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Abstract: As an effective technology for boosting the performance of wireless communications,
massive multiple-input multiple-output (MIMO) systems based on symmetric antenna arrays have
been extensively studied. Using low-resolution analog-to-digital converters (ADCs) at the receiver
can greatly reduce hardware costs and circuit complexity to further improve the energy efficiency
(EE) of the system. There are significant research on the design of MIMO detectors but there is limited
study on their performance in terms of EE. This paper studies the effect of signal detection on the
EE in practical systems, and proposes to apply several signal detectors based on lattice reduction
successive interference cancellation (LR-SIC) to massive MIMO systems with low-precision ADCs.
We report results on their achievable EE in fading environments with typical modeling of the path
loss and detailed analysis of the power consumption of the transceiver circuits. It is shown that
the EE-optimal solution depends highly on the application scenarios, e.g., the number of antennas
employed, the cell size, and the signal processing efficiency. Consequently, the signal detector must
be properly selected according to the application scenario to maximize the system EE. In addition,
medium-resolution ADCs should be selected to balance their own power consumption and the
associated nonlinear distortion to maximize the EE of system.

Keywords: ADC; massive MIMO; lattice reduction; energy efficiency

1. Introduction

Massive multiple-input multiple-output (MIMO) systems employing symmetric antenna arrays
can be used to improve the spectrum efficiency (SE) of wireless communications [1–4]. In a typical
massive MIMO system, analog-to-digital converters (ADCs) with symmetric quantization levels are
used to convert the real and imaginary parts of the received signal before further processing. The power
consumption of ADCs increases exponentially with the quantization bits. Therefore, low-precision
ADCs have been widely considered recently for massive MIMO systems [5]. Significant studies have
been carried out on the SE of massive MIMO with linear detectors [6–9]. In [7,10], the uplink SE of a
maximum ratio combining (MRC) receiver is analyzed for massive MIMO with low-precision ADCs.
The SE is analyzed for the minimum mean squared error (MMSE) receiver in [11], and it is concluded
that the large arrays can compensate for the loss of low-resolution quantization. Based on the power
consumption model in [3], Ref. [12] analyzes the energy efficiency (EE) of successive interference
cancellation (SIC) receiver with low-precision ADCs.
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Significant work has been done on the symbol detection in massive MIMO systems with
low-precision ADCs. A class of techniques recover the transmitted symbols directly from the nonlinear
model. In [13], iterative decision feedback receiver is studied for quantized MIMO systems. In [14],
message passing dequantization (MPDQ) is applied to achieve multiuser detection for systems
employing single-bit quantization. In [15], generalized approximate message passing is employed for
massive MIMO with low-resolution ADCs. On the other hand, the tremendous detection algorithms
designed for MIMO systems with ideal ADCs [16–22] can also be directly applied to quantized systems
by using a linearized additive quantization noise model (AQNM). This will result in certain loss in
the effective signal-to-noise ratio (SNR) but may offer solutions with moderate complexity, which are
feasible for practical applications. Among the candidate techniques, the MMSE detector represents
a linear option while lattice reduction-aided successive interference cancellation (LR-SIC) [23–28]
provides nonlinear solutions with good tradeoff between performance and complexity for channels
with large coherence blocks. The use of low-complexity, energy-efficient ADCs is also foreseen to be
appealing in case of energy-constrained receive sides, such as cluster heads in massive MIMO-based
wireless sensor networks (WSNs), as studied in [29–32].

In general, more advanced detectors lead to improved bit error rate (BER) performance for MIMO
systems (with either ideal or low-resolution ADCs) but also higher computational complexity and
higher power consumption. It is challenging to compare the different schemes and choose the one that
yields the best balance between them. This work attempts to address this challenge by applying the EE
as a criterion to compare several linear and nonlinear detectors. We focus on the MMSE and LR-SIC
detectors due to their potential in achieving good tradeoff between performance and complexity but
the work can be extended to other detectors easily. The contributions can be summarized as follows:

1. We investigate the implementation of LR-SIC detectors and their improvements for massive
MIMO systems with low-resolution ADCs;

2. We analyze the transmission power required for achieving a target BER, the power required
for signal detection, and also the power consumption due to the ADCs given the system
configuration;

3. We analyze and compare the EE for several different MIMO detectors under a universal
system-level power consumption model, and discuss the influence of the number of antennas,
the ADC resolution and also the signal processing algorithms on the performance.

Numerous numerical studies are carried out. Compared with the previous studies on MIMO
detection [13–19,23–27] that focus mainly on the transmission power required, this work provides a
new perspective for study the detectors in realistic scenarios under the EE criterion. Our work also
differs from the previous studies on EE [3,5,12,33] where the capacity, i.e., the upper bound of the
achievable rate under Gaussian signaling, is considered, as the actual power consumption for practical
modulation, signal processing schemes and reliability requirement is evaluated in our studies.

The rest of this paper is organized as follows. We introduce the model of uplink large-scale massive
MIMO systems with low-precision quantization in Section 2. Three MIMO detectors, i.e., MMSE,
LR-SIC and a modified multi-branch LR-SIC, are then discussed in Section 3. A system-level power
consumption model is introduced in Section 4, based on which the EE is analyzed. The numerical
results are presented in Section 5. The conclusion is given in Section 6.

Notation: The superscripts (·)−1 and (·)H represent matrix inversion and transpose, respectively.
IN denotes an N × N identity matrix; 0K denotes an all-zero vector of dimension K× 1. E[·] denotes
expectation det(A) the determinant of A. C is the set of complex numbers. The notations appearing in
the paper are listed in Table 1.
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Table 1. Notation.

K number of UEs N number of receiver antennas b number of quantization bits

∆ quantization step ρn scaling factor for the n-th antenna dk distance between UE-k and the BS

ϕk large-scale fading σ2 noise variance λ number of coherence blocks

H channel matrix P power of the UEs n additive white Gaussian noise (AWGN)

x transmitted signal vector Ψ scaling matrix nq quantization noise

yq quantized received signal Rnq covariance matrix of the quantization noise W weight matrix of detector

Π permutation matrix R received signal after QR decomposition ξ noise variance after QR decomposition

y received signal G channel matrix after QR decomposition y′ scaled received signal

Ḡ extended channel matrix T transformation matrix G̃ lattice-reduced channel matrix
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2. System Model

In this section, we first introduce the system model of mutliuser massive MIMO systems
where low-resolution ADCs are employed at the receiver. We then introduce the linearized
additive quantization noise model (AQNM) that can be employed to design low-complexity signal
detection algorithms.

2.1. MIMO With Low-Precision ADC

Consider an uplink single-cell scenario, where one small cell base station (BS) has N antennas
serving K single-antenna users (UEs). In this case, the performance is dominated by the multiuser
interference from the same cell. Following [15], we assume a Rayleigh fading channel for each
coherent block, whose size depends on the coherence bandwidth and the coherent time of the channel.
The received signal from all antennas are modeled as

y = H
√

Px + n, (1)

where x ∈ CK×1 is the transmitted signal vector of all UEs, and xij has zero mean and unit power,

i.e., E
[
xij
]
= 0 and E

[∣∣xij
∣∣2] = 1. The power of the UEs are specified by

√
P , diag

{√
p1, · · · ,

√
pK
}

,
pk in Joule/symbol represents the power allocated to the k-th user. The entries of a given column of the
channel matrix H, which corresponds to the channel vector of UE-k, are independent and identically
distributed (i.i.d), complex Gaussian following CN (0, ϕk), with ϕk being the corresponding large-scale
fading for UE-k. The noise vector n is additive white Gaussian noise (AWGN), in which all elements
independently follow the distribution CN

(
0, σ2). The total transmitted SNR of the K UEs is defined as

SNRTX = 10log10

(
∑K

k=1 pk

σ2

)
, (2)

and the received SNR of UE-k is defined as

SNRRXk = 10log10

( ϕk pk
σ2

)
. (3)

Note that, under the i.i.d. assumption of the small scale fading of all the UEs, the BER performance
of the system averaged over small-scale fading depends on {SNRRXk}. This paper assumes that the
received SNRs of the different UEs are the same, achieved by reasonable power allocations according
to the UEs’ large-scale fadings, as will be discussed in detail later. This amounts to assume that the
UEs have symmetric requirements of quality of service (QoS) in terms of transmission rates and error
rates, following [3,34,35].

In practical mobile communication systems, the elements in y need to be scaled and quantized.
From [36,37], the scaling factor ρn for the n-th antenna can be chosen as

ρn = 3
(∥∥∥hn

√
P
∥∥∥2

2
+ σ2

) 1
2

, n ∈ {1, · · · , N} , (4)

where hn stands for the n-th row of H. Let Ψ = diag {ρ1, · · · , ρN}. The received signal scales to

y′ = Ψ−1y. (5)

As illustrated in Figure 1, each antenna is equipped with two ADCs to uniformly quantize the real
and imaginary parts of the signal. After quantization, the quantized received signal can be re-scaled
and modeled as [15,38]
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Figure 1. Large-scale MIMO system with K UEs and N receive antennas. Each received signal yn is
quantized by two ADCs for its real and imaginary values.

yq = ΨQ
(
y′
)
= ΨQ

(
R
(
y′
))

+ jΨQ
(
I
(
y′
))

, (6)

where R (·) and I (·) denote the real and imaginary part of a complex scalar, respectively.
The nonlinear quantization function Q (·) assumes uniform quantization with step ∆ = 2−b as [39]

Q(y′) =


⌈

y′
∆ −

1
2

⌉
∆ + ∆

2 , if − 2b∆
2 ≤ y′ ≤ 2b∆

2 ,
2b∆

2 −
∆
2 , if y′ > 2b∆

2 ,
− 2b∆

2 + ∆
2 , if y′ < − 2b∆

2 ,

(7)

where we have assumed b-bit ADCs.

2.2. Additive Quantization Noise Model (AQNM)

Signal detection is required to recover the transmitted signal from the quantized received signal (6).
The quantization introduces nonlinear distortion to the received signal, which complicates the design
of optimal signal detectors. It is of interest to design suboptimal detectors which are able to achieve
good tradeoff between performance and complexity. A widely used approach is to employ the
AQNM [10,40] which models the quantized received signal as

yq = αH
√

Px + αn + nq (8)

where nq is an additive Gaussian quantization noise vector uncorrelated with x and n. For a fixed
channel realization H and given AWGN power, the covariance matrix of the quantization noise nq is

Rnq = αβdiag
(

HPHH + σ2IN

)
, (9)

where β is the inverse of the signal to the quantization noise ratio (SQNR) and α = 1 − β.
Following [10,15], the values of β are listed in Table 2 and determined approximately by β = π

√
3

2 · 2−2b

for b ≤ 5.

Table 2. The value of β for b ≤ 5.

b 1 2 3 4 5

β 0.3634 0.1175 0.03454 0.009497 0.002499

3. MIMO Detection

Due to the interference among the different UEs, signal detectors are used to estimate the
transmitted symbol x from the quantized received signal vector yq modeled in (8). This is to solve an
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inverse problem and tremendous solutions have been studied, as surveyed in [16]. We assume that the
knowledge of the channel matrix H and the power of the AWGN are known at the receiver side and
thus a signal detector can be constructed and reused for each coherent block. We here consider three
types of detectors, i.e., the MMSE detector, the LR-SIC detector, and a modified multi-branch LR-SIC
detector (MMB-LR-SIC), as example detectors of different performance and complexity. Among them,
the MMSE detector is a representative linear option; the MMB-LR-SIC is adapted from the variable list
detector (VLD) of [41], representing a sophisticated detector with good BER performance; and LR-SIC
has complexity and performance in between MMB-LR-SIC and MMSE. The study of this paper can
also be extended to other signal detectors.

3.1. MMSE Detector

Among the linear estimators, the MMSE detector achieves improved tradeoff between noise
enhancement and interference cancellation by minimizing the estimation error caused by channel
noise and interference [16]. Following [42], by assuming that the quantization noise is uncorrelated
with the transmitted signal in (8), it can be verified that the MMSE estimator is computed as

W = α[α2HPHH + α2σ2
nIN + Rnq ]

−1H
√

P, (10)

where the covariance matrix of the quantization noise is given in (9). In order to reduce complexity
and assuming i.i.d. additive quantization noise, we can approximate

Rnq = αβPRxIN , (11)

where PRx = 1
N trace

(
HPHH + σ2

nIN
)

is the average power received on the antennas.

3.2. LR-SIC Detector

The LR-SIC detector represents a nonlinear detector which improves the performance by
transforming the channel into a better-conditioned representation and successively canceling the
interference from different UEs [23,24,26,27,43]. Consider systems with N ≥ K. We can first apply
the QR decomposition of H = QR to reduce the computational complexity by reducing dimensions,
i.e., we generate first

r = QHyq = Gx + ξ, (12)

where
G = αQHH

√
P = αR

√
P, (13)

ξ = QH(αn + nq). (14)

For simplicity, we assume ξ as an AWGN with variance

σ2
ξ = α2σ2

n + αβPRx. (15)

We then apply the complex Lenstra-Lenstra-Lovász (CLLL) algorithm in [25] to the extended
channel matrix

Ḡ = [GT σξIK]
T . (16)

The LR-SIC receiver then consists of a set of linear detectors based on the lattice-reduced
channel matrix

G̃ = GT, (17)

where T is a unimodular matrix with det(T) = 1. The received signal is rewritten as

r = G̃z + ξ, (18)
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with
z = T−1x. (19)

Therefore, we can detect z from r first and then use the relationship in (19) to recover x.
Signal detection can then be applied to the signal model (18) in the lattice-reduced domain.

The MMSE-SIC algorithm [43] can be implemented using the extended received signal

re = [rT 0T
K]

T (20)

and extended matrix
G̃

e
= [G̃

T
σξTT ]T . (21)

The estimate ẑ of z can be computed successively. Assume a detector order of k = 1, 2, · · · .
With the already detected data canceled, the received signal is updated as:

re
i = re −

i−1

∑
j=1

g̃e
j ẑj. (22)

Accordingly, we define a 2K× (K− i + 1) matrix as

G̃
e
i = [g̃e

i , g̃e
i+1, · · · , g̃e

K]. (23)

In order to generate ẑi, MMSE estimation is applied to estimate zi as

z̃i = (we
i )

Hre
i , (24)

where
we

i =
[
(G̃

e
i (G̃

e
i )

H)−1G̃
e
i

]
1

(25)

Following [44], the estimate ẑi of zi is obtained by shifting and scaling the output from z̃i as

ẑi =
1
α

⌊
αz̃i + βt−1

i 1
⌉
− βt−1

i 1, i = 1, · · · , K, (26)

where t−1
i is the i row of T−1, b·e denotes the rounding operator, α and β denote the scaling and

shifting coefficients respectively, and 1 is a vector of 1’s.
The LR-SIC can significantly improve the performance as compared with linear detection [23,24].

Compared with other nonlinear detection algorithms such as the fixed complexity sphere detector
(FCSD), LR-SIC can reuse the filters and thus may exhibit a lower average complexity [43]. In the
above, a natural ordering k = 1, 2, · · · of the transmitted symbol is assumed. In fact, the order of
detection can be optimized to improve performance. One option is to select the symbol that can be
detected with the highest reliability at each stage. This can be based on the MMSE criterion. At the i-th
stage, the MSEs achievable for detecting the un-detected symbols are given by the diagonal entries of

Ei = (G̃
e
i (G̃

e
i )

H)−1. (27)

Therefore, we can choose the symbol that achieves the MMSE to detect at the i-th stage.
The detection order obtained can be stored and reused for the whole coherence block. This is equivalent
to permuting the effective channel matrix of (21) before the MMSE-SIC is performed:

G̃
e ← G̃

e
Π, (28)

where Π denotes the permutation matrix associated with the selected order. Accordingly, the order of
the detection of the transmitted symbols should be updated.
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3.3. Modified Multi-Branch LR-SIC (MMB-LR-SIC)

When the system size increases, the performance of LR-SIC still exhibits a gap to the maximum
likelihood (ML) detector, as has shown in [41,43]. In [41], VLD (variable list detection) is proposed,
which, in addition to the MMSE ordering-based LR-SIC as described above, also applies LR-SIC
detectors with different randomly generated ordering to produce multiple estimates of the same
transmitted symbol. The VLD allows the size of the candidate sets to be variable and hence the
resulting complexity can vary over symbols, which can be high for certain channel uses. In this work,
in order to keep the complexity tractable, we fix the number of detectors to be a finite number L.
As such, L − 1 random orderings are used. Denote these multiple estimates in the LR domain as
ẑl , l = 1, 2, · · · , L, each corresponding to a specific ordering. One best estimate is selected according to
the ML criterion in the LR domain [41] as

ẑ∗ = arg min
ẑl

∥∥∥r− G̃ẑl

∥∥∥2
(29)

Finally, a single estimate of the transmitted symbol is generated as the output

x̂∗ = Tẑ∗. (30)

This multi-branch approach increases the detection complexity but can noticeably improve the
error performance.

4. Energy Efficiency

The detectors introduced in Section 3 have different error rate performance and complexity,
which in turn affects the EE of large-scale MIMO systems with low-resolution ADCs. In this section,
we first analyze the transmitted power required to achieve a fixed BER under different detection
algorithms. We then analyze the corresponding receiver power consumption. Finally, we summarize
the EE.

4.1. Transmission Power

Given the transmission scheme and channel statistics, the SNR required for achieving a given BER
depends on the detector. Consider channels H with both small-scale Rayleigh fading and large-scale
fading arising from path loss. We assume that the large-scale fading between a UE and the BS antennas
is the same. Following [3,33] suppose the UEs are uniformly distributed in a circular cell with radius
dmax and minimum distance dmin

dmin ≤ dk ≤ dmax, 1 ≤ k ≤ K, (31)

where dk is the distance between UE-k and the BS, and the path loss caused by UE-k due to large-scale
fading is modeled as

ϕk =
d̄
dκ

(32)

where κ ≥ 2 is the path loss exponent, and the constant d̄ ≥ 0 regulates the channel attenuation at
distance dmin. In the channel model, the (n, k)-th element in H follows Hnk =

√
ϕk H̃nk, where ϕk

represents the path loss defined by (32) and H̃nk characterizes the independent Rayleigh fading between
UE-k and the n-th BS antenna. We can write

H = diag(
√

ϕ1,
√

ϕ2, · · ·√ϕK)H̃ (33)

where H̃ is the Rayleigh fading component of H. We assume that the target BERs for the different
UEs are equal and so are the average received SNR defined in (3). Assume that SNRRXk = SNR0 is
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required for achieving a target BER, i.e., BER0. Then the transmitted power is allocated according to
the large-scale fading to meet the requirement. As such, the total transmission power is

PDT =
K

∑
k=1

SNR0

ϕk
Bσ2 (34)

where σ2 denotes the noise variance (in Joule/symbol), B is the transmission bandwidth, and Bσ2

denotes the total noise power.

4.2. Power Consumption by Signal Detection

We next analyze the complexity and the resulting circuit power (signal processing-related)
consumption for different signal detectors. We first consider the MMB-LR-SIC detector.
With MMB-LR-SIC, the overall complexity arises from the generation of multiple LR-SIC detectors per
channel realization and the calculations of multiple signal estimates per channel use. The former is
performed only once for a coherent interval where H is fixed, while the latter is conducted for each
received symbol in (6).

The power consumption of the MMB-LR-SIC at the receiver is estimated in [3,12] as

PMMB−LR−SIC
SD = B

CMMB−LR−SIC
detection

LBS
+ λ

CMMB−LR−SIC
common

LBS
(35)

where B is the bandwidth, CMMB−LR−SIC
detection is the number of flops required for detection in one

channel use, assuming that the detector coefficients are already computed and stored; CMMB−LR−SIC
common

represents the number of the calculations required to obtain to perform the QR decomposition, CLLL,
filter calculations, etc, which are shared in a coherent block. LBS represents the computational efficiency
on the BS in [45]. The coefficient λ characterizes the number of coherence blocks (i.e., the number of
times that the MMB-LR-SIC receiver is updated) in a second, which can be computed as

λ =
B

BcTc
. (36)

In the following complexity analysis, we ignore lower order terms for simplicity, which do not
contribute significantly to the overall complexity. Let one flop refer to one operation of real-valued
numbers, and thus each complex-valued multiplication and addition costs 6 and 2 flops, respectively.
All complexity calculations are based on [46]. The QR decomposition of H costs

CQR = 8K2
(

N − K
3

)
(37)

flops. The computational complexity Cclll of the CLLL varies with channel realization and can
be analyzed following [25]. In this paper, we track Cclll through numerically by summing up the
complexities of the basic operations in the CLLL algorithm. Computing T−1 costs about

CT−1 = 8(K3 + K2) (38)

flops. Let t = K− i + 1 be the number of columns of the extended channel matrix G̃
e
i in (23) after the

interference cancellation. Then calculating (27) costs 8t2K + 4t3 flops and computing the filter we
i costs

about 8Kt flops. Therefore, finding the K MMSE-SIC filters costs

Cfilter = 8K3 + 8K +
K

∑
t=1

(4t3 + 8t2 + 12Kt) (39)
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flops, assuming that explicit inversion of (G̃
e
i (G̃

e
i )

H) is conducted. As such, the MMSE-based ordering
can be achieved with no extra cost. The detector construction part requires a complexity of

CMMB−LR−SIC
common = CQR + Cclll + CT−1 + LCfilter. (40)

In order to detect the transmitted symbol, we first calculate QHyq, which costs about 8KN flops.
In the LR domain, detecting one transmitted symbol costs about 16K flops and cancelling the interfence
due to a single symbol costs another 16K flops. After obtaining the a symbol estimate in the LR
domain, computing its ML metric costs 8K2 flops. Finally a single transmit symbol estimate is chose
and converted to the original domain, with 8K2 flops. Based on the above analysis,

CMMB−LR−SIC
detection ≈ 8KN + 40LK2 + 8K2, (41)

which increases linearly with the number of branches L.
The LR-SIC detector is a special case of MMB-LR-SIC with L = 1. Since there is only one branch

(with the MMSE ordering), there is no need to compute the ML metric. Following [3,12], its power
consumption is estimated as

PLR−SIC
SD = B

CLR−SIC
detection
LBS

+ λ
CLR−SIC

common
LBS

. (42)

The computational complexity of each part is as follows:

CLR−SIC
detection = 8KN + 40K2, (43)

CLR−SIC
common = CQR + Cclll + CT−1 + Cfilter. (44)

Similarly to (35), the power consumed by the MMSE detector at the receiver is

PMMSE
SD = B

CMMSE
detection
LBS

+ λ
CMMSE

filter
LBS

, (45)

where
CMMSE

filter = 4K3 + 8K2 + 12K2N + 4KN, (46)

CMMSE
detection = 8KN. (47)

The computational complexity of detector construction and signal detection for the three detectors
is summarized in Table 3.

Table 3. Computational complexity of signal detection and detector construction for MMB-LR-SIC,
LR-SIC and MMSE detection.

Detection Cdetection CQR CT−1 Cfilter

MMB-LR-SIC 8KN + 40K2L + 8K2 8K2(N − K
3 ) 8(K3 + K2) L[8K3 + 8K + ∑K

t=1(4t3 + 8t2 + 12Kt)]
LR-SIC 8KN + 40K2 8K2(N − K

3 ) 8(K3 + K2) 8K3 + 8K + ∑K
t=1(4t3 + 8t2 + 12Kt)

MMSE 8KN 0 0 4K3 + 8K2 + 12K2N + 4KN

4.3. ADC Power Consumption

The receiver power consumption also includes the power consumption of the ADCs. The power
consumed by a single ADC is estimated by [12]

PADC = fs × FOM× 2b (48)
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where b is the number of bits of the ADC, the figure of merit (FOM) means energy consumed
per conversion step, and fs the sampling rate. Generally, an ADC with high-resolution leads to
smaller quantization errors compared with a low-resolution ADC but also greater power consumption
(48). In this paper, we assume a moderate value of FOM = 1432.1 fJ per conversion step [12,47]
to model ADCs. Note that the power consumption due to ADC is independent of the detection
algorithm applied.

4.4. Energy Efficiency

Based on the above detailed analysis of transmission power, power consumption by signal
detection, and ADC power consumption, we now summarize the total power consumption of the
system and calculate the system EE. Assuming quadrature phase shift keying (QPSK) signaling,
i.e., one user transmits 2 bits per symbol. The total transmission rate of UE-k is R = 2BK bits/second.
The energy efficiency is evaluated as

EE =
R

Ptot
(49)

in bits/Joule, where the power consumption includes

Ptot = KPUE +
PDT

η
+ N(PBS + 2PADC) + PSYN + PSD + PFIX, (50)

where PUE and PBS denote the power consumed by a single radio frequency (RF) chain and the UE
and BS, respectively; η is the efficiency of the power amplifier at the transmitter; PUE and PDT/η

represent the power consumption of the circuits and power amplifiers at the transmiter side; PSD is
the power consumption by signal detection, which can be evaluated as (35), (42) and (45) for the
respective detectors; PFIX is the power consumed by the signal control, backhaul, etc.; PSYN is the
power consumed by the local oscillator [3].

Note that the above model ignored certain power consumption such as the channel decoding,
etc. However, it still provides useful insights in studying the influence of signal detection and ADC
resolution on the EE. We have summarized the major steps for evaluating the EE of MIMO systems
with the LR-SIC detector in Algorithm 1 and other detectors can be evaluated similarly.

Algorithm 1 Evaluation of Energy Efficiency of MIMO Systems Employing the LR-SIC Detector

Input: Number of UEs K, number of receiver antennas N, radius of the cell dmax, target BER,
computational efficiency LBS

Output: Energy efficiency: EE
1: Perform Monte-Carlo simulations based on the system model (1) and (6), and the LR-SIC detector

described in Section 3.2
2: Calculate the transmission power PDT in (34) averaged over ϕk
3: Calculate the power consumption due to signal detection as (42)
4: Calculate ADC power consumption as (48)
5: Compute the total power consumption as (50)
6: Calculate the EE (49)

5. Simulation Results and Discussion

We now present numerical results with the parameter settings in Table 4, following [3,12].
QPSK modulation is assumed.
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Table 4. Simulation Parameter.

Parameter Value

Minimum distance: dmin 35 m
Large-scale fading: βk 10−3.53/d3.76

k
Transmission bandwidth: B 20 MHz
Channel coherence time: TC 10 ms

Channel coherence bandwidth: BC 180 kHz
Total noise power: Bσ2 −96 dBm

FOM 1432.1fJ/conv− step
Uplink PA efficiency at the UEs: η 0.3

Sampling rate: fs 20 MHz
Carrier frequency: fc 2 GHz

Power per RF chain the BS: PBS 0.4 W
Power per RF chain the UE: PUE 0.1 W

PFIX 18 W
PSYN 2 W

5.1. BER vs. SNR

We first compare the BER of different detection algorithms for MIMO systems low-precision
ADCs. Figure 2 compares several detectors for a scenario with K = 20 UEs and N = 30 antennas at the
BS. For the MMB-LR-SIC scheme, we set L = 2 and L = 4 to test detectors with different performance
and complexities. In general, increasing the number of candidates L improves BER but also increases
the complexity. The performance of all the detectors improve with as ADCs of higher resolutions
are used, especially when the number of bits b is increased from 2 to 3. At low SNR where the noise
is dominant, the difference in the BER is small for different ADCs. However, as the SNR increases,
the quantization error dominates and there are significant gaps between different ADC choices. It is
also clear that nonlinear signal detectors such as the LR-SIC can significantly reduce the SNR required
for achieving a given BER, especially when the target BER is low and the ADC resolution is low.
This indicates that more advanced symbol detectors are requried for acheiving better performance.

0 5 10 15 20 25

SNR(dB)
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Figure 2. BER versus the receiver SNR for K = 20, N = 30.

Figure 3 compares the performance when the the number of BS antennas is increased from N = 30
to 60. It is seen that the trends are similar to Figure 2. It is also interesting to see that nonlinear signal
detectors still provide better performance, showing that they can improve over linear detectors even
when a large number of BS antennas are employed. However, as well known from the past massive
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MIMO studies, the performance gaps between linear and nonlinear receivers diminishes when the
condition number of the channel is improved as more antennas are used at the receiver. Meanwhile,
the signal processing complexity increases when nonlinear SIC is employed as compared with the
linear MMSE detector.
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Figure 3. BER versus the receiver SNR for K = 20, N = 60.

The above SNR-BER analysis suggests that the different receivers have different error rates versus
complexity tradeoff. However, it challenging to select among the different candidates. In the following,
we use the EE as a performance metric to compare the different detectors under different scenarios
of applications.

5.2. EE Performance

Figure 4 shows the EE performance of the different receivers with ADCs of different resolutions
for K = 20, N = 30, dmax = 100 and a target BER0 = 10−2. It is seen that LR-SIC achieves the
highest EE in general. In such a scenario, the numbers of antennas and the UEs are comparable.
LR-SIC and MMB-LR-SIC can significantly reduce the transmission power required as can be seen from
Figure 2. A large portion of the total power is consumed by the transmitter. The nonlinear detectors
can reduce the transmitted power requirement which outweighs the increased signal processing power.
As the ADC resolution improves, the EE first improves and then degrades. This is because when
the resolution is too low, the transmitted power required is high; while when the resolution becomes
higher, the power consumption due to the ADCs is increased. It appears that ADCs of 5 to 7 bits
are advantageous.

In Figure 5, we increase the number of receiver antennas to N = 60, to consider a massive MIMO
scenario. Interestingly, it is seen that in such a scenario the linear MMSE detector can be advantageous.
This is because the transmission power required for achieving BER0 = 10−2 becomes similar for
different detectors but nonlinear detectors exhibit higher signal processing complexity, which translates
into higher receiver power consumption and lower EE. Also it is noted that low-resolution ADCs
are advantageous when the number of antennas is large as compared with high-resolution ADCs.
However, it is noticed that the overall EE degrades as compared to Figure 3 when the receiver antenna
is increased from N = 20 to N = 60.

Figure 6 shows the EE when the size of the cell is increased to 400 m for the scenario in Figure 4.
Compared to Figure 4, the EE degrades due to increase of the transmission power required as the
propagation loss increases on average when the cell size is increased. The relative gains provided by
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nonlinear LR-SIC receivers are larger in larger cells. This suggests that the nonlinear receivers may be
preferred for transmissions over longer distance.

Figure 7 demonstrates the circuit power and transmission power with different numbers of
quantization bits, where dmax = 400 m and BER0 = 10−2, LBS = 75 Gflops/W. The circuit power
consumption includes PADC. It is seen that when low-resolution ADCs are used, the transmission
power dominates the overall power consumption; when the number of bits increases, the circuit power
consumptions become more significant. This explains the EE change in Figure 6.
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Figure 4. Energy efficiency for K = 20, N = 30, dmax = 100 m, at BER0 = 10−2, LBS = 75 GFlops/W.
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Figure 5. Energy efficiency for K = 20, N = 60, dmax = 100 m, at BER0 = 10−2, LBS = 75 GFlops/W.
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Figure 6. Energy efficiency for K = 20, N = 30, dmax = 400 m at BER0 = 10−2, LBS = 75 GFlops/W.
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Figure 7. Power consumption of different parts for dmax = 400 m at BER0 = 10−2, K = 20, N = 30,
LBS = 75 GFlops/W.

Figure 8 has the same parameter as Figure 6 except BER0 = 10−3. Comparing Figures 6 and 8,
nonlinear detectors are capable of supporting higher reliability with a higher energy efficiency,
especially the LR-SIC, as compared to the MMSE detector. This is due to the relatively lower
transmission power consumption for supporting a better BER. However, the advantages of nonlinear
LR-SIC detector over the MMSE detector vanish when the number of BS antennas is increased. This is
shown in Figure 9 where N = 60 antennas are used. Furthermore, increasing the number of antennas
can improve the EE as compared with Figure 8. The above results also suggest that the maximum EE is
typically achieved with ADCs of intermediate resolutions, which offers good tradeoff between in the
increase of transmission power due to quantization errors and the increase of the power consumptions
due to ADCs themselves.

Figure 10 shows the EE with K = 20, N = 30, dmax = 400 m, BER0 = 10−2 and the computational
efficiency is improved to LBS = 500 Gflops/W. Comparing this with Figure 8, the EE is increased and
similar trends are observed for the performance of different detectors.
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Figure 8. Energy efficiency for K = 20, N = 30, dmax = 400 m at BER0 = 10−3, LBS = 75 GFlops/W.
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Figure 9. Energy efficiency for K = 20, N = 60 with dmax = 400 m at BER0 = 10−3,LBS = 75 GFlops/W.
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Figure 10. Energy efficiency for K = 20, N = 30, dmax = 400 m at BER0 = 10−3, LBS = 500 GFlops/W.
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In Figure 11, K = 20 and we consider the change of the EE with the number of receiver antennas.
It is seen that the MMB-LR-SIC with L = 4 has the lowest EE in the case of a large number of
antennas, due to the high power consumed by signal processing, while in relatively small cells
the transmission power is low for all receivers. The nonlinear receivers are advantageous when
the number of BS antennas is smaller (When the number of BS antennas is small, the channel
becomes more ill-conditioned. Consequently, the linear detectors based on the (pseudo)-inverse
or regularized inverse of the channel matrix can introduce significant amplification of the noise.
Nonlinear receivers, after interference cancellation, work on a better-conditioned channel, which results
in less significant noise enhancement). In Figure 12, we can see that as computational efficiency
increases, nonlinear receivers become advantageous in a larger range of cases.

20 30 40 50 60 70 80 90 100

Number of Antennas

0

2

4

6

8

10

12

14

E
E

(b
it/

J)

×106

MMB-LR-SIC(L=2),6bit
MMB-LR-SIC(L=4),6bit
LR-SIC,6bit
MMSE,6bit

Figure 11. Energy efficiency for K = 20 UEs and 6-bit ADCs at the BS in dmax = 400 m at BER0 = 10−2,
LBS = 75 GFlops.
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Figure 12. Energy efficiency for K = 20 UEs and b = 6-bit ADCs at the BS with dmax = 400 m at
BER0 = 10−2, and LBS = 500 GFlops/W.
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6. Conclusions

In this paper, we study the detection and energy efficiency of massive MIMO systems with
low-precision ADCs. The MMSE and LR-SIC detectors are studied. Their transmission power required
for support a transmission rate at a given reliability is compared. The circuit power consumption
including the ADCs power consumption and the signal processing complexity are analyzed. Finally,
the energy efficiency with different detection algorithms under different system settings are compared.
The results show that nonlinear receivers achieve better error rates but also require higher complexity.
However, the EE-optimal choice of the signal detection algorithms depends highly on the concrete
scenarios. In general, fewer receiver antennas, higher reliability requirement, larger cell size may
require nonlinear detectors to be used to achieve the highest EE. While the linear detector may be more
advantageous when the transmission power required is low, such as when the number of BS antennas
is large, cell size is small, etc.

It should be noted that the framework presented in this paper can be adapted to analyze
systems based on different modulation schemes (e.g., multiple-PSK (M-PSK), multiple- Quadrature
Amplitude Modulation (M-QAM)), signal detectors, channel models, transceiver architectures, and
power allocation schemes, by characterizing the error rate performance and computational complexity
of the detector concerned. Other future work may include the extension to multiple-cell scenarios and
wireless sensor networks.
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