Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education
Abstract
1. Introduction
2. Background
2.1. Data Envelopment Analysis
2.2. Conjoint Analysis
2.3. The Analytic Hierarchy Process (AHP)
3. Methodological Framework
4. Empirical Study
4.1. Subjective Assessment of Teacher’s Efficiency
- Set f as an index of criterion with the lowest importance FI according to results of the conjoint analysis
- Impose boundaries for all criteria evaluated by the conjoint analysis. AR DEA constraints presented as Equation (2) in Section 2.1, are defined here as follows:
Verification of the DEA Results
4.2. Objective Assessment of Teacher’s Efficiency
4.2.1. Objective Assessment of Teaching Efficiency
- The total number of students registered for the listening subject by each of the selected teachers, over one academic year (I1)
- Annual salary of the teacher (I2)
- Total number of students who passed the exam with the chosen subject teacher in one academic year (O1)
- Average exam grade per subject/teacher (O2)
4.2.2. Assessment of the Research Efficiency
4.3. Aggregated Assessment of Overall Teacher’s Efficiency
5. Conclusions
- It allows subjective and objective efficiency assessment, as well as determining an overall efficiency score by considering the weights associated with the various aspects of efficiency;
- It provides better criteria selection that is well-matched for the stakeholders and allows the selection of different criteria combinations suitable for different objectives and numbers of DMUs;
- It incorporates students’ preferences by selecting a meaningful and desirable set of criteria or imposing weight restrictions;
- It identifies key aspects of teaching that affect student satisfaction;
- It increases the discriminative power of the DEA and thus enables a more realistic ranking of teachers.
Author Contributions
Funding
Conflicts of Interest
References
- Letcher, D.W.; Neves, J.S. Determinant of undergraduate business student satisfaction. Res. High. Educ. 2010, 6, 1–26. [Google Scholar]
- Venesaar, U.; Ling, H.; Voolaid, K. Evaluation of the Entrepreneurship Education Programme in University: A New Approach. Amfiteatru Econ. 2011, 8, 377–391. [Google Scholar]
- Johnes, G. Scale and technical efficiency in the production of economic research. Appl. Econ. Lett. 1995, 2, 7–11. [Google Scholar] [CrossRef]
- Despotis, D.K.; Koronakos, G.; Sotiros, D. A multi-objective programming approach to network DEA with an application to the assessment of the academic research activity. Procedia Comput. Sci. 2015, 55, 370–379. [Google Scholar] [CrossRef]
- Dommeyer, C.J.; Baum, P.; Chapman, K.; Hanna, R.W. Attitudes of Business Faculty Towards two Methods of Collecting Teaching Evaluations: Paper vs. Online. Assess. Eval. High. Edu. 2002, 27, 455–462. [Google Scholar] [CrossRef]
- Zabaleta, F. The use and misuse of student evaluation of teaching. Teach. High. Edu. 2007, 12, 55–76. [Google Scholar] [CrossRef]
- Onwuegbuzie, J.; Daniel, G.; Collins, T. A meta-validation model for assessing the score-validity of student teacher evaluations. Qual. Quant. 2009, 43, 197–209. [Google Scholar] [CrossRef]
- Mazumder, S.; Kabir, G.; Hasin, M.; Ali, S.M. Productivity Benchmarking Using Analytic Network Process (ANP) and Data Envelopment Analysis (DEA). Big Data Cogn. Comput. 2018, 2, 27. [Google Scholar] [CrossRef]
- Mulye, R. An empirical comparison of three variants of the AHP and two variants of conjoint analysis. J. Behav. Decis. Mak. 1998, 11, 263–280. [Google Scholar] [CrossRef]
- Helm, R.; Scholl, A.; Manthey, L.; Steiner, M. Measuring customer preferences in new product development: Comparing compositional and decompositional methods. Int. J. Product Developm. 2004, 1, 12–29. [Google Scholar] [CrossRef]
- Scholl, A.; Manthey, L.; Helm, R.; Steiner, M. Solving multiattribute design problems with analytic hierarchy process and conjoint analysis: An empirical comparison. Eur. J. Oper. Res. 2005, 164, 760–777. [Google Scholar] [CrossRef]
- Helm, R.; Steiner, M.; Scholl, A.; Manthey, L. A Comparative Empirical Study on common Methods for Measuring Preferences. Int. J. Manag. Decis. Mak. 2008, 9, 242–265. [Google Scholar] [CrossRef]
- Ijzerman, M.J.; Van Til, J.A.; Bridges, J.F. A comparison of analytic hierarchy process and conjoint analysis methods in assessing treatment alternatives for stroke rehabilitation. Patient 2012, 5, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Kallas, Z.; Lambarraa, F.; Gil, J.M. A stated preference analysis comparing the analytical hierarchy process versus choice experiments. Food Qual. Prefer. 2011, 22, 181–192. [Google Scholar] [CrossRef]
- Danner, M.; Vennedey, V.; Hiligsmann, M.; Fauser, S.; Gross, C.; Stock, S. Comparing Analytic Hierarchy Process and Discrete-Choice Experiment to Elicit Patient Preferences for Treatment Characteristics in Age-Related Macular Degeneration. Value Health 2017, 20, 1166–1173. [Google Scholar] [CrossRef]
- Popović, M.; Kuzmanović, M.; Savić, G. A comparative empirical study of Analytic Hierarchy Process and Conjoint analysis: Literature review. Decis. Mak. Appl. Manag. Eng. 2018, 1, 153–163. [Google Scholar] [CrossRef]
- Pakkar, M.S. A hierarchical aggregation approach for indicators based on data envelopment analysis and analytic hierarchy process. Systems 2016, 4, 6. [Google Scholar] [CrossRef]
- Sinuany-Stern, Z.; Mehrez, A.; Hadad, Y. An AHP/DEA methodology for ranking decision making units. Int. Trans. Oper. Res. 2000, 7, 109–124. [Google Scholar] [CrossRef]
- Martić, M.; Savić, G. An application of DEA for comparative analysis and ranking of regions in Serbia with regards to social-economic development. Eur. J. Oper. Res. 2001, 132, 343–356. [Google Scholar] [CrossRef]
- Feng, Y.J.; Lu, H.; Bi, K. An AHP/DEA method for measurement of the efficiency of R&D management activities in university. Int. Trans. Oper. Res. 2004, 11, 181–191. [Google Scholar] [CrossRef]
- Tseng, Y.F.; Lee, T.Z. Comparing appropriate decision support of human resource practices on organizational performance with DEA/AHP model. Expert Syst. Appl. 2009, 36, 6548–6558. [Google Scholar] [CrossRef]
- Saen, R.F.; Memariani, A.; Lotfi, F.H. Determining relative efficiency of slightly non-homogeneous decision making units by data envelopment analysis: A case study in IROST. Appl. Math. Comput. 2005, 165, 313–328. [Google Scholar] [CrossRef]
- Zhu, J. DEA/AR analysis of the 1988–1989 performance of the Nanjing Textiles Corporation. Ann. Oper. Res. 1996, 66, 311–335. [Google Scholar] [CrossRef]
- Seifert, L.M.; Zhu, J. Identifying excesses and deficits in Chinese industrial productivity (1953–1990): A weighted data envelopment analysis approach. Omega 1998, 26, 279–296. [Google Scholar] [CrossRef]
- Premachandra, I.M. Controlling factor weights in data envelopment analysis by incorporating decision maker’s value judgement: An approach based on AHP. J. Inf. Manag. Sci. 2001, 12, 1–12. [Google Scholar]
- Lozano, S.; Villa, G. Multi-objective target setting in data envelopment analysis using AHP. Comp. Operat. Res. 2009, 36, 549–564. [Google Scholar] [CrossRef]
- Kong, W.; Fu, T. Assessing the Performance of Business Colleges in Taiwan Using Data Envelopment Analysis and Student Based Value-Added Performance Indicators. Omega 2012, 40, 541–549. [Google Scholar] [CrossRef]
- Korhonen, P.J.; Tainio, R.; Wallenius, J. Value efficiency analysis of academic research. Eur. J. Oper. Res. 2001, 130, 121–132. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Wu, W.J. Synthetic Financial Evaluation by a Method of Combining DEA with AHP. Int. Trans. Oper. Res. 2001, 8, 603–609. [Google Scholar] [CrossRef]
- Johnes, J. Data envelopment analysis and its application to the measurement of efficiency in higher education. Econ. Educ. Rev. 2006, 25, 273–288. [Google Scholar] [CrossRef]
- Yang, T.; Kuo, C.A. A hierarchical AHP/DEA methodology for the facilities layout design problem. Eur. J. Oper. Res. 2003, 147, 128–136. [Google Scholar] [CrossRef]
- Ertay, T.; Ruan, D.; Tuzkaya, U.R. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Inf. Sci. 2006, 176, 237–262. [Google Scholar] [CrossRef]
- Ramanathan, R. Data envelopment analysis for weight derivation and aggregation in the analytical hierarchy process. Comput. Oper. Res. 2006, 33, 1289–1307. [Google Scholar] [CrossRef]
- Korpela, J.; Lehmusvaara, A.; Nisonen, J. Warehouse operator selection by combining AHP and DEA methodologies. Int. J. Prod. Econ. 2007, 108, 135–142. [Google Scholar] [CrossRef]
- Jyoti, T.; Banwet, D.K.; Deshmukh, S.G. Evaluating performance of national R&D organizations using integrated DEA-AHP technique. Int. J. Product. Perform. Manag. 2008, 57, 370–388. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Shang, J.; Chiang, W.C. A decision support framework for internal audit prioritization in a rental car company: A combined use between DEA and AHP. Eur. J. Oper. Res. 2009, 199, 219–231. [Google Scholar] [CrossRef]
- Mohajeri, N.; Amin, G. Railway station site selection using analytical hierarchy process and data envelopment analysis. Comput. Ind. Eng. 2010, 59, 107–114. [Google Scholar] [CrossRef]
- Azadeh, A.; Ghaderi, S.F.; Mirjalili, M.; Moghaddam, M. Integration of analytic hierarchy process and data envelopment analysis for assessment and optimization of personnel productivity in a large industrial bank. Expert Syst. Appl. 2011, 38, 5212–5225. [Google Scholar] [CrossRef]
- Raut, R.D. Environmental performance: A hybrid method for supplier selection using AHP-DEA. Int. J. Bus. Insights Transform. 2011, 5, 16–29. [Google Scholar]
- Thanassoulis, E.; Dey, P.K.; Petridis, K.; Goniadis, I.; Georgiou, A.C. Evaluating higher education teaching performance using combined analytic hierarchy process and data envelopment analysis. J. Oper. Res. Soc. 2017, 68, 431–445. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, V.T.; Duong, D.H.; Do, H.T. A Hybrid Fuzzy Analytic Network Process (FANP) and Data Envelopment Analysis (DEA) Approach for Supplier Evaluation and Selection in the Rice Supply Chain. Symmetry 2018, 10, 221. [Google Scholar] [CrossRef]
- Salhieh, S.M.; All-Harris, M.Y. New product concept selection: An integrated approach using data envelopment analysis (DEA) and conjoint analysis (CA). Int. J. Eng. Technol. 2014, 3, 44–55. [Google Scholar] [CrossRef][Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Ahn, T.; Charnes, A.; Cooper, W.W. Efficiency characterizations in different DEA models. Socio-Econ. Plan. Sci. 1988, 22, 253–257. [Google Scholar] [CrossRef]
- Banker, R.D.; Morey, R.C. The use of categorical variables in data envelopment analysis. Manag. Sci. 1986, 32, 1613–1627. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y. An application procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Witte, K. COOPER-framework: A unified process for non-parametric projects. Eur. J. Oper. Res. 2010, 207, 1573–1586. [Google Scholar] [CrossRef]
- Jenkins, L.; Anderson, M. A multivariate statistical approach to reducing the number of variables in data envelopment analysis. Eur. J. Oper. Res. 2003, 147, 51–61. [Google Scholar] [CrossRef]
- Nunamaker, T.R. Using data envelopment analysis to measure the efficiency of non-profit organizations: A critical evaluation. MDE Manag. Decis. Econ. 1985, 6, 50–58. [Google Scholar] [CrossRef]
- Morita, H.; Avkiran, K.N. Selecting inputs and outputs in data envelopment analysis by designing statistical experiments. J. Oper. Res. Soc. Jpn. 2009, 52, 163–173. [Google Scholar] [CrossRef]
- Edirisinghe, N.C.; Zhang, X. Generalized DEA model of fundamental analysis and its application to portfolio optimization. J. Bank. Financ. 2007, 31, 3311–3335. [Google Scholar] [CrossRef]
- Jablonsky, J. Multicriteria approaches for ranking of efficient units in DEA models. Cent. Eur. J. Oper. Res. 2011, 20, 435–449. [Google Scholar] [CrossRef]
- Dimitrov, S.; Sutton, W. Promoting symmetric weight selection in data envelopment analysis: A penalty function approach. Eur. J. Oper. Res. 2010, 200, 281–288. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Zhang, X. A Cross-Efficiency Evaluation Method Based on Evaluation Criteria Balanced on Interval Weights. Symmetry 2019, 11, 1503. [Google Scholar] [CrossRef]
- Thompson, R.G.; Singleton, F.D.; Thrall, M.R.; Smith, A.B. Comparative Site Evaluation for Locating a High-Energy Physics Lab in Texas. Interfaces 1986, 16, 35–49. [Google Scholar] [CrossRef]
- Radojicic, M.; Savic, G.; Jeremic, V. Measuring the efficiency of banks: The bootstrapped I-distance GAR DEA approach. Technol. Econ. Dev. Econ. 2018, 24, 1581–1605. [Google Scholar] [CrossRef]
- Addelman, S. Symmetrical and asymmetrical fractional factorial plans. Technometrics 1962, 4, 47–58. [Google Scholar] [CrossRef]
- Popović, M.; Vagić, M.; Kuzmanović, M.; Labrović Anđelković, J. Understanding heterogeneity of students’ preferences towards English medium instruction: A conjoint analysis approach. Yug. J. Op. Res. 2016, 26, 91–102. [Google Scholar] [CrossRef]
- Kuzmanovic, M.; Makajic-Nikolic, D.; Nikolic, N. Preference Based Portfolio for Private Investors: Discrete Choice Analysis Approach. Mathematics 2020, 8, 30. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. J. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Stankovic, M.; Gladovic, P.; Popovic, V. Determining the importance of the criteria of traffic accessibility using fuzzy AHP and rough AHP method. Decis. Mak. Appl. Manag. Eng. 2019, 2, 86–104. [Google Scholar] [CrossRef]
- Kuzmanović, M.; Savić, G.; Popović, M.; Martić, M. A new approach to evaluation of university teaching considering heterogeneity of students’ preferences. High. Educ. 2013, 66, 153–171. [Google Scholar] [CrossRef]
- Basso, A.; Funari, S. Introducing weights restrictions in data envelopment analysis models for mutual funds. Mathematics 2018, 6, 164. [Google Scholar] [CrossRef]
- Buschken, J. When does data envelopment analysis outperform a naive efficiency measurement model? Eur. J. Oper. Res. 2009, 192, 647–657. [Google Scholar] [CrossRef]
- Mester, G.L. Measurement of results of scientific work. Tehnika 2015, 70, 445–454. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Available online: https://scholar.google.com/intl/en/scholar/citations.html (accessed on 9 January 2020.).
No | Criteria (Attributes) | Attribute Levels | Part-Worths (β) | Relative Importance Values (FI) |
---|---|---|---|---|
C1 | Clear and understandable presentation of teaching content | Yes | 0.865 | 22.98% |
No | −0.865 | |||
C2 | Methodical and systematic approach to teaching | Yes | 0.73 | 18.96% |
No | −0.73 | |||
C3 | Tempo of lectures | Too slow | 0.451 | 14.92% |
Optimal | −0.117 | |||
Too fast | −0.334 | |||
C4 | Preparedness for lectures | Good | 0.266 | 7.96% |
Poor | −0.266 | |||
C5 | Punctuality | On time | 0.303 | 9.00% |
Late | −0.303 | |||
C6 | Encouraging students to actively participate in classes | Yes | 0.28 | 8.14% |
No | −0.28 | |||
C7 | Informing students about their progress | Yes | 0.324 | 9.08% |
No | −0.324 | |||
C8 | Takes into account students’ comments and answers their questions | Yes | 0.293 | 8.95% |
No | −0.293 | |||
Constant | 4.046 | |||
Correlations | ||||
Pearson’s R = 0.966 (sig. = 0.000) | ||||
Kendall’s tau = 0.933 (sig. = 0.000) | ||||
Kendall’s tau (for two holdouts) = 1.000 |
Criteria | Min | Max | Mean | Std. Dev. |
---|---|---|---|---|
C1 | 2.17 | 5.00 | 4.400 | 0.535 |
C2 | 2.22 | 5.00 | 4.369 | 0.559 |
C3 | 2.17 | 5.00 | 4.302 | 0.565 |
C4 | 2.67 | 4.95 | 4.527 | 0.470 |
C5 | 1.72 | 4.92 | 4.380 | 0.652 |
C6 | 2.00 | 4.85 | 4.194 | 0.624 |
C7 | 1.83 | 4.85 | 4.127 | 0.643 |
C8 | 1.78 | 5.00 | 4.375 | 0.632 |
EWSM-Original | WSM-Conjoint | DEA | |
---|---|---|---|
Min | 2.073 | 2.098 | 0.539 |
Max | 4.944 | 4.960 | 1.000 |
Mean | 4.335 | 4.344 | 0.941 |
Std. Dev | 0.544 | 0.541 | 0.090 |
Spearman’s rho correlations | |||
EWSM-Original | 1 | 0.993 ** | 0.809 ** |
WSM-Conjoint | 0.993 ** | 1 | 0.797 ** |
DEA | 0.809 ** | 0.797 ** | 1 |
** Significant at the 0.01 level (2-tailed). | |||
3 efficient teachers, hk ≥ 0.95 for 18 out of 27 DMUs |
DMU | Ranks | DEA | Weights | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EWSM-Original | WSM-Conjoint | DEA | θk | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
1 | 6 | 6 | 14 | 0.982 | 0 | 0 | 0 | 0.82 | 0 | 0.18 | 0 | 0 |
2 | 13 | 13 | 4 | 0.996 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
17 | 20 | 20 | 5 | 0.996 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Method | DEA | Conjoint & DEA (Scenario A) | Conjoint AR DEA (Scenario B) | ||||||
---|---|---|---|---|---|---|---|---|---|
m + s | 8 | 3 (C1, C2, C3) | 8 | ||||||
Teachers | T | P | T + A | T | P | T + A | T | P | T + A |
No. of DMUs | 27 | 17 | 10 | 27 | 17 | 10 | 27 | 17 | 10 |
Average | 0.941 | 0.955 | 0.943 | 0.895 | 0.914 | 0.900 | 0.884 | 0.909 | 0.895 |
SD | 0.088 | 0.131 | 0.055 | 0.105 | 0.149 | 0.069 | 0.107 | 0.152 | 0.074 |
Max | 1.000 | 0.996 | 1.000 | 1.000 | 0.985 | 1.000 | 1.000 | 0.982 | 1.000 |
Min | 0.539 | 0.539 | 0.866 | 0.445 | 0.445 | 0.824 | 0.425 | 0.425 | 0.747 |
hk = 1 | 3 | 0 | 3 | 1 | 0 | 1 | 1 | 0 | 1 |
hk ≥ 0.95 | 18 | 12 | 6 | 11 | 7 | 4 | 7 | 4 | 3 |
EWSM-Original | WSM-Conjoint | DEA | Conjoint & DEA (Scenario A) | Conjoint AR DEA (Scenario B) | |
---|---|---|---|---|---|
Original | 1.000 | 0.993 | 0.809 | 0.933 | 0.997 |
Conjoint | 1.000 | 0.797 | 0.939 | 0.991 | |
DEA | 1.000 | 0.777 | 0.820 | ||
Conjoint & DEA | 1.000 | 0.941 | |||
Conjoint AR DEA | 1.000 |
Method | DEA | Conjoint & DEA (Scenario A) | Conjoint AR DEA (Scenario B) | |||
---|---|---|---|---|---|---|
m + s | 8 | 3 | 8 | |||
No. of DMUs | 27 | 1000 | 27 | 1000 | 27 | 1000 |
Average | 0.971 | 0.948 | 0.827 | 0.800 | 0.889 | 0.861 |
SD | 0.061 | 0.055 | 0.179 | 0.069 | 0.100 | 0.110 |
Max | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Min | 0.760 | 0.637 | 0.390 | 0.577 | 0.672 | 0.507 |
hk = 1 | 23 (85.19%) | 153 (15.3%) | 5 (18.52%) | 3 (0.30%) | 5 (18.52%) | 18 (1.8%) |
hk ≥ 0.95 | 23 (85.19%) | 613 (61.3%) | 9 (33.33%) | 11(1.10%) | 9 (33.33%) | 261 (26.1%) |
Parameters | Scientific Research Costs | Number of Citations | h Index | i10 Index |
---|---|---|---|---|
Min | 58419.00 | 683 | 14 | 17 |
Max | 91666.70 | 20 | 3 | 1 |
Average value | 32153.10 | 205.18 | 6.81 | 5.25 |
Standard deviation | 16368.70 | 161.16 | 2.74 | 4.14 |
Correlation | ||||
Scientific research costs | 1 | 0.646 | 0.624 | 0.616 |
Number of citations | 1 | 0.925 | 0.892 | |
h index | 1 | 0.944 | ||
i10 index | 1 |
DMU | Subjective Teachers’ Efficiency | Objective Teachers’ Efficiency | Overall Teachers’ Efficiency | Rank | |
---|---|---|---|---|---|
Conjoint & DEA (Scenario A) | Teaching | Research | |||
1 | 0.9581 | 0.989 | 0.7941 | 0.9055 | 9 |
2 | 0.9571 | 0.696 | 1 | 0.9177 | 5 |
3 | 0.7913 | 0.991 | 1 | 0.9083 | 8 |
4 | 0.4444 | 0.742 | 0.8037 | 0.6362 | 27 |
5 | 0.8769 | 0.955 | 1 | 0.9376 | 3 |
6 | 0.9857 | 0.755 | 0.6334 | 0.8104 | 22 |
7 | 0.9429 | 0.979 | 0.8478 | 0.9162 | 7 |
8 | 0.8552 | 1 | 0.7262 | 0.8391 | 18 |
9 | 0.9165 | 0.769 | 0.8439 | 0.8593 | 15 |
10 | 0.9765 | 1 | 1 | 0.9898 | 1 |
11 | 0.9586 | 0.739 | 0.7649 | 0.8427 | 16 |
12 | 0.8424 | 0.991 | 0.8889 | 0.8903 | 11 |
13 | 0.95 | 0.692 | 0.6071 | 0.7723 | 26 |
14 | 0.9091 | 0.761 | 0.6524 | 0.7855 | 25 |
15 | 0.8409 | 0.955 | 1 | 0.9221 | 4 |
16 | 0.8667 | 0.937 | 0.6655 | 0.8090 | 23 |
17 | 0.8345 | 0.947 | 0.7697 | 0.8347 | 19 |
18 | 0.95 | 0.767 | 0.6877 | 0.8171 | 21 |
19 | 0.9238 | 0.767 | 0.6877 | 0.8058 | 24 |
20 | 0.86 | 1 | 0.9373 | 0.9172 | 6 |
21 | 0.8211 | 0.992 | 0.8877 | 0.8809 | 14 |
22 | 0.8248 | 1 | 0.9065 | 0.891 | 10 |
23 | 1 | 1 | 0.9683 | 0.9885 | 2 |
24 | 0.8267 | 1 | 0.7692 | 0.8423 | 17 |
25 | 0.9789 | 0.948 | 0.7252 | 0.8810 | 13 |
26 | 0.9733 | 0.767 | 0.6877 | 0.8271 | 20 |
27 | 0.9833 | 0.889 | 0.769 | 0.8863 | 12 |
Average | 0.8907 | 0.8899 | 0.8157 | 0.8635 | |
SD | 0.1092 | 0.1168 | 0.1285 | 0.07245 | |
Max | 1 | 1 | 1 | 0.9898 | |
Min | 0.4444 | 0.692 | 0.6071 | 0.6362 | |
hk = 1 | 1 | 6 | 5 | 0 | |
hk ≥ 0.95 | 11 | 13 | 6 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, M.; Savić, G.; Kuzmanović, M.; Martić, M. Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education. Symmetry 2020, 12, 563. https://doi.org/10.3390/sym12040563
Popović M, Savić G, Kuzmanović M, Martić M. Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education. Symmetry. 2020; 12(4):563. https://doi.org/10.3390/sym12040563
Chicago/Turabian StylePopović, Milena, Gordana Savić, Marija Kuzmanović, and Milan Martić. 2020. "Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education" Symmetry 12, no. 4: 563. https://doi.org/10.3390/sym12040563
APA StylePopović, M., Savić, G., Kuzmanović, M., & Martić, M. (2020). Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education. Symmetry, 12(4), 563. https://doi.org/10.3390/sym12040563