z 3 + e 1 + n 3 + 2 .
Additionally, if Z 1 , Z 2 , and Z 3 are regular graphs, then the above equalities hold. This completes the proof. □
Finally, we set up the lower and upper bounds of the reduced reciprocal Randić index of subdivision vertex-edge join for three graphs.
Theorem 13.
Let Z 1 , Z 2 , and Z 3 be three graphs. Then,
RRR ( Z 2 ) n 1 e 2 2 n 1 ( δ Z 2 1 ) + RRR ( Z 3 ) e 1 e 3 2 e 1 ( δ Z 3 1 ) + e 1 n 3 ( δ Z 3 + e 1 1 ) ( n 3 + 1 ) + n 1 n 2 ( δ Z 1 + n 2 1 ) ( δ Z 2 + n 1 1 ) + 2 e 1 ( δ Z 1 + n 2 1 ) ( n 3 + 1 ) RRR ( Z 1 S ( Z 2 V Z 3 I ) ) RRR ( Z 2 ) + n 1 e 2 + 2 n 1 ( Z 2 1 ) + RRR ( Z 3 ) + e 1 e 3 + 2 e 1 ( Z 3 1 ) + n 1 n 2 ( Z 1 + n 2 1 ) ( Z 2 + n 1 1 ) + e 1 n 3 ( Z 3 + e 1 1 ) ( n 3 + 1 ) + 2 e 1 ( Z 1 + n 2 1 ) ( n 3 + 1 ) .
hold with equalities if and only if Z 1 is a regular graph and Z 2 = Z 3 = P 2 .
Proof. 
By using Lemma 1 in Equation (14), we get the following:
RRR ( Z 1 S ( Z 2 V Z 3 I ) ) = z 1 z 2 E ( Z 2 ) ( deg Z 2 ( z 1 ) + n 1 1 ) ( deg Z 2 ( z 2 ) + n 1 1 ) + z 1 z 2 E ( Z 3 ) ( deg Z 3 ( z 1 ) + e 1 1 ) ( deg Z 3 ( z 2 ) + e 1 1 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( deg Z 1 ( z 1 ) + n 2 1 ) ( deg Z 2 ( z 2 ) + n 1 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( deg Z 3 ( z 2 ) + e 1 1 ) ( n 3 + 2 1 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) ( deg Z 1 ( z 1 ) + n 2 1 ) ( n 3 + 2 1 ) .
However, a + b a + b , with equality if and only if a = 0 or b = 0 . Therefore,
( deg Z 2 ( z 1 ) + n 1 1 ) ( deg Z 2 ( z 2 ) + n 1 1 ) ( deg Z 2 ( z 1 ) 1 ) ( deg Z 2 ( z 2 ) 1 ) + n 1 + n 1 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 .
Equality holds if and only if deg Z 2 ( z 1 ) = deg Z 2 ( z 2 ) = 1 . Similarly,
( deg Z 3 ( z 1 ) + e 1 1 ) ( deg Z 3 ( z 2 ) + e 1 1 ) ( deg Z 3 ( z 1 ) 1 ) ( deg Z 3 ( z 2 ) 1 ) + e 1 + e 1 deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) 2 .
Equality holds if and only if deg Z 3 ( z 1 ) = deg Z 3 ( z 2 ) = 1 .
RRR ( Z 1 S ( Z 2 V Z 3 I ) ) z 1 z 2 E ( Z 2 ) ( ( deg Z 2 ( z 1 ) 1 ) ( deg Z 2 ( z 2 ) 1 ) + n 1 + n 1 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 ) + z 1 z 2 E ( Z 3 ) ( ( deg Z 3 ( z 1 ) 1 ) ( deg Z 3 ( z 2 ) 1 ) + e 1 + e 1 deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) 2 ) + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( Z 1 + n 2 1 ) ( Z 2 + n 1 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( Z 3 + e 1 1 ) ( n 3 + 1 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) ( Z 1 + n 2 1 ) ( n 3 + 1 ) RRR ( Z 2 ) + n 1 e 2 + 2 n 1 ( Z 2 1 ) + RRR ( Z 3 ) + e 1 e 3 + 2 e 1 ( Z 3 1 ) + n 1 n 2 ( Z 1 + n 2 1 ) ( Z 2 + n 1 1 ) + e 1 n 3 ( Z 3 + e 1 1 ) ( n 3 + 1 ) + 2 e 1 ( Z 1 + n 2 1 ) ( n 3 + 1 ) .
However, a + b | a b | , with equality if and only if a = 0 or b = 0 . Therefore,
( deg Z 2 ( z 1 ) + n 1 ) ( deg Z 2 ( z 2 ) + n 1 ) | ( deg Z 2 ( z 1 ) 1 ) ( deg Z 2 ( z 2 ) 1 ) n 1 n 1 ( deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 ) | .
Equality holds if and only if deg Z 2 ( z 1 ) = deg Z 2 ( z 2 ) = 1 . By a similar argument as those are given above, we get:
( deg Z 3 ( z 1 ) + n 1 ) ( deg Z 3 ( z 2 ) + e 1 ) | ( deg Z 3 ( z 1 ) 1 ) ( deg Z 3 ( z 2 ) 1 ) e 1 e 1 ( deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) 2 ) | .
Equality holds if and only if deg Z 3 ( z 1 ) = deg Z 3 ( z 2 ) = 1 . By using the above calculation, we obtain
RRR ( Z 1 S ( Z 2 V Z 3 I ) ) z 1 z 2 E ( Z 2 ) | ( deg Z 2 ( z 1 ) 1 ) ( deg Z 2 ( z 2 ) 1 ) n 1 n 1 deg Z 2 ( z 1 ) + deg Z 2 ( z 2 ) 2 | + z 1 z 2 E ( Z 3 ) | ( deg Z 3 ( z 1 ) 1 ) ( deg Z 3 ( z 2 ) 1 ) e 1 e 1 deg Z 3 ( z 1 ) + deg Z 3 ( z 2 ) 2 | + z 1 V ( Z 1 ) z 2 V ( Z 2 ) ( δ Z 1 + n 2 1 ) ( δ Z 2 + n 1 1 ) + z 1 I ( Z 1 ) z 2 V ( Z 3 ) ( δ Z 3 + e 1 1 ) ( n 3 + 1 ) + z 1 z 2 E ( S ( Z 1 ) ) , z 1 V ( Z 1 ) , z 2 I ( Z 1 ) ( δ Z 1 + n 2 1 ) ( n 3 + 1 ) = RRR ( Z 2 ) n 1 e 2 2 n 1 ( δ Z 2 1 ) + RRR ( Z 3 ) e 1 e 3 2 e 1 ( δ Z 3 1 ) + n 1 n 2 ( δ Z 1 + n 2 1 ) ( δ Z 2 + n 1 1 ) + e 1 n 3 ( δ Z 3 + e 1 1 ) ( n 3 + 1 ) + 2 e 1 ( δ Z 1 + n 2 1 ) ( n 3 + 1 ) .
Furthermore, if Z 1 is a regular graph and Z 2 = Z 3 = P 2 , then the above equalities hold. This finishes the proof. □

4. Conclusions

In this article, we compute additive degree-based topological indices for new graph operation subdivision vertex-edge join of three graphs. By using these graph operation, one can construct new (chemical) graphs from existing graphs. Therefore, it is important to know which physico-chemical properties are carried from original graphs to the newly constructed graph via this new operation.
Recently, the Zagreb indices and their variants have been used for studying the complexity of molecular graphs while overall Zagreb indices have shown a potential applicability for deriving multilinear regression models. Zagreb indices have also been used by various researchers in their QSPR and QSAR studies. The first and second Zagreb indices are useful for the computation of the total π -electron energy of molecules. The expression for Zagreb type indices for subdivision vertex-edge join will be useful in study of QSPR and QSAR analysis of new compound formed by this operations.
The Randic index is a topological descriptor that correlates with many chemical characteristics of molecules such as boiling point. The expression obtained for subdivision vertex-edge join of three graphs would be useful and applicable for correlating many chemical properties of new molecular compounds.
The atom-bond connectivity (ABC) index exhibits a very good correlation for computing the strain energy of molecular graphs. Hence, the results obtained for ABC index can be used for correlation of computing the strain energy of new molecules formed by this new introduced operations. Sometimes, the GA index has as much predictive power as that of the Randic index, so the GA index is more useful than the Randic index in some cases as it has more predictive power for certain chemical compounds.

Author Contributions

Conceptualization, J.L.G.G. and M.I.; methodology, S.A. and M.K.S.; software, M.K.S.; validation, J.L.G.G., M.I., S.A.; formal analysis, S.A. and M.K.S.; investigation, S.A.; resources, M.I.; data collection, M.K.S. and S.A.; writing—original draft preparation, M.I. and S.A.; writing—review and editing, M.K.S.; visualization, M.I. and S.A.; supervision, M.I.; project administration, M.I.; funding acquisition, J.L.G.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the UPAR Grant of United Arab Emirates University (UAEU) via Grant Nos. G00002590 and G00003271.

Acknowledgments

The authors would like to thanks the two anonymous reviewers for their very constructive comments that helped us to enhance the quality of this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals, Total π electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
  2. Rücker, G.; Rücker, C. On topological indices, boiling points, and cycloalkanes. J. Chem. Inf. Comp. Sci. 1999, 39, 788–802. [Google Scholar]
  3. Aledo, J.A.; Diaz, L.G.; Martinez, S.; Valverde, J.C. Predecessors and gardens of Eden in sequential dynamical systems over directed graphs. Appl. Math. Nonlinear Sci. 2018, 3, 593–602. [Google Scholar] [CrossRef] [Green Version]
  4. Shang, Y. Perturbation results for the Estrada index in weighted networks. J. Phys. A Math. Theor. 2011, 44, 88–98. [Google Scholar] [CrossRef]
  5. Akhter, S.; Imran, M. The sharp bounds on general sum-connectivity index of four operations on graphs. J. Inequal. Appl. 2016, 2016, 241–251. [Google Scholar] [CrossRef] [Green Version]
  6. Akhter, S.; Imran, M. Computing the forgotten topological index of four operations on graphs. AKCE Int. J. Graphs Comb. 2017, 14, 70–79. [Google Scholar] [CrossRef]
  7. Akhter, S.; Imran, M.; Gao, W.; Farahani, R. On topological indices of honeycomb networks and graphene networks. Hac. J. Math. Stat. 2018, 47, 19–35. [Google Scholar] [CrossRef] [Green Version]
  8. Akhter, S.; Imran, M.; Raza, Z. Bounds for the general sum-connectivity index of composite graphs. J. Inequal. Appl. 2017, 2017, 70–81. [Google Scholar] [CrossRef] [PubMed]
  9. Abbas, T.; Khalid, W. Multiplicative topological descriptors of Silicon carbide. Appl. Math. Nonlinear Sci. 2019, 4, 181–190. [Google Scholar]
  10. Berhe, M.; Wang, C. Computation of certain topological coindices of graphene sheet and C4C8 (S) nanotubes and nanotorus. Appl. Math. Nonlinear Sci. 2019, 4, 455–468. [Google Scholar] [CrossRef] [Green Version]
  11. Gao, W.; Aamir, M.; Iqbal, Z.; Ishaq, M.; Aslam, A. On irregularity measures of some dendrimers structures. Mathematics 2019, 7, 271. [Google Scholar] [CrossRef] [Green Version]
  12. Gao, W.; Iqbal, Z.; Ishaq, M.; Aslam, A.; Aamir, M.; Binyamin, M.A. Bounds on topological descriptors of the corona product of f-sum of connected graphs. IEEE Access 2019, 7, 26788–26796. [Google Scholar] [CrossRef]
  13. Gao, W.; Iqbal, Z.; Ishaq, M.; Aslam, A.; Sarfraz, R. Topological aspects of dendrimers via distance-based descriptors. IEEE Access 2019, 7, 35619–35630. [Google Scholar] [CrossRef]
  14. Goyal, S.; Garg, P.; Mishra, V.N. New composition of graphs and their Wiener indices. Appl. Math. Nonlinear Sci. 2019, 4, 175–180. [Google Scholar] [CrossRef] [Green Version]
  15. Gutman, I. Degree-based topological indices. Croat. Chem. Acta 2013, 86, 351–361. [Google Scholar] [CrossRef]
  16. Hayat, S.; Imran, M. Computation of topological indices of certain networks. Appl. Math. Comput. 2014, 240, 213–228. [Google Scholar] [CrossRef]
  17. Imran, S.; Siddiqui, M.K.; Imran, M.; Nadeem, M.F. Computing topological indices and polynomials for line graphs. Mathematics 2018, 6, 137. [Google Scholar] [CrossRef] [Green Version]
  18. Imran, M.; Siddiqui, M.K.; Abunamous, A.A.E.; Adi, D.; Rafique, S.H.; Baig, A.Q. Eccentricity based topological indices of an oxide network. Mathematics 2018, 6, 126. [Google Scholar] [CrossRef] [Green Version]
  19. Imran, M.; Akhter, S. Degree-based topological indices of double graphs and strong double graphs. Discret. Math. Algorithm. Appl. 2017, 9, 1750066. [Google Scholar] [CrossRef]
  20. Iqbal, Z.; Ishaq, M.; Aslam, A.; Gao, W. On eccentricity-based topological descriptors of water-soluble dendrimers. Z. Naturforsch 2018, 74, 25–33. [Google Scholar] [CrossRef]
  21. Iqbal, Z.; Aamir, M.; Ishaq, M.; Shabri, A. On theoretical study of Zagreb indices and Zagreb polynomials of water-soluble perylenediimide-cored dendrimers. J. Inform. Math. Sci. 2018, 10, 647–657. [Google Scholar]
  22. Knor, M.; Škrekovski, R.; Tepeh, A. Convexity result and trees with large Balaban index. Appl. Math. Nonlinear Sci. 2018, 3, 433–446. [Google Scholar] [CrossRef] [Green Version]
  23. Liu, J.-B.; Ali, B.; Malik, M.A.; Siddiqui, H.M.A.; Imran, M. Reformulated Zagreb indices of some derived graphs. Mathematics 2019, 7, 366. [Google Scholar] [CrossRef] [Green Version]
  24. Shirakol, S.; Kalyanshetti, M.; Hosamani, S.M. QSPR analysis of certain distance based topological indices. Appl. Math. Nonlinear Sci. 2019, 4, 371–386. [Google Scholar] [CrossRef] [Green Version]
  25. Quraish, M. Some invariants of flower graph. Appl. Math. Nonlinear Sci. 2018, 3, 427–432. [Google Scholar]
  26. Ashrafi, A.R.; Doslić, T.; Hamzeh, A. The Zagreb coindices of graph operations. Discret. Appl. Math. 2010, 158, 1571–1578. [Google Scholar] [CrossRef] [Green Version]
  27. Azari, M.; Iranmanesh, A. Computing the eccentric-distance sum for graph operations. Discret. Appl. Math. 2013, 161, 2827–2840. [Google Scholar] [CrossRef]
  28. Basavanagoud, B.; Gao, W.; Patil, S.; Desai, V.R.; Mirajkar, K.G.; Pooja, B. Computing first Zagreb index and F-index of new C-products of graphs. Appl. Math. Nonlinear Sci. 2017, 2, 285–298. [Google Scholar] [CrossRef] [Green Version]
  29. De, N.; Nayeem, S.M.A.; Pal, A. The F-coindex of some graph operations. SpringerPlus 2016, 5, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  30. Khalifeha, M.H.; Yousefi-Azaria, H.; Ashrafi, A.R. The first and second Zagreb indices of some graph operations. Discret. Appl. Math. 2009, 157, 804–811. [Google Scholar] [CrossRef] [Green Version]
  31. Hosamani, S.M.; Awati, V.B.; Honmore, R.M. On graphs with equal dominating and c-dominating energy. Appl. Math. Nonlinear Sci. 2019, 4, 503–512. [Google Scholar] [CrossRef] [Green Version]
  32. Liu, D.; Wang, C.; Wang, S. Hamilton-connectivity of interconnection networks modeled by a product of graphs. Appl. Math. Nonlinear Sci. 2018, 3, 419–426. [Google Scholar] [CrossRef] [Green Version]
  33. Wen, F.; Zhang, Y.; Li, M. Spectra of subdivision vertex-edge join of three graphs. Mathematics 2019, 7, 171. [Google Scholar] [CrossRef] [Green Version]
  34. Indulal, G. Spectrum of two new joins of graphs and infinite families of integral graphs. Kragujevac J. Math. 2012, 36, 133–139. [Google Scholar]
  35. Albertson, M.O. The Irregularity of a graph. Ars Comb. 1997, 46, 219–225. [Google Scholar]
  36. Furtula, A.; Gutman, I. A forgotten topological index. J. Math. Chem. 2015, 53, 1184–1190. [Google Scholar] [CrossRef]
  37. Shirdel, G.H.; Pour, H.R.; Sayadi, A.M. The hyper-Zagreb index of graph operations. Iran. J. Math. Chem. 2013, 4, 213–220. [Google Scholar]
  38. Ediz, S. On the reduced first Zagreb index of graphs. Pac. J. Appl. Math. 2016, 8, 99–102. [Google Scholar]
  39. Furtula, B.; Gutman, I.; Ediz, S. On difference of Zagreb indices. Discret. Appl. Math. 2014, 178, 83–88. [Google Scholar] [CrossRef]
  40. Todeschini, R.; Ballabio, D.; Consonni, V. Novel molecular descriptors based on functions of new vertex degrees. In Novel Molecular Structure Descriptors-Theory and Applications I; Gutman, I., Furtula, B., Eds.; University Kragujeva: Kragujevac, Serbia, 2010; pp. 73–100. [Google Scholar]
  41. Todeschini, R.; Consonni, V. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem. 2010, 64, 359–372. [Google Scholar]
  42. Ranjini, P.S.; Lokesha, V.; Usha, A. Relation between phenylene and hexagonal squeeze using harmonic index. Int. J. Graph Theory 2013, 1, 116–121. [Google Scholar]
  43. Usha, A.; Ranjini, P.S.; Lokesha, V. Zagreb co-indices, augmented Zagreb index, redefined Zagreb indices and their polynomials for phenylene and hexagonal squeeze. In Proceedings of the International Congress in Honour of Dr. Ravi. P. Agarwal, Bursa, Turkey, 23–26 June 2014; pp. 23–26. [Google Scholar]
  44. Milićević, A.; Nikolić, S.; Trinajstić, N. On reformulated Zagreb indices. Mol. Divers. 2004, 8, 393–399. [Google Scholar] [CrossRef] [PubMed]
  45. Fajtlowicz, S. On conjectures of Graffiti-II. Congr. Numer. 1987, 60, 187–197. [Google Scholar]
  46. Estrada, E. Atom-bond connectivity and the energetic of branched alkanes. Chem. Phys. Lett. 2008, 463, 422–425. [Google Scholar] [CrossRef]
  47. Vukičević, D.; Furtula, B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 2009, 46, 1369–1376. [Google Scholar] [CrossRef]
  48. Gutman, I.; Furtula, B.; Elphick, C. Three new/old vertex-degree-based topological indices. MATCH Commun. Math. Comput. Chem. 2014, 72, 617–632. [Google Scholar]
  49. Gao, W.; Siddiqui, M.K.; Naeem, M.; Rehman, N.A. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures. Molecules 2017, 22, 1496. [Google Scholar] [CrossRef] [Green Version]
  50. Shao, Z.; Wu, P.; Zhang, X.; Dimitrov, D.; Liu, J. On the maximum ABC index of graphs with prescribed size and without pendent vertices. IEEE Access 2018, 6, 27604–27616. [Google Scholar] [CrossRef]
  51. Imran, M.; Siddiqui, M.K.; Naeem, M.; Iqbal, M.A. On topological properties of symmetric chemical structures. Symmetry 2018, 10, 173. [Google Scholar] [CrossRef]
  52. Gao, W.; Siddiqui, M.K.; Imran, M.; Jamil, M.K.; Farahani, M.R. Forgotten topological index of chemical structure in drugs. Saudi Pharm. J. 2016, 24, 258–267. [Google Scholar] [CrossRef] [Green Version]
  53. Das, K.C.; Yurttas, A.; Togan, M.; Cevik, A.S.; Cangul, I.N. The multiplicative Zagreb indices of graph operations. J. Inequal. Appl. 2013, 90, 1–14. [Google Scholar] [CrossRef] [Green Version]
Figure 1. P 4 ˙ C 3 , P 4 ̲ K 4 and P 4 S ( C 3 V K 4 I ) .
Figure 1. P 4 ˙ C 3 , P 4 ̲ K 4 and P 4 S ( C 3 V K 4 I ) .
Symmetry 12 01026 g001

Share and Cite

MDPI and ACS Style

Guirao, J.L.G.; Imran, M.; Siddiqui, M.K.; Akhter, S. On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs. Symmetry 2020, 12, 1026. https://doi.org/10.3390/sym12061026

AMA Style

Guirao JLG, Imran M, Siddiqui MK, Akhter S. On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs. Symmetry. 2020; 12(6):1026. https://doi.org/10.3390/sym12061026

Chicago/Turabian Style

Guirao, Juan L. G., Muhammad Imran, Muhammad Kamran Siddiqui, and Shehnaz Akhter. 2020. "On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs" Symmetry 12, no. 6: 1026. https://doi.org/10.3390/sym12061026

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop