# Switching Perfect Control Algorithm

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Description

## 3. Perfect Control

**Remark**

**1.**

## 4. Nonsquare Matrix Inverses

**Remark**

**2.**

## 5. Switching Perfect Control

**Remark**

**3.**

## 6. Simulation Examples

**Example**

**1.**

**B**= $\left[\begin{array}{cc}1.00& 0.50\\ -0.30& 0.80\end{array}\right]$,

**C**= $\left[\begin{array}{cc}0.60& -0.90\end{array}\right]$$,and\text{}{\mathbf{x}}_{0}^{T}=\left[\begin{array}{cc}1& 2\end{array}\right].$ With the application of the unique right T-inverse, we immediately obtain the state-feedback matrix equal to:

**Example**

**2.**

## 7. Summary and Future Work

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

## References

- Xiao, Z.; Zhao, J.; Liu, T.; Geng, L.; Zhang, F.; Tong, J. On the Energy Efficiency of Massive MIMO Systems With Low-Resolution ADCs and Lattice Reduction Aided Detectors. Symmetry
**2020**, 12, 406. [Google Scholar] [CrossRef][Green Version] - Kuzmych, O.; Aitouche, A.; Hajjaji, A.E.; Telmoudi, A.J. Effective Lyapunov level set for nonlinear optimal control. Application to turbocharged diesel engine model. In Proceedings of the 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain, 5–7 April 2017; pp. 42–48. [Google Scholar] [CrossRef]
- Lesniewski, P.; Bartoszewicz, A. LQ Optimal Control of Periodic Review Perishable Inventories with Transportation Losses. In Advances in Systems Science; Swiątek, J., Grzech, A., Swiątek, P., Tomczak, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 45–55. [Google Scholar] [CrossRef]
- Petre, E.; Selişteanu, D.; Sendrescu, D.; Ionete, C. Neural networks-based adaptive control for a class of nonlinear bioprocesses. Neural Comput. Appl.
**2009**, 19, 169–178. [Google Scholar] [CrossRef] - Burns, C.R.; Wang, R.F.; Stipanović, D.M. Study of the Impact of Delay on Human Remote Navigators with Application to Receding Horizon Control. Paladyn J. Behav. Robot.
**2012**, 3, 63–74. [Google Scholar] [CrossRef][Green Version] - Haidegger, T.; Kovács, L.; Precup, R.E.; Preitl, S.; Benyó, B.; Benyó, Z. Cascade Control for Telerobotic Systems Serving Space Medicine. IFAC Proc. Vol.
**2011**, 44, 3759–3764. [Google Scholar] [CrossRef][Green Version] - Bryson, A.E. Applied Optimal Control: Optimization, Estimation and Control; Routledge: Abingdon, UK, 2018. [Google Scholar]
- Hunek, W.P. Towards a General Theory of Control Zeros for LTI MIMO Systems; Opole University of Technology Press: Opole, Poland, 2011. [Google Scholar]
- Hunek, W.P.; Krok, M. Towards a new minimum-energy criterion for nonsquare LTI state-space perfect control systems. In Proceedings of the IEEE 5th International Conference on Control, Decision and Information Technologies (CoDIT), Thessaloniki, Greece, 10–13 April 2018; pp. 122–127. [Google Scholar] [CrossRef]
- Hunek, W.P.; Krok, M. A study on a new criterion for minimum-energy perfect control in the state-space framework. Proc. Inst. Mech. Eng. Part J. Syst. Control. Eng.
**2019**, 233, 779–787. [Google Scholar] [CrossRef] - Petersen, K.B.; Pedersen, M.S. The Matrix Cookbook; Technical University of Denmark: Copenhagen, Denmark, 2012. [Google Scholar]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses, Theory and Applications, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Noueili, L.; Chagra, W.; Ksouri, M. New Iterative Learning Control Algorithm Using Learning Gain Based on σ Inversion for Nonsquare Multi-Input Multi-Output Systems. Model. Simul. Eng.
**2018**, 4, 1–9. [Google Scholar] [CrossRef][Green Version] - Fan, W.; Lu, H.; Zhang, X.; Zhang, Y.; Zeng, R.; Liu, Q. Two-Degree-Of-Freedom Dynamic Model-Based Terminal Sliding Mode Control with Observer for Dual-Driving Feed Stage. Symmetry
**2018**, 10, 488. [Google Scholar] [CrossRef][Green Version] - Hunek, W.; Krok, M. Parameter matrix σ-inverse in design of structurally stable pole-free perfect control for second-order state-space systems. In Proceedings of the 24th International Conference on Automation and Computing (IEEE ICAC’18), Newcastle upon Tyne, UK, 6–7 September 2018. [Google Scholar] [CrossRef]
- Hunek, W.P.; Wach, Ł. A New Stability Theory for Grünwald–Letnikov Inverse Model Control in the Multivariable LTI Fractional-Order Framework. Symmetry
**2019**, 11, 1322. [Google Scholar] [CrossRef][Green Version] - Edwards, C.; Shtessel, Y.B. Adaptive continuous higher order sliding mode control. Automatica
**2016**, 65, 183–190. [Google Scholar] [CrossRef][Green Version] - Qian, D.; Zhang, G.; Wang, J.; Wu, Z. Second-Order Sliding Mode Formation Control of Multiple Robots by Extreme Learning Machine. Symmetry
**2019**, 11, 1444. [Google Scholar] [CrossRef][Green Version] - Bartoszewicz, A.; Maciejewski, M. Sliding mode control of periodic review perishable inventories with multiple suppliers and transportation losses. Bull. Pol. Acad. Sci. Tech. Sci.
**2013**, 61, 885–892. [Google Scholar] [CrossRef][Green Version] - Hunek, W.P. Pole-free vs. stable-pole designs of minimum variance control for nonsquare LTI MIMO systems. Bull. Pol. Acad. Sci. Tech. Sci.
**2011**, 59, 201–211. [Google Scholar] [CrossRef][Green Version] - Orlowski, P. Applications of SVD-DFT decomposition. Part 2: Feedback stability analysis for time-varying systems. Meas. Autom. Monit.
**2007**, 53, 44–47. [Google Scholar] - Gutierrez de Anda, M.A.; Sarmiento Reyes, A.; Hernandez Martinez, L.; Piskorowski, J.; Kaszynski, R. The Reduction of the Duration of the Transient Response in a Class of Continuous-Time LTV Filters. IEEE Trans. Circuits Syst. Ii: Express Briefs
**2009**, 56, 102–106. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Krok, M.; Hunek, W.P.; Feliks, T.
Switching Perfect Control Algorithm. *Symmetry* **2020**, *12*, 816.
https://doi.org/10.3390/sym12050816

**AMA Style**

Krok M, Hunek WP, Feliks T.
Switching Perfect Control Algorithm. *Symmetry*. 2020; 12(5):816.
https://doi.org/10.3390/sym12050816

**Chicago/Turabian Style**

Krok, Marek, Wojciech P. Hunek, and Tomasz Feliks.
2020. "Switching Perfect Control Algorithm" *Symmetry* 12, no. 5: 816.
https://doi.org/10.3390/sym12050816