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Abstract: Present communication aims to inspect the entropy optimization, heat and mass transport
in Darcy-Forchheimer nanofluid flow surrounded by a non-linearly stretching surface. Navier-Stokes
model based governing equations for non-Newtonian nanofluids having symmetric components
in various terms are considered. Non-linear stretching is assumed to be the driving force
whereas influence of thermal radiation, Brownian diffusion, dissipation and thermophoresis is
considered. Importantly, entropy optimization is performed using second law of thermodynamics.
Governing problems are converted into nonlinear ordinary problems (ODEs) using suitably
adjusted transformations. RK-45 based built-in shooting mechanism is used to solve the problems.
Final outcomes are plotted graphically. In addition to velocity, temperature, concentration and
Bejan number, the stream lines, contour graphs and density graphs have been prepared. For their
industrial and engineering importance, results for wall-drag force, heat flux (Nusselt) rate and mass
flux (Sherwood) rate are also given in tabular data form. Outputs indicate that velocity reduces
for Forchheimer number as well as for the porosity factor. However, a rise is noted in temperature
distribution for elevated values of thermal radiation. Entropy optimization shows enhancement
for larger values of temperature difference ratio. Skin-friction enhances for all relevant parameters
involved in momentum equation.

Keywords: Darcy–Forchheimer model; non-linear stretching sheet; entropy optimization; nanofluid

1. Introduction

Tiny particles having diameter between 1–100 nm are termed nanoparticles. These particles
belong to any suitable class of metals with significant thermo-physical properties. Conventional
base materials/liquids are treated through these particles. Though tiny particles are suspended
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in base liquid for a shorter period of time, the achieved results are more effective than using a
simple base fluid. This formulated mixture is known as nanofluid. These mixtures have enormous
applications in engineering, industry and advanced nanotechnology. The manufacturing procedures
at micro-level industries, nuclear reactors and power engines are directly related to these formulations.
Petroleum industry, chemical industry, geothermal industry, and other related fields are important
in this context. The pioneer study on this formulation has been reported by Choi [1]. The process
of heat transport had shown much improvement after involvement of nanofluids. In particular,
the dramatic effect is noted in power engines, refrigerators, nuclear reactors, fuel cells, thermal
management, etc. For example, Chamkha and Khaled [2] reported some similarity solutions of
mixed convection and heat transfer in Darcy medium. Parvin and Chamkha [3] disclosed features
of odd-shaped cavity filled with nanofluid. They also performed entropy optimization in this study.
Zaraki et al. [4] analyzed natural convection and boundary layer phenomena in nanofluid flow. Reddy
and Chamkha [5] discussed properties of Al2O3 and TiO2-Water type nanofluid flow bounded by
stretching surface. Chamkha et al. [6] discussed entropy optimization in CuO and water nanofluid flow
subject to C-shaped cavity. Rasool et al. [7] reported Darcy relation in MHD nanofluid flow bounded by
non-linear stretching surface. Ismael et al. [8] discussed heat flux and entropy optimization in nanofluid
flow subject to porous medium. Sheikh and Abbas [9] analyzed consequences of heat generation
and thermophoresis in MHD nanofluid flow subject to oscillatory stretched surface. Rasool et al. [10]
discussed the properties and heat transfer attributes of second grade nanofluid flow subject to a
convective and vertical Riga pattern. Lund et al. [11] reported a study on Darcy type Casson nanofluid
flow using exponential sheet. Rasool et al. [12] implemented the famous Cattaneo–Christove model to
analyze the Darcy relation in MHD nanofluid flow past a non-linearly stretching flat surface. In another
study, Lund et al. [13] modeled nanofluid flow using Cu and Ag type nanoparticles for enhancement of
thermophysical properties of the base liquid. Rasool et al. [14] involved an electromagnetic actuator to
study the Marangoni convection in nanofluid flow. In another study, Rasool et al. [15] reported Darcy
type nanofluid flow subject to Jeffrey model. Involvement of Riga plate and Marangoni convection
together in one study is reported by Rasool et al. [16]. Sohail et al. [17,18] disclosed the features
of Entropy and MHD in nanofluid flow, respectively. Entropy optimization has been discussed by
Rasool et al. [19] in their study based on Darcy model. Tlili et al. [20,21] reported some good results
about enhancement of thermophysical properties of base fluids when saturated with nanoparticles.
Wakif et al. [22] analyzed unsteady natural convection in Coette nanofluid flow subject to MHD and
thermal radiation. In another study, Wakif et al. [23] reported electro-thermohydrodynamic stability of
nanofluids using Buongiorno model.

Involvement of thermal radiation in nanofluids flow has been extensively used in previous
literature especially in case of non-Newtonian and incompressible fluids. Design of heat ex-changers
and other such equipment, propulsion devices, nuclear power plants, gas turbines, space devices and
vehicles and satellites, etc. are typical examples of the applications of thermal radiation. Cortell [24],
for the first time, involved thermal radiation parameter in his study on heat and mass transport
mechanism using stretching surface. Shehzad et al. [25] reported Jeffrey nanofluid using non-linear
thermal radiation effect. Shafiq et al. [26] reported properties of convective conditions and thermal
slip effects in MHD three dimensional Darcy-Forchheimer rotating nanofluid flow. Animasaun et al.
[27] reported homogeneous and heterogeneous reactions involving thermal radiation and MHD in
nanofluids flow. Hayat et al. [28] reported slip effects in MHD three dimensional flow of nanofluid
under the influence of thermal radiation.

Recently, the concept of entropy optimization has received utmost attention from research
community for various reasons. Thermo-dynamical irreversibility in any flow system is directly
measured by the system irreversibility. The second law of thermodynamics is helpful in this context
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because it has more significance as compared to the first law of thermodynamics. In particular,
heat produced during any irreversible process in a heat transport mechanism is known as entropy
generation. It might occur for different reasons such as kinetic energy, spin movement, internal
movement of molecules and internal molecular vibrations, etc. In such cases, heat loss is noted which
ultimately varies entropy systems. Numerous systems such as refrigeration, energy storage systems,
solar energy systems, etc. are important areas that involve minimization of entropy generation.
Numerous research articles are available in literature wherein, researchers have tried to compute the
entropy to see its influence on whole heat transport mechanism. Bejan [29,30] reported a pioneer study
on entropy optimization in heat and mass transport mechanisms. Later on, this concept of entropy
optimization has been greatly reflected in studies such as Liu et al. [31] reported some good results
for natural convection and entropy optimization in nanofluid flow bounded by triangular enclosures.
Hosseinzadeha et al. [32] reported entropy optimization in (CH2OH)2 type CNTs based nanofluid
flow subject to MHD and thermal radiation. Khan et al. [33] analyzed numerical findings in MHD
mixed convective flow targeting entropy optimization.

Flow analysis and boundary layers behavior involving a stretching sheet is known as one of
the important fluid models to analyze three main profiles in any kind of heat and mass transport
mechanism. It is connected with numerous industrial and engineering applications such as paper
production, plastic sheet production and extrusion, metallic plates cooling process and similar other
procedures (see for example Hu et al. [34,35]). The concept was build by Crane [36] in the pioneer
study on stretching surfaces involved in fluid flow analysis. This study was reported on the variations
in fluid movement instigated by a stretching velocity (via stretching surface). Sajid et al. [37]
reported a fluid stream inspired by a curvy extended stretching surface. Rosca and Pop [38] further
observed the properties of stretching surfaces in fluid flow phenomena using various fluid models.
Naveed et al. [39] reported another good article on magnetohydrodynamic micropolar nanofluid flow
due to extended sheet. They accounted for the effect of thermal radiation as well. Abbas et al. [40]
reported a radiative flow analysis instigated by stretching surface.

This study is inspired by the novelty in various aspects. The concept of entropy optimization in
fluid flow through Darcy channel together with non-linearly stretching surface has not been reported
in the literature yet. Since, non-linear stretching has been of utmost importance in fluid flow analysis,
therefore the present model comprising the Darcy channel, non-linear stretching sheet and MHD is
directly affected by irreversible heat loss phenomena and entropy optimization. Overall, the study is
organized as follows. Firstly, an incompressible MHD involved nanofluid flow is assumed surrounded
by a non-linearly stretched surface flowing through a Darcy (porous medium) channel. Importantly,
Brownian diffusion, viscous dissipation and thermophoresis are considered. In addition, thermal
radiation is also considered in the present model. Secondly, the problem is solved by the numerical
RK45 scheme using shooting technique. Thirdly, a graphical representation of results is given with
a comprehensive discussion on each graph. Finally, the main findings are listed in a precise and
conclusive manner, especially data tables on Nusselt and Sherwood numbers and skin-friction, which
is very helpful in industrial and many other applications of nanofluids.

2. Mathematical Modeling

Here we adopted an incompressible, viscous, Darcy–Forchheimer MHD nanofluid convection
surrounded by a non-linear stretching surface. Entropy optimization, heat and mass transport in
Darcy–Forchheimer type nanofluid flow is analyzed. Non-linear stretching is assumed to be the
driving force whereas effects of radiation, Brownian diffusion, dissipation and thermophoresis are
accounted for. Importantly, entropy optimization is performed using second law of thermodynamics.
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The model is purely taken in two dimension having x−axis along the fluid flow while y−axis spreads
surface normal to flow direction. A schematic diagram is sketched in Figure 1.

Boundary layers  

Porous Medium 

u = 0,        T = 𝐓∞,     𝐂 = 𝐂∞ 

   u  =  uw  =  mxn,          T=Tw           C=Cw 

Non-linearly stretching sheet  

B0 

Slit 

u 

v 

Figure 1. Flow Chart.

Let u = u1 and v = u2 be the velocity components, T be the temperature distribution and C be
the concentration of nanoparticles. Therefore, the governing equations for mass, momentum, energy
and concentration distribution are as follows:

∂u1

∂x
+

∂u2

∂y
= 0, (1)

u1
∂u1

∂x
+ u2

∂u1

∂y
= ν

∂2u1

∂y2 −
[σB2

0
ρ f

u1 −
ν

K
u1 +

Cb√
K

u2
1

]
, (2)

u1
∂T
∂x

+ u2
∂T
∂y

= α
∂2T
∂y2 +

(ρc)np

(ρc) f l

[
DBr

(
∂C
∂y

∂T
∂y

)
+

DTh
T∞

(
∂T
∂y

)2 ]
+

σB2
0

ρC f
u2

1

− 1
ρC f

∂qr

∂y
+

µ

K (ρC) f
u2

1,
(3)

u1
∂C
∂x

+ u2
∂C
∂y

= DBr

(
∂2C
∂y2

)
+

DTh
T∞

(
∂2T
∂y2

)
, (4)

subject to the following boundary conditions,

u1 = Uw = mxn, u2 = 0, T = Tw, C = Cw at y = 0, (5a)

u1 = 0, T = T∞, C = C∞ as y→ ∞. (5b)
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Here, µ is dynamic viscosity, B0 is magnetic impact/intensity, ν is used for kinematic viscosity,
ρ f is the density, DBr is used for Brownian diffusion, DTh is used for thermophoresis. σ is electric
conductivity of base fluid, (ρc)np is called nanoparticles’ heat capacity, (ρc) f l is called fluid’s heat
capacity. Cb is used as drag force coefficient and K permeability. σ′ and k′ are Stephen Boltzmann
constant and mean absorption constant, respectively. qr is called radiative heat-flux. By virtue of
Rosseland’s approximation subjected to Taylor expansion and neglecting higher order terms,

∂qr

∂y
= −16σ′T3

∞
3k′
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∂y2 . (6)
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Using (6) and (7a)–(7e) in (1)–(5), we have the following governing equations in one dimensional
form:
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f (0) = 0, θ(0) = 1, φ(0) = 1, f ′(0) = 1, (11a)

θ(∞) = 0, f ′(∞) = 0, φ(∞) = 0. (11b)
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Here, M is given for MHD, λ, Fr is used for inertia (Forchheimer number), Pr is Prandtl parameter,
Nb is Brownian factor, Nt is Thermophoretic factor and Sc is Schmidt factor, Rd is the given radiation,
Ec is the given Eckert number and Rd is used for thermal radiation. Mathematically,
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Entropy Generation Modeling

For the viscous flow, following is the governing equation for entropy phenomenon,
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Above equation comprises of four major irreversible parts, (i) thermal radiation, (ii) Joule
heating, (iii) porous/Darcy relation and (iv) Concentration distribution. Using the transformations,
Equation (13) reduces to following one dimensional form:

NG =

(
(n + 1

2

)
β1

(
1 +

4
3

Rd

)
θ′2 + M2Br1 ( f ′)2 +

(
1 + n

2

)
L1

β1
(φ′)2 + L1

(
1 + n

2

)
φ′θ′

+ Br1λ

(
1 + n

2

)
( f ′)2 .

(14)



Symmetry 2020, 12, 652 7 of 27

where NG is the given entropy generation, β1 is the given temperature difference term, Br1 is the
Brinkman number and L1 is known as the diffusive variable. Mathematically,
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SGνT∞
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3. Solution Methodology

Numerical scheme RK45 with shooting technique is applied on final governing Ordinary
differential equations to plot the results. The below mentioned procedure has been adopted:
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Subject to

f (0) = 0, θ(0) = 1, φ(0) = 1, h(0) = 1, (17a)

θ(∞) = 0 = φ(0), h(∞) = 0. (17b)

A careful choice for initial guess of the core functions is adopted for solving initial value problems
using RK45. Based on previous iterations, a suitable convergence criteria is adopted. Iterations are
repeated unless a difference upto or a less than 10−5 is obtained. This numerical scheme has various
advantages and accuracy as compared to previous and classical methods of solutions such as HAM,
OHAM, etc. Results are more efficient and speedy convergence is achieved. Similar procedure is
adopted for Entropy optimization.
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4. Analysis

Here we adopted an incompressible, viscous, MHD and Darcy–Forchheimer nanofluid convection
surrounded by a non-linear stretching surface. Importantly, entropy optimization, heat and mass
transport is analyzed. Non-linear stretching is assumed to be the driving force whereas effects of
radiation, Brownian diffusion, dissipation and thermophoresis are accounted for. We have incorporated
the RK45 built-in system with shooting technique to plot the numerical outcomes of non-linear system
of equations. Properties of velocity field, temperature and concentration distributions, stream functions,
Bejan number are disclosed in this section.

In Figures 2–4, we have evaluated physical behavior of velocity field for variation in different
parameters involved in momentum equation. In particular, Forchheimer number (Fr), porosity factor
(λ), magnetic (MHD) field effect on fluid flow is analyzed graphically. Figure 2 illustrates impact of
Forchheimer number on velocity field and corresponding boundary layer. Continuous enhancement
in resistance offered to fluid motion by inertial factor results in smooth decay in velocity profile.
In Figure 3 we see the plot of impact of porosity factor imparted on fluid flow (velocity field) and
corresponding boundary layer formulation. We observe that porous medium offers more retardational
force (friction) which continuously diminishes the velocity of liquid. Boundary layer becomes thinner.
Impact of Lorentz forces generated by applied magnetic (MHD) field on fluid flow and corresponding
boundary layer thickness is plotted in Figure 4. Effective magnetic (MHD) field to the surface normal
along vertical axis creates sudden bumps and hurdles in the way of fluid movement that causes a
declination in the fluid motion. The stronger the impact of MHD, the lesser the fluid movement along
the horizon.

Figures 5–9 are graphical results related to the parameters involved in momentum and energy
equations to see variations in given domain. Since the article mainly emphasis on Darcy relation,
therefore, Forchheimer number and porosity factors are two important parameters that vary the
temperature distribution. Furthermore, thermal radiation is another important factor. Besides these,
the impact of Brownian diffusion and thermophoresis influence on thermal state (distribution) are also
noted herein. In particular, Figures 5 and 6 display the consequences of inertia and porosity factors on
thermal distribution, respectively. The resistive force due to inertia and enhanced friction are the source
of enhancement in heat convection. Temperature distribution rises for rising values of both the factors
whereas, opposite behavior is observed for anti-augmented numerical values. Impact of Brownian
diffusion and thermophoresis is given in Figures 7 and 8, respectively. An intensive thermophoretic
force gives rise to the in-predictive motion of the nanoparticles that rises the field temperature and
corresponding boundary layer shows more thickness. Influence of thermal radiation factor (Rd) is
plotted in Figure 9. A certain rise in thermal state (distribution) is noted for elevated numerical values
of thermal radiation factor.

Figures 10–12 are plotted to see the impact of Brownian diffusion, thermophoresis and Schmidt
number on concentration of nanoparticles. In particular, Figure 10 is a plot of variations recorded in
concentration distribution for rising values associated with Brownian diffusion. The concentration of
the nanoparticles reduces near to surface. An enhancement is noted in case of thermophoresis due to
the stronger thermophoretic force, which effectively produces more in-predictive movements as shown
in Figure 11. Variation noted in concentration field for rising numerical values of Schmidt number is
plotted in Figure 12. A decline is observed in the respective field. Physically, the inverse relation of
Brownian diffusion and kinematic viscosity gives rise to this behavior in concentration profile.

We have sketched stream functions as well as contour graphs at different numerical values of
magnetic parameter M given in Figures 13–16, respectively. In particular, Figures 13 and 14 are the
contour graphs given at M = 0.1 and M = 0.5. An enhanced variation can be seen at the distance
much away from origin. Near the origin, this variation is very narrow. Figures 15 and 16 are stream
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functions graphs at M = 0.1 and M = 0.5, respectively. A very narrow variation is noticed between
two pictures. On a closer look, one can see that at M = 0.1 the curves are not spread much as compared
to the case M = 0.5. Physically, the stronger magnetic effect boosts the opposing Lorentz forces which
occur in the way of fluid motion and stream lines get affected, whereas Figures 17 and 18 present the
stream density at M = 0.1 and M = 0.5, respectively.

Figures 19–21 are given on variations noted in Bejan number for various values of inertia
factor, thermal radiation and temperature difference ratio parameter. In particular, Figure 19 shows
the behavior of Bejan number with respect to the elevated values of Inertia factor. The effect is
narrowed near the surface, however a comprehensive change is noted away from surface. Physically,
irreversibility enhances due to friction offered by porous media to fluid and nanoparticles. A certain
decrease is noted in Bejan number for elevated values of thermal radiation shown in Figure 20.
Physically, larger emission rate of radiation impacts on Bejan number which shows reduction. A mixed
behavior of Bejan number is noted for temperature difference ratio parameter. After a certain value,
rising nature switches back to the declining trend as shown in Figure 21.

Outcomes obtained numerically in lieu of skin friction, heat flux (Nusselt) rate and also mass
flux (Sherwood) rate, respectively are given in Tables 1 and 2. In particular, Table 1 gives the results
of skin-frictional force for various values of magnetic parameter, inertia factor and porosity factor.
A rising trend is noticed for all the variations. In Table 2, the results are given for heat flux (Nusselt)
rate and also, mass transfer (Sherwood) rate, respectively. Inside out thermal (radiation) behaves as a
continuous heat source. Specifically, thermal radiation shows reduction in heat transport phenomena
(Nusselt) and enhancement in mass flux (Sherwood) rate. A reducing trend in both heat transport rate
(Nusselt) and also mass transport rate (Sherwood) is noticed for elevated values of porosity factor.
Strong retardation offered by porous media is the reason behind this decline in both physical quantities.

Fr = 0.0, 0.5, 1.0, 1.6

   M =  0.3, n = 1.5, Λ = 0.2,  

1 2 3 4
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Figure 2. Impact of Forchheimer number on f ′(η).
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Figure 3. Impact of porosity factor on f ′(η).
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Figure 4. Impact of magnetic parameter on f ′(η).
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   M =  0.1, n = 1.5, Λ = 0.3, Nt = 1.0, Nb = 0.3, Pr = 1.5,  

    Rd = 0.3,  Ec = 0.5, Sc = 1.0    
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Figure 5. Impact of Forchheimer number on θ(η).
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Figure 6. Impact of porosity factor on θ(η).
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 Nb = 0.1, 0.5, 0.8, 1.4
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Figure 7. Impact of Brownian diffusion on θ(η).
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Figure 8. Impact of thermophoresis on θ(η).
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   M =  0.1, n = 1.5, Fr = 0.3, Nb = 0.3, Λ = 0.6, Pr = 1.5,  

    Nt = 1.0,  Ec = 0.7, Sc = 1.0

 Rd = 0.0, 0.2, 0.4, 0.6

2 4 6 8
Η

0.2

0.4

0.6

0.8

1.0

Θ HΗL

Figure 9. Impact of thermal radiation on θ(η).

   M =  0.1, n = 1.5, Fr = 0.3, Rd = 0.5, Λ = 0.6, Pr = 1.0,  

    Nt = 0.3,  Ec = 0.7, Sc = 1.0
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Figure 10. Impact of Brownian diffusion on φ(η).
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Figure 11. Impact of thermophoresis on φ(η).
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Figure 12. Impact of Schmidt number on φ(η).
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Figure 13. Contour graph at M = 0.1.
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Figure 14. Contour graph at M = 0.5.
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Figure 15. Streamlines at M = 0.1.
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Figure 16. Streamlines at M = 0.5.
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Figure 17. Stream density at M = 0.1.
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Figure 18. Stream density at M = 0.5.
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   M =  0.3, n = 1.2,  Λ = 0.2, Nt = 1.0, Nb = 0.3, Pr = 1.0, 

    Rd = 0.5,  Sc = 1.0,  Ec = 0.7, Β1 = 0.7, Β2 = 0.5, L1 = 0.5, Br1
 = 0.6,    

Fr =  0.0, 2.0, 3.5
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Figure 19. Impact of Forchheimer number on Bejan number.

   M =  0.3, n = 1.2,  Λ = 0.2, Nt = 1.0, Nb = 0.3, Pr = 1.0, 

    Fr = 0.5,  Sc = 1.0,  Ec = 0.7, Β1 = 0.7, Β2 = 0.5, L1 = 0.5, Br1
 = 0.6,    

Rd =  0.0, 0.2, 0.4
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Figure 20. Impact of thermal radiation on Bejan number.
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 Β1 = 0.7, 0.9, 1.3, 1.7

   M =  0.3, n = 1.2,  Λ = 0.2, Nt = 1.0, Nb = 0.3, Pr = 1.0, 

    Fr = 0.5,  Sc = 1.0,  Ec = 0.7, Rd  = 0.2, Β2 = 0.5, L1 = 0.5, Br1
 = 0.6,    
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Figure 21. Impact of temperature difference parameter on Bejan number.

Table 1. Numerical outcomes of skin-friction given at n = 1.2 while values of other parameters are
varied one by one.

M Fr λ −RexCx

0.0 0.3 0.6 1.6772
0.5 1.75074
1.0 2.325338
0.5 0.0 0.6 1.63528

0.3 1.75074
0.6 1.85947

0.2 0.5 0.0 1.56812
0.6 1.75074
1.2 2.419236
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Table 2. Numerical outcomes of heat transfer (Nusselt) rate and mass transfer (Sherwood) rate given at
n = 1.2 while values of other parameters are varied one by one.

M Fr λ Rd Pr Nt Nb Ec Sc Nusselt Sherwood

0.0 0.3 0.6 0.5 1.0 0.1 0.2 0.7 1.0 0.330523 0.5403
0.5 0.294335 0.539539
1.0 0.146822 0.196834
0.5 0.0 0.6 0.5 1.0 0.1 0.2 0.7 1.0 0.298447 0.550958

0.3 0.294335 0.539539
0.6 0.29052 0.529184

0.5 0.3 0.0 0.5 1.0 0.1 0.2 0.7 1.0 0.386878 0.542202
0.6 0.294335 0.539539
1.2 0.157756 0.222705

0.5 0.3 0.6 0.0 1.0 0.1 0.2 0.7 1.0 0.397385 0.501379
0.5 0.294335 0.539539
1.0 0.24219 0.561276

0.5 0.3 0.6 0.5 1.0 0.1 0.2 0.7 1.0 0.294335 0.539539
1.5 0.374306 0.509569
2.0 0.43873 0.487011

0.5 0.3 0.6 0.5 1.0 0.1 0.2 0.7 1.0 0.294335 0.539539
0.4 0.271793 0.309337
0.8 0.244013 0.081471

0.5 0.3 0.6 0.5 1.0 0.1 0.2 0.7 1.0 0.294335 0.539539
0.4 0.26720 0.589734
0.6 0.241696 0.606221

0.5 0.3 0.6 0.5 1.0 0.1 0.2 0.0 1.0 0.39101 0.495559
0.5 0.321959 0.526972
1.0 0.252895 0.55839

0.5 0.3 0.6 0.5 1.0 0.1 0.2 0.7 1.0 0.294335 0.539539
1.5 0.290366 0.76239
2.0 0.288085 0.952778

5. Conclusions

Here we have analyzed entropy optimization, heat and mass transport in Darcy–Forchheimer
MHD nanofluid flow surrounded by a non-linearly stretching surface. Non-linear stretching is assumed
to be the driving force whereas effects of radiation, Brownian diffusion, dissipation and thermophoresis
are also considered. Here, we have incorporated RK45 built-in system with shooting technique to plot
the numerical outcomes of a non-linear system of equations. Properties of velocity field, thermal and
solute distributions, stream functions and Bejan number are disclosed in this article. Salient findings of
this study are listed below:

• Entropy optimization, heat and mass transport in Darcy–Forchheimer and MHD type nanofluid
flow surrounded by a non-linear stretching surface is analyzed.

• Rate of Bejan number shows mixed behavior for elevated values of temperature difference
parameter. An enhancement is noted for larger values.

• Skin friction enhances for all the parameters involved in momentum equation.
• Heat transfer rate declines while mass transfer intensifies for elevated numbers of thermal

radiation parameters.
• Resistive force due to inertia and enhanced friction are the source of enhancement in heat

convection.
• The concentration of nanoparticles reduces near the surface, whereas an enhancement is noted in

the case of thermophoresis due to stronger thermophoretic force.
• An enhanced variation in stream lines is noted at distance far away from the origin. Near to the

origin, this variation is very narrow.
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• We observed that a more porous medium offers more retardational force (friction), which
continuously diminishes the velocity of the fluid.

• Contour graphs given at M = 0.1 and M = 0.5 show an enhanced variation at distance sufficiently
away from origin. Near to the origin, the variation is very narrow.

• Stream function graphs at M = 0.1 and M = 0.5 show a very narrow variation in the stream lines.
At M = 0.1 curves are not spread much as compared to case M = 0.5. Stronger magnetic effect
boosts the opposing Lorentz forces which occur in the way of fluid motion and stream lines get
affected.
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Nomenclature:

RK45 Runge-Kutta 45 Method
MHD Magnetohydrodynamics
PDE Partial Differential Equation
ODE Ordinary Differential Equation
u1, u2 Cartesian velocity coordinates/m·s−1

x, y Cartesian distance coordinates/m
uw = mxn Velocity (stretching)/m·s−1

m Stretching rate/s−1

µ Dynamic viscosity/Pa·s
B0 Magnetic impact/intensity/A·m−1

ν Kinematic viscosity/m2·s−1

ρ f Density/kg·m−3

DBr Brownian diffusion
DTh thermophoresis
T Temperature distributions /K
C Concentration distributions/kg·m−3

σ Electric conductivity of the base fluid/(Ω m)−1

(ρc)np Nanoparticles’ heat capacity/J·m−3·k−1

(ρc) f l Fluid’s heat capacity/J·m−3·k−1

Cb Drag force coefficient
K Permeability
τ Ratio of heat capacity of fluid and nanoparticles
qr Radiative heat flux
σ′ Stephen boltzmann constant
k′ Mean absorption constant
α Thermal diffusivity/m2 · s−1

k Thermal conductivity/W ·m−1 ·K−1
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Dimensionless Parameters:

M Magnetic parameter
Pr Prandtl number
Sc Schmidt number
Nb Brownian diffusion
Nt thermophoresis
Shx Sherwood factor
Nux Nusselt factor
SG Entropy generation rate in two dimensions
RD Difference ratio
NG Entropy generation rate
β1 Temperature difference
Br1 Brinkman number
L1 Diffusive parameter
Fr Forchheimer number
λ Porosity
Rd Radiation parameter
Ec Eckert number
µ0 Viscosity at initial position
η Variable
φ Concentration distribution (dimensionless)
θ Temperature distribution (dimensionless)
f ′ Velocity (dimensionless)
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