
symmetryS S

Article

Second-Order Sliding Mode Formation Control of
Multiple Robots by Extreme Learning Machine

Dianwei Qian 1, Guigang Zhang 2, Jian Wang 2 and Zhimin Wu 3,*
1 School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China;

dianwei.qian@gmail.com
2 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;

guigang.zhang@ia.ac.cn (G.Z.); jian.wang@ia.ac.cn (J.W.)
3 Institute of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
* Correspondence: zhimin_wu@szpt.edu.cn; Tel.: +86-755-26019709

Received: 7 October 2019; Accepted: 21 November 2019; Published: 23 November 2019
����������
�������

Abstract: This paper addresses a second-order sliding mode control method for the formation
problem of multirobot systems. The formation patterns are usually symmetrical. This sliding mode
control is based on the super-twisting law. In many real-world applications, the robots suffer from
a great diversity of uncertainties and disturbances that greatly challenge super-twisting sliding
mode formation maneuvers. In particular, such a challenge has adverse effects on the formation
performance when the uncertainties and disturbances have an unknown bound. This paper focuses
on this issue and utilizes the technique of an extreme learning machine to meet this challenge. Within
the leader–follower framework, this paper investigates the integration of the super-twisting sliding
mode control method and the extreme learning machine. The output weights of this extreme learning
machine are adaptively adjusted so that this integrated formation design has guaranteed closed-loop
stability in the sense of Lyaponov. In the end, some simulations are implemented via a multirobot
platform, illustrating the superiority and effectiveness of the integrated formation design in spite of
uncertainties and disturbances.

Keywords: multirobot systems; formation maneuvers; super-twisting sliding mode control;
uncertainties; extreme learning machine

1. Introduction

With the emergence of artificial intelligence technologies, multirobot systems have drawn great
attention [1]. Such systems not only strengthen and refine the ability of individual robots, but they also
provide a platform to display collective behaviors [2,3]. Compared with a complex robot, multirobot
systems rooted in the real world have broad applications, for example, collaborative projects, military
reconnaissance, and search and rescue [4,5].

In many industrial, agricultural, and maritime situations, multiple robots have to form up into some
given patterns in order to fulfill a task [6]. In order to manage and coordinate the robots, the formation
problem must be addressed. This problem originated in biological phenomena in nature, such as
schools of fish swimming or a team of ants moving [7,8]. Concerning these biological systems, their
formation behaviors exhibit high robustness and hierarchy in that a certain formation mechanism
inherently exists. Similarly, the multiple robots call for such a mechanism. Some typical mechanisms
have been developed for the robots, that is, the behavior-based algorithm, the virtual structure technique,
the leader–follower framework, and the artificial potential field approach [9]. From the aspect of control
design, the leader–follower framework has blossomed notably, although the mechanism is criticized
for its drawback of a “single point of failure” [10]. This paper does not focus on how to design a novel
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mechanism, but it provides a formation control design. Consequently, the leader–follower framework
was directly adopted because the mechanism is of merit for small- and medium-scale formation problems.

From the viewpoint of reality, the individual robots of a multirobot system are inevitably subject
to uncertainties and disturbances which will make the formation dynamics of this multirobot system
uncertain [11,12]. Affected by these adverse factors, the formation control problem of multiple robots
becomes challenging. Many control strategies have been reported, i.e., iterative learning control [13,14],
model predictive control [15], interval type-2 fuzzy control [16,17], and so on.

As a synthetic tool, sliding mode control is an alternative for the formation problem of uncertain
multirobot systems. So far, some sliding-mode-based formation methods have been presented, that is,
first-order sliding mode control [18,19], integral sliding mode control [8], derivative and integral
terminal sliding mode control [4], and terminal sliding mode control [20]. Sliding mode control’s
most attractive property is its invariance, which can guarantee that a sliding mode control system is
completely robust despite the matched uncertainties and disturbances [21].

On the other side, sliding mode control is also confronted with the dilemma of chattering. As a result,
many ideas have been devoted to the decrease and elimination of chattering. Among these ideas,
the super-twisting-based sliding mode control technique is advocated because it only needs the information
of a sliding mode variable and gets rid of the dependence on the time derivative of this sliding mode
variable [22].

On the assumption that the bounds of uncertainties and disturbances are known, this technique
is able to effectively force the sliding mode variable and its time derivative to the origin in finite
time [23,24]. Unfortunately, this assumption is not mild in uncertain multirobot systems. In reality,
one has to overestimate the bounds from the aspect of the closed-loop formation stability [25,26].
However, the overestimate definitely enlarges the gain of the super-twisting sliding mode control
technique. A potential solution is to design a module that can adaptively estimate the bounds.

Motivated by this solution idea, some technical methods have been explored, i.e., disturbance
observers, adaptive law design, fuzzy or neural network compensators, and so on. In this paper,
the extreme learning machine (ELM) [27] is taken into consideration. The ELM is a kind of feed-forward
neural network with a single hidden layer. The parameters in its hidden layer need no tuning, as they
are generated randomly and independent of the training data. Compared with the back-propagation
algorithm, the training and learning speed of the ELM is much faster. So far, the ELM has been
successfully applied to microwave filters [28], traffic accident detection [29], air–fuel ratio control [30],
and so on. However, application of the ELM technique to the formation problem of multi-agent mobile
robots has not been reported. In this paper, we adopted the ELM for the super-twisting sliding mode
formation maneuvers of uncertain multirobot systems. The purpose of this was to refine the formation
performance when the bounds of the uncertainties and disturbances are unknown.

The highlights of the paper are summarized as follows.

• An architecture that combines second-order sliding mode control and the extreme learning
machine technique is investigated.

• The closed-loop stability of this combination is presented in the sense of Lyapunov.
• Some numerical results for different formation patterns are demonstrated to support the combination.

The remainder of this paper is organized as follows. Section 2 models both a single mobile robot
and a leader–follower pair. Section 3 addresses super-twisting sliding mode control, adopts an ELM to
estimate the bounds of the uncertainties and disturbances, and analyzes the closed-loop formation stability
in the sense of Lyapunov. In Section 4, we implement the presented control method in a multirobot system
platform. Some numerical results and comparisons are illustrated in Section 4. Finally, conclusions are
drawn in Section 5.
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2. Formation Model

2.1. A Single Robot

Suppose there exists a unicycle-like robot, shown in Figure 1. The robot moves in the horizontal
plane. It is round, and the diameter is 2r. Its two parallel wheels have the same axis and are independently
controlled by two direct current motors. The robot can simultaneously rotate and translate, described by

q =
[

x y θ
]T

. (1)
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Figure 1. A sketch of the unicycle-like robot.

In Equation (1), (x, y) is located at the center of the robot and represents its translational coordinates,
and θ indicates its rotational coordinate. To know the position, a positioning sensor at the front castor
of this robot is set up, as shown in Figure 1. The axis of the sensor is orthogonal to the axis of the
two wheels.

On the assumption of pure rolling and no slipping, the ideal kinematic model of this robot [4,8]
has the form

.
q =


.
x
.
y
.
θ

 =


cosθ 0
sinθ 0

0 1

·
[

v
ω

]
(2)

s. t.
.
x sinθ−

.
y cosθ = 0 (3)

where v is the robot’s linear velocity in the X–Y coordinates, and its direction is determined by the
X–Y coordinates as well; ω represents the angular velocity, and its direction is positive when the robot
rotates counterclockwise.

Concerning the constraint given by Equation (3), the time derivative of Equation (2), namely,
the ideal dynamic model, can be written as

..
x
..
y
..
θ

 =

−

.
y

.
θ

.
x

.
θ
0

+


cosθ 0
sinθ 0

0 1

·u (4)

where u = [
.
v

.
ω ]

T
. The derivatives of v and ω represent the acceleration and angular acceleration

of the robot, respectively.
Since the robot in reality suffers from a variety of uncertainties and disturbances, for example,

friction, slip and slide shift, and so forth, the real dynamic model [8] can be derived from Equation (4).
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..
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..
θ
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−

.
y

.
θ

.
x

.
θ
0

+


cosθ 0
sinθ 0

0 1

·(u + ∆·u) + π
(
q,

.
q
)

(5)

In Equation (5), the term π
(
q,

.
q
)

represents the lumped uncertainties and disturbances, defined by

π
(
q,

.
q
)
= [ πx πy πθ ]

T

where πx, πy, and πθ are the functions of the vectors q and
.
q. ∆ indicates the physical parameter

changes of this robot, described by

∆ =

[
ε 0
0 ε′

]
where ε and ε′ are the changes in the mass and the inertia of the robot, respectively.

2.2. A Leader–Follower Pair

Consider a multirobot system containing N-many robots. Each robot is the same as the robot
in Figure 1. Without loss of generality, the robot i is selected as the leader, and it makes up N − 1
leader–follower pairs with the remaining robots. Figure 2 illustrates such a leader–follower pair made
up of the leader i and follower k [8].
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Figure 2. A sketch of a leader–follower pair.

In Figure 2, the subscript i is adopted to label the individual variables of the leader, the subscript k
is employed to describe the individual variables of the follower, and the subscript ik is used for the
relative variables for this pair. Here, the relative distance lik means the distance between the leader’s
center and the follower’s front castor, formulated by

lik =

√
(xi − xk)

2 +
(
yi − yk

)2
(6)

where
xk = xk + r cosθk
yk = yk + r sinθk.

The relative bearing angle ψik of the leader–follower pair is determined by

ψik = π+ ζik − θi (7)
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where

ζik = arctan
yi − yk − r sinθk

xi − xk − r cosθk
.

The purpose of this paper was to investigate the super-twisting sliding mode formation maneuvers
of this multirobot system via an extreme learning machine. Motivated by this purpose, the formation
objective of the leader–follower scheme was that each leader–follower pair of the multirobot system
has to keep the desired relative distance and the desired relative bearing angle in spite of uncertainties
and disturbances. In order to focus on the objective, we considered some ideal conditions as follows:
(1) there are neither collisions nor communication delay; (2) the follower is well known, that is, it knows
its position and velocity, and it can obtain the position and velocity of the leader as well.

We define a vector xik = [x1 x2 x3 x4]T. Let x1 = lik, x2 =
.
lik, x3 = ψik, and x4 =

.
ψik. According to

the formation objective, the relative distance lik and the relative bearing angle ψik are determined as
the formation control output. Then, the formation dynamics of this leader–follower pair among the
multiple robots can have the form of Equation (8) in light of the leader–follower scheme.

.
xik = f(xik, dik) + g(xik, ∆k)uk,
yik = h(xik).

(8)

Here, xik is the system state vector and yik is the system output vector. Further,

f(xik, dik) = Aikxik + Bik,2dik,
g(xik, ∆k) = Bik,1 + Bik,1∆k.

Aik, Bik,1, Bik,2 and h(xik) are defined as

Aik =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, Bik,2 =


0 0
1 0
0 0
0 1

, Bik,1 =


0 0

cosϕik r sinϕik
0 0

− sinϕik
lik

r cosϕik
lik

, h(xik) =

[
x1

x3

]
,

where ϕik = ψik + θik. dik is the lumped term of all the uncertainties and disturbances in the
leader–follower pair.

dik = Lik(I2 + ∆i)ui + Fik + Pik (9)

In Equation (9),

Lik =


0 0

− cosψik 0
0 0

sinψik
lik

−1

, Fik =


0
F1

0
F2

, Pik =


0

P1

0
P2


where I2 is a 2 × 2 identity matrix and F1, F2, P1, and P2 are written as

F1 = (
.
ψik)

2
lik + 2

.
ψik

.
θilik + (

.
θi)

2
lik

−r cosϕik(
.
θk)

2
− (

.
yk

.
θk −

.
yi

.
θi) cos(ψik +

.
θi) − (

.
xi

.
θi −

.
xk

.
θk) sin(ψik + θi)

F2 =
−(

.
yk

.
ϕik−

.
ψik

.
yi) sin(ψik+θi)−r

.
θk

.
ϕik sinϕik

lik
−(

.
xk

.
ϕik−

.
ψik

.
xi) cos(ψik+θi)+iik((

.
yi−

.
yk) cos(ψik+θi)−(

.
xi−

.
xk) sin(ψik+θi )−r

.
θk

.
ϕik cosϕik)

lik

P1 = −(πix −πkx) cos(ψik + θi) − (πiy −πky)sin(ψik + θi) + rπkθ sinϕik

P2 =
(πix−πkx)sin(ψik+θi)−(πiy−πky) cos(ψik+θi)+rπkθ sinϕik−likπiθ

lik
.
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The formation dynamics in Equation (8) are depicted by first-order differential equations. Further,
the formation dynamics can also be written using second-order differential equations,

..
Tik = Gikuk +Dik (10)

Here,

Tik =
[

lik ψik
]T

.Gik =

 cosϕik r sinϕik

−
sinϕik

lik
r cosϕik

lik

,
Dik =

[
dik,1 dik,2

]T
= Gik∆kuk +Lik(I2 + ∆i)ui + Fik + Pik,

Lik =

 − cosψik 0
sinψik

lik
−1

, Fik =

[
F1

F2

]
, Pik =

[
P1

P2

]
.

Both Equations (8) and (10) describe the formation dynamics, where Equation (8) is in the form of
first-order differential equations and Equation (9) is expressed in second-order differential equations.
Inherently, they are equivalent to each other, and both of them can help the following control design.

3. Formation Control Design

3.1. Sliding Surfaces and Input–Output Dynamics

The super-twisting law is a powerful and effective technique that can realize a second-order
sliding mode control design. The technique can effectively deal with a controlled plant with a relative
degree equal to 1 with respect to the control input. With regard to the matched uncertainties and
disturbances, it can make the sliding mode variable and its time derivative converge to the origin in
finite time. Consequently, we considered this technique as a solution for formation maneuvers of the
leader–follower pair in Figure 2. In order to implement the control design, the sliding surfaces, that is,
the sliding-mode vector, have to be predefined.

sik =

[
sik,1
sik,2

]
= C1

([
lik
ψik

]
−

[
ldik
ψd

ik

])
+ C2


 .

lik.
ψik

−


.
l
d
ik

.
ψ

d
ik


 (11)

Here, ldik andψd
ik are the desired relative distance and the desired relative bearing angle, respectively,

of the leader–follower pair. C1 and C2 are 2 × 2 constant diagonal matrices, given by

C1 =

[
c1 0
0 c1

]
and C2 =

[
c2 0
0 c2

]
where both c1 and c2 are positive and predefined constants.

We differentiate the sliding-mode vector sik in Equation (11) with respect to time and substitute
the formation dynamics Equation (8) into the derivative of sik. Then, the input–output dynamics are
determined by

.
sik =

∂sik
∂t

+
∂sik
∂xik

f(xik, dik) +
∂sik
∂xik

g(xik, ∆k)uk. (12)

In order to achieve a super-twisting sliding mode control design, the first step is to calculate the
relative degree of the dynamics via Equation (11) with respect to the control input. From Equations (11)
and (12), we have

∂sik
∂uk

= 0 and
∂

.
sik
∂uk

=
∂sik
∂xik

g(xik, ∆k) , 0. (13)

From Equation (13), it is apparent that the relative degree of sik with respect to uk is equal to 1.
In other words, a super-twisting sliding mode control design is available for the formation maneuvers
of multiple robots under the leader–follower scheme.
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Let
a(xik, dik, t) = ∂sik

∂t +
∂sik
∂xik

f(xik, dik),

b(xik, ∆k, t) = ∂sik
∂xik

g(xik, ∆k).
(14)

Assumption 1. The matrix b(xik, ∆k, t) ∈ <2×2 in Equation (14) contains both known and unknown parts,
written as

b(xik, ∆k, t) = b0(xik, t) + b1(xik, ∆k, t). (15)

Here, b0(xik, t) is a known positively definite matrix, b1(xik, ∆k, t) is bounded but unknown, and
the two parts of b(xik, ∆k, t) satisfy

‖b1(xik, ∆k, t)b−1
0 (xik, t)‖2 < γ1 < 1 (16)

where γ1 is a unknown constant.

Assumption 2. The vector a(xik, dik, t) ∈ <2×1 contains both known and unknown parts, depicted by

a(xik, dik, t) = a0(xik, t) + a1(xik, dik, t). (17)

Here, a0(xik, t) is a known and bounded vector and a1(xik, dik, t) is bounded but unknown. Their
∞-norms satisfy

‖a0(xik, t)‖∞ ≤ δ1
√
‖sik‖2 and ‖

.
a1(xik, dik, t)‖∞ ≤ δ2 (18)

where δ1 and δ2 are positive but unknown.
Concerning the two assumptions, the input–output dynamics of the sliding-mode vector sik in

Equations (12) can have the form

.
sik = a0 + b0uk + a1 + b1uk. (19)

Here, a0(xik, t), a1(xik, dik, t), b0(xik, t), and b1(xik, ∆k, t) are abbreviated to a0, a1, b0, and b1

for brevity.

3.2. Super-Twisting Sliding Mode Control Design

According to the nominal system in Equation (19), the super-twisting sliding mode control can be
designed as

uk = b−1
0 (−a0 +$k) (20)

where
$k = $k1 +$k2,

$k1 = −αk
√
‖sik‖2sgn(sik),

.
$k2 = −χksgn(sik).

(21)

In (21), αk and χk are positive and they need to be predefined. The signum function sgn(sik) in

Equation (22) is defined by sgn(sik) =
[

sgn(sik,1) sgn(sik,2)
]T

. We select a Lyapunov function candidate

V0 = ‖sik‖2. (22)

We consider the input–output dynamics in Equation (19) and substitute Equations (20) and
(21) into Equation (19). Given Assumptions 1 and 2, the time derivative of Equation (22) has the
following form:
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.
V0 =

sT
ik

.
sik

‖sik‖2
=

sT
ik

‖sik‖2
(a0 + b0uk + a1 + b1uk)

=
sT

ik
‖sik‖2

[
$k + a1 + b1b−1

0 (−a0 +$k)
]

=
sT

ik
‖sik‖2

[(
−αk − αkb1b−1

0

)√
‖sik‖2sgn(sik) +

(
−χk − χkb1b−1

0

)∫ t
0 sgn(sik)dt + a1 − b1b−1

0 a0

]
≤

sT
ik

‖sik‖2

[
(−αk + αkγ1)

√
‖sik‖2sgn(sik) + (−χk + χkγ1)

∫ t
0 sgn(sik)dt + a1 + γ1a0

]
=

(−αk+αkγ1)
√
‖sik‖2

‖sik‖2
sT

iksgn(sik) +
(−χk+χkγ1)
‖sik‖2

sT
ik

∫ t
0 sgn(sik)dt +

sT
ik

‖sik‖2
(a1 + γ1a0).

(23)

Note that the following equalities exist.

‖sik‖1 = sT
iksgn(sik) and

∫ t

0
sgn(sik)dt = sgn(sik)

∫ t

0
dt (24)

Considering (18), (23) can be written as

.
V0 ≤

(−αk+αkγ1)
√
‖sik‖2

‖sik‖2
‖sik‖1 +

sT
ik

‖sik‖2
γa0 +

‖sik‖1
‖sik‖2

∫ t
0 (−χk + χkγ1)dt +

sT
ik

‖sik‖2

∫ t
0

.
a1dt

≤
(−αk+αkγ1)

√
‖sik‖2

‖sik‖2
‖sik‖1 + γ1δ1

√
‖sik‖2
‖sik‖2

‖sik‖1 +
‖sik‖1
‖sik‖2

∫ t
0 (−χk + χkγ1)dt + ‖sik‖1

‖sik‖2

∫ t
0 δ2dt

=

√
‖sik‖2‖sik‖1
‖sik‖2

(−αk + αkγ1 + γ1δ1) +
‖sik‖1
‖sik‖2

∫ t
0 (−χk + χkγ1 + δ2)dt.

(25)

Concerning Equation (16), 0 < γ1 < 1. Consequently, one can have
.

V0 < 0 by picking up αk and
χk if γ1, δ1, and δ2 are known. Unfortunately, these constants are hardly known in advance, that is,
Equation (25) theoretically holds true but it is not available in reality. In order to make Equation (25)
hold true, one possible approach is to overestimate αk and χk so that

.
V0 < 0 can be guaranteed and the

closed-loop formation system can have stability in the sense of Lyapunov. However, the approach
inevitably enlarges the gain of the super-twisting sliding mode control technique, which can definitely
have adverse effects on the formation performance. To address this issue, in this paper we selected the
extreme learning machine and fused it with super-twisting sliding mode control. Their integration can
guarantee the formation stability while the super-twisting sliding mode control technique can have
a suitable gain.

3.3. Super-Twisting Sliding Mode Control Design via ELM

The ELM is a learning algorithm for single-hidden-layer feed-forward networks. By the algorithm,
the input weights are randomly chosen, the hidden layer biases are randomly assigned, and the output
weights are analytically determined. The reason why the gain of the super-twisting sliding mode is
overestimated is that some bounds are unknown. With the help of the ELM, one possible approach is to
estimate these uncertainties and disturbance online, which can avoid the drawback of overestimating
the bounds.

Considering the formation dynamics in the form of the second-order differential equations in
Equation (10), the sliding surfaces in Equation (11) can be written as

sik = C1
(
Tik −Td

ik

)
+ C2

( .
Tik −

.
T

d
ik

)
. (26)

Then, the time derivative of Equation (26) is determined by

.
sik = C1

( .
Tik −

.
T

d
ik

)
+ C2

( ..
Tik −

..
T

d
ik

)
. (27)
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For the formation maneuvers with constants ldik and ψd
ik, we have

.
T

d
ik =

..
T

d
ik =

[
0 0

]T
. (28)

Consequently, Equation (27) has the form

.
sik = C1

.
Tik + C2

..
Tik. (29)

Substituting Equation (10) into Equation (29) yields

.
sik = C1

.
Tik + C2Gikuk + C2Dik. (30)

Let
.
sik = C1

.
Tik + C2Gikuk + C2Dik = $k (31)

where $k is defined in Equation (21). Then, uk can be obtained by

uk = (C2Gik)
−1

(
−C1

.
Tik −C2Dik +$k

)
. (32)

From Equation (10), Dik contains all the uncertainties and disturbances. Here the ELM is designed
to estimate Dik in real time. Replacing Dik by its estimate D̂ik in Equation (32) yields

uk = (C2Gik)
−1

(
−C1

.
Tik −C2D̂ik +$k

)
. (33)

In Equation (9), Dik is the function of some variables, where ϕik, lik, and ψik play an important
role. Here, the three variables were chosen as the input nodes of the ELM, that is, z ∈ <3×1 is the input

vector and z =
[

lik ψik ϕik
]T

. Without doubt, the output vector is just D̂ik ∈ <
2×1, that is, there are

two output nodes located at the output layer.
We assigned M hidden nodes as the hidden layer. Then, the weights between the input and

hidden layers can be defined by w ∈ <M×3. The input bias vector of the hidden nodes was defined
as c ∈ <M×1. A sigmoidal function was selected as the activation function of the hidden layer. Then,
the output of the lth (l = 1, 2, · · · , M) hidden layer node can be calculated by

hl(wl·z + cl) =
1

1 + e−(wl·z+cl)
. (34)

Here, wl ∈ <
1×3 is the lth row of w and cl is the lth element of cl.

The output weights between the hidden layer nodes and the output layer nodes were defined as
Θ =

[
Θ1 Θ2

]
∈ <

M×2, Θ1 ∈ <
M×1, and Θ2 ∈ <

M×1. Finally, the output vector of the ELM can be
calculated by

D̂ik = ΘTH. (35)

Here, H = [ h1 h2 · · · hl · · · hM ]
T

.
According to the universal approximation theorem of the single-hidden-layer feed-forward

networks in [27], there exist optimal output weights Θ∗ ∈ <M×2 to approximate Dik so that

Dik = Θ∗TH+ ε(z) (36)

where ε(z) ∈ <2×1 is an approximation error vector, and it can be arbitrarily reduced by increasing the
number of hidden layer nodes. Therefore, it is assumed that

‖ε(z)‖
∞
< ε (37)
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where ε is an arbitrary small constant.
Finally, a schematic diagram of the super-twisting second-order sliding mode formation control

by the extreme learning machine is presented in Figure 3.Symmetry 2019, 11, 1444 10 of 19 
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Figure 3. Schematic diagram of the control structure.

Theorem 1. Consider the formation dynamics in Equations (8) and (10) given Assumptions 1 and 2, utilizing
the super-twisting sliding mode control in Equation (33). Suppose the ELM is designed to estimate D̂ik online by
Equation (35). If the weights between the hidden and output layers of the ELM are adjusted by Equation (38),
then the formation control system is asymptotically stable.

.
Θq = η

c2

‖sik‖2
sik,qH q = 1, 2 (38)

Here, η is a positive constant, and both c2 and sik,q are defined by Equation (11).

Proof. Take the following Lyapunov function candidate into consideration.

V = ‖sik‖2 +
1

2η

2∑
q=1

Θ̃T
q Θ̃q (39)

Here, Θ̃ =
[

Θ̃1 Θ̃2

]
is defined by

Θ̃ = Θ∗ −Θ. (40)

The time derivative of V can have the form of

.
V =

sT
ik

.
sik

‖sik‖2
+

1
η

2∑
q=1

Θ̃T
q

.

Θ̃q. (41)

Substituting Equation (30) into Equation (41) yields

.
V =

sT
ik

‖sik‖2
(C1

.
Tik + C2Gikuk + C2Dik) +

1
η

2∑
q=1

Θ̃T
q

.

Θ̃q. (42)
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Then, according to the designed formation control Equation (33), we have

.
V =

sT
ik

‖sik‖2

(
C2Dik −C2D̂ik +$k

)
+ 1

η

2∑
q=1

Θ̃T
q

.

Θ̃q

=
sT

ik
‖sik‖2

[
C2

(
Θ∗TH− ε(z)

)
−C2

(
ΘTH

)
+$k] +

1
η

2∑
q=1

Θ̃T
q

.

Θ̃q

=
sT

ik
‖sik‖2

[
C2

(
Θ∗T −ΘT

)
H−C2ε(z) +$k] +

1
η

2∑
q=1

Θ̃T
q

.

Θ̃q

=
sT

ik
‖sik‖2

[C2

.

Θ̃
T
H−C2ε(z) +$k] +

1
η

2∑
q=1

Θ̃T
q

.

Θ̃q

(43)

From Equation (21), we can obtain

.
V =

sT
ik

‖sik‖2

[
C2Θ̃TH−C2ε(z) − αk

√
‖sik‖2sgn(sik) −

∫ t
0 χksgn(sik)dt

]
+ 1

η

2∑
q=1

Θ̃T
q

.

Θ̃q

=
sT

ik
‖sik‖2

C2Θ̃TH+ 1
η

2∑
q=1

Θ̃T
q

.

Θ̃q −
sT

ik
‖sik‖2

C2ε(z) −
sT

ik
‖sik‖2

[
αk

√
‖sik‖2 + χk

∫ t
0 dt

]
sgn(sik)

=
sT

ik
‖sik‖2

C2

 Θ̃T
1H

Θ̃T
2H

+ 1
η

2∑
q=1

Θ̃T
q

.

Θ̃q −
sT

ik
‖sik‖2

C2ε(z) −
sT

ik
‖sik‖2

[
αk

√
‖sik‖2 + χk

∫ t
0 dt

]
sgn(sik).

(44)

Since C2 is a diagonal matrix, (44) can be written as

.
V =

sT
ik

‖sik‖2
C2

 Θ̃T
1H

Θ̃T
2H

+ 1
η

2∑
q=1

Θ̃T
q

.

Θ̃q −
sT

ik
‖sik‖2

C2ε(z) −
sT

ik
‖sik‖2

[
αk

√
‖sik‖2 + χk

∫ t
0 dt

]
sgn(sik)

= c2
sT

ik
‖sik‖2

 Θ̃T
1H

Θ̃T
2H

+ 1
η

2∑
q=1

Θ̃T
q

.

Θ̃q −
sT

ik
‖sik‖2

C2ε(z) −
sT

ik
‖sik‖2

[
αk

√
‖sik‖2 + χk

∫ t
0 dt

]
sgn(sik)

= c2
‖sik‖2

2∑
q=1

sik,qΘ̃T
q H+ 1

η

2∑
q=1

Θ̃T
q

.

Θ̃q −
sT

ik
‖sik‖2

C2ε(z) −
sT

ik
‖sik‖2

[
αk

√
‖sik‖2 + χk

∫ t
0 dt

]
sgn(sik).

(45)

Consider the condition in Equation (38) and the definition in Equation (40). We can have

.

Θ̃q = −
.

Θq = −η
c2

‖sik‖2
sik,qH. (46)

Then, Equation (45) becomes

.
V = −

sT
ik

‖sik‖2
C2ε(z) −

sT
ik

‖sik‖2

[
αk

√
‖sik‖2 + χk

∫ t
0 dt

]
sgn(sik)

= −c2
sT

ik
‖sik‖2

ε(z) −
[
αk

√
‖sik‖2 + χk

∫ t
0 dt

]
‖sik‖1
‖sik‖2

≤ c2ε
‖sik‖1
‖sik‖2

−

[
αk

√
‖sik‖2 + χk

∫ t
0 dt

]
‖sik‖1
‖sik‖2

.

(47)

From Equation (47), we can select suitable αk and χk to make
.

V < 0 so that the formation system
becomes asymptotically stable.

Although ε in Equation (47) is still unknown in advance, the universal approximation theorem of
the single-hidden-layer feed-forward networks (Equation (37)) in [27] indicates that ε can be an arbitrary
small constant. This fact avoids the drawback of overestimating αk and χk in Equation (20) from the
point of view of the formation stability. Thus, the super-twisting sliding mode formation maneuvers
via ELM can contribute to the improvement of the formation performance. �
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4. Simulation Results

4.1. Multirobot Platform

We integrated the super-twisting sliding mode control and ELM for an uncertain multirobot system.
In order to verify the designed method, we only considered a small-scale formation, so a multirobot
simulation platform with three mobile robots was taken into consideration. Robot 1 acted as the leader,
and there were two leader–follower pairs in this platform. Robot 2 and Robot 3 acted as the followers,
and they were coordinated by the leader. In this small-scale multirobot system, assumptions such as
no collisions and no communication delay can easily hold true so that we can focus on the formation
control design.

The robots’ radius r was set to 0.05 m. The uncertainties of the individual robots were set
as follows.

∆1 = ∆2 = ∆3 =

[
∆ 0
0 ∆

]
(48)

Here, ∆ was set to 0.3 × rad − 0.2, where rad is a random number between 0 and 1. Since ∆ is
related to changes in the robots’ physical parameters, here we considered that they are the same as
each other.

In Equation (9), the terms πix −πkx and πiy −πky exist. It is not representative to define πi = πk.
Therefore, they were set as given in Equation (49) in the multirobot platform.

π1x = π1y = π1θ = 0.5 sin(2πt)π2x = π2y = π2θ = π3x = π3y = π3θ = 0.3 sin(2πt) (49)

Concerning the formation of this multirobot system, the sole leader tracks a desired trajectory and
the two followers keep the desired relative distance and the desired relative bearing angle with respect
to the leader. Thus, the integration of the super-twisting sliding mode control and ELM was applied to
the two followers.

Without loss of generality, the parameters concerning the super-twisting sliding mode control and
the ELM were the same for the two followers. With regard to the super-twisting sliding mode control,
its parameters were chosen as α2 = α3 = 8 and χ2 = χ3 = 17. C1 and C2 in the sliding surfaces were
set to

C1 =

[
800 0

0 800

]
and C2 =

[
56 0
0 56

]
. (50)

For the ELM, η = 1000, the number of the hidden layer nodes was set to M = 500, the weights
between the input and hidden layers were random in the closed interval [ −1 1 ], and the biases of
the hidden nodes were random in the closed interval [ 0 1 ].

4.2. Formation Tasks

4.2.1. String Formation Moving Along a Circular Trajectory

In Figure 4, the multirobot platform carries out the task of string formation when moving along
a circular trajectory, where the red indicates the leader robot and the green and blue indicate the two
followers. The initial positions of the three robots were

q1 = [ 0.5m 0m 0.5π rad]
T

, q2 = [ 0.8m −0.4m 0rad ]
T

, and q3 = [ 1.1m −0.5m π rad]
T

. (51)

According to the initial positions in Equation (51) and the formation task, the initial states of the
formation dynamics Equation (8) could be calculated as

x12(0) = [ 0.48m 0m/s 1.24πrad 0rad/s ]
T

, x13(0) = [ 0.74m 0m/s 1.26πrad 0rad/s ]
T

. (52)
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With regard to the formation task, the desired states could be determined as

xd
12 = [ 0.13m 0m/s −0.5πrad 0rad/s ]

T
, xd

13 = [ 0.26m 0m/s −0.5πrad 0rad/s ]
T

. (53)Symmetry 2019, 11, 1444 13 of 19 
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Figure 4. String formation of this multirobot platform when moving along a circular trajectory.

Figure 5 demonstrates the state variables when the multirobot system fulfilled the formation task
in Figure 4. For the purpose of comparison, two other classic control methods were implemented on
the same platform to accomplish the same formation task along with the presented super-twisting
sliding mode control (STW) with ELM (abbreviated STW with ELM in Figure 5). These control methods
were sliding mode control (SMC) with a disturbance observer (NDOBC) [18] (abbreviated SMC with
NDOBC in Figure 5) and super-twisting sliding mode control (STW) alone, without ELM (abbreviated
STW in Figure 5).
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Figure 5. Comparisons of the state variables by different methods: (a) l12, (b) ψ12, (c) l13, (d) ψ13.

From Figure 5, the presented method can improve the performance of the system state variables.
Note that the super-twisting sliding mode control on its own was performed with the same sliding
surfaces formulated by Equation (11). Because of this, the ELM can improve the control performance.
Furthermore, the control inputs of the three control methods applied to Follower 2 and Follower 3 are
illustrated in Figures 6 and 7, respectively.
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Figure 6. Comparisons of the control inputs from Follower 2: (a) acceleration by STW (sliding
mode control) with ELM (extreme learning machine), (b) angular acceleration by STW with ELM, (c)
acceleration by STW, (d) angular acceleration by STW, (e) acceleration by SMC with NDOBC, and (f)
angular acceleration by SMC (sliding mode control) with NDOBC.
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Figure 7. Comparisons of the control inputs from Follower 3: (a) acceleration by STW with ELM, (b)
angular acceleration by STW with ELM, (c) acceleration by STW, (d) angular acceleration by STW, (e)
acceleration by SMC with NDOBC, and (f) angular acceleration by SMC with NDOBC.
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As shown in Figures 6 and 7, the presented method was able to effectively decrease the chattering
phenomenon. In theory, the integrated method can completely compensate the disturbances and
uncertainties entering the formation control system with increasing number of hidden layer nodes.
However, the number of hidden layer nodes affects the computational burden.

Figure 8 illustrates the sliding surfaces. The estimations of uncertainties and the estimation
errors are illustrated in Figures 9 and 10. As proven in Theorem 1, the formation control system is
asymptotically stable. From Figure 10, we know the errors are large at the outset, but the errors are
dramatically decreased when the weights of the ELM are adjusted by (38).
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4.2.2. Triangular Formation Moving in a Circular Trajectory

Figure 11 shows this platform forming a triangle when moving along a circular trajectory. Both
the super-twisting sliding mode control parameters and the ELM parameters were kept unchanged.
They were the same as in the formation task in Figure 4. Concerning this task, the initial positions of
the three robots were set to

q1 = [ 0.5m 0m 0.5π rad]
T

, q2 = [ 0.8m −0.2m 1
3πrad ]

T
, q3 = [ 1.1m −0.3m π rad]

T
.

(54)
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According to this control task and the initial positions, the initial states of the formation dynamics
could be calculated as
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x12(0) = [ 0.36m 0m/s 1.36πrad 0rad/s ]
T

, x13(0) = [ 0.63m 0m/s 1.34πrad 0rad/s ]
T

. (55)

Similarly, the desired states could be acquired on account of the leader’s trajectory.

xd
12 = [ 0.13m 0m/s 1.8πrad 0rad/s ]

T
, xd

13 = [ 0.26m 0m/s 1.2πrad 0rad/s ]
T

(56)

The state variables and the control inputs were also similar to those in the formation task in
Figure 4, as proven in Theorem 1, so these curves are not demonstrated due to the limited space.

4.2.3. Maneuvers from a String Formation to a Triangular One

Firstly, Figure 12 shows the platform forming up into a string pattern when moving along a straight
line. Then, the formation maneuvers to a triangular pattern. Both the super-twisting sliding mode
control parameters and the ELM parameters were kept unchanged. They were the same as in the
formation task in Figure 4.
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Figure 12. Maneuvers from a string formation to a triangular one while moving along straight lines.

Concerning this task, the initial positions of the three robots were set to

q1 = [ 0.5m 0m 0.5π rad]
T

, q2 = [ 0.8m −0.1m 1
3πrad ]

T
, q3 = [ 0.2m −0.2m π rad]

T
. (57)

According to the control task and the initial positions, the initial states of the formation dynamics
could be calculated as

x12(0) = [ 0.33m 0m/s 4.54πrad 0rad/s ]
T

, x13(0) = [ 0.40m 0m/s 2.09πrad 0rad/s ]
T

. (58)

The desired states could be acquired on account of the leader’s trajectory. When 0 ≤ t < 18s,
the desired states of the string pattern were

xd
12 = [ 0.4m 0m/s 1.5πrad 0rad/s ]

T
, xd

13 = [ 0.4m 0m/s 0.5πrad 0rad/s ]
T

, (59)

and when 18s ≤ t < 32s, the desired states of the triangular pattern were

xd
12 = [ 0.3m 0m/s 1.2πrad 0rad/s ]

T
(60)

The state variables and the control inputs were also convergent, as proven in Theorem 1, so these
curves are not demonstrated due to the limited space.
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5. Conclusions

In this paper, we concentrated on the formation control of multirobot systems. In order to
accomplish the formation task despite the inevitable uncertainties and disturbances, the super-twisting
sliding mode control method was adopted. To deal with overestimation of the control gains, an ELM
was constructed. The weights of the ELM between the hidden and output layers were adaptively
adjusted. Theoretically, integration of the super-twisting sliding mode control and ELM for formation
maneuvers has guaranteed stability in the sense of Lyapunov. The integrated method was applied
to a multirobot platform with three mobile robots. Some comparisons were illustrated with two
other control methods, that is, sliding mode control with a disturbance observer and super-twisting
sliding mode control alone. Although all the three methods were able to fulfill the formation tasks,
the numerical results illustrate that the integrated method had the best performance. This integrated
method can be a solid support in dealing with the formation maneuvers of multiple uncertain robots.
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