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Abstract: The aim of this study is to analyse a discrete-time two-stage game with R&D competition
by considering a continuous-time set-up with fixed delays. The model is represented in the form of
delay differential equations. The stability of all the equilibrium points is studied. It is found that
the model exhibits very complex dynamical behaviours, and its Nash equilibrium is destabilised via
Hopf bifurcations.
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1. Introduction

Research and development (R&D) is one of the main strengths of firms growth. Firms need to
pursue R&D as an effective way to reduce production costs and improve quality of products, so as
to increase the competitiveness of firms in the market [1]. R&D behaviour is eventually followed by
R&D spillover. R&D spillovers are likely because of the exchange of information on R&D between
firms and the distribution of human resources. Over the last few years, the topic of competitiveness
and collaboration throughout R&D spending has drawn growing interest from entrepreneurs and
economists. The AJ model proposed by d’Aspremont and Jacquemin [2] and the KMZ model proposed
by Kamien et al. [3] are two representative models for simulating the spillover effect of R&D. Such two
models are two-stage game models and, respectively, addressed the spillover of R&D and the spillover
of R&D production. Nowadays, the two-stage game has attracted the attention of many academics.
Bischi and Lamantia [4,5] suggested a two-stage system to represent firms R&D networks in the
marketplace. Matsumura et al. [6] proposed a two-stage Cournot model where companies select R&D
spending at the first step and choose production amounts at the second stage. Shibata [7] analysed
spillovers of R&D spending across different market structures. In particular, he expanded the work of
Matsummura et al. [6] to integrate R&D investment spillovers. The implementation of chaos theory in
structural dynamic economics developed by Day [8] presented a theoretical basis for the analysis of a
complex model. The synthesis of dynamic theory and oligopoly theory has become a primary tool
for economists and mathematicians to research economic phenomena. In recent years, it has attracted
the attention of a growing number of researchers to investigate the evolution of the economic system
and describe the complex economic phenomenon using chaos theory. Gangopadhyay [9] developed a
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complex model of enterprise merger, exploring bifurcation activity and multiple attractors coexistence
in the designed environment. Li and Ma [10] considered a small rational dual-channel game and
simulate their model’s complex dynamic behaviour in their research. Many researchers have explored
the complex dynamical behaviours of this type of models from different aspects, such as differentiated
goods [11–15], bounded rationality [16], heterogeneous firms [7,17–19], delayed decisions [20–25] and
other factors [26–28].

In this paper, we reconsider the discrete duopoly game model of R&D competition between two
high-tech enterprises as introduced by Zhou and Wang [29], where the combination of game theory
and nonlinear dynamics theory is applied to a monopoly market with R&D spillover. Their model
happens to be described by

x1(t + 1) = x1(t) + α1x1(t)
{

4Bb
9

[x1(t) + x2(t)] +
4A
9
− γx1(t)

}
,

x2(t + 1) = x2(t) + α2x2(t)
{

4Bb
9

[x1(t) + x2(t)] +
4A
9
− γx2(t)

}
,

(1)

where
A = (a− 2bc) (β + 1), B = (β + 1)2.

There are two firms, labelled by m (m = 1, 2), in a market, which conduct R&D and produce
complementary goods. Here, xm is the R&D effort of firm m. The parameters a > 0, b > 0 and
c > 0 represent the market size, the price sensitivity of consumers and the unit cost of produced
goods without R&D efforts, respectively. β ∈ (0, 1) is related to the R&D spillover, whereas γ > 0
is the cost parameter of firm’s technological innovation, which indicates the efficiency of using or
producing the unique technology or knowledge resources for an enterprise. The smaller the parameter,
γ, the stronger the innovation ability of firm m. Finally, αm > 0 is the speed of adjustment for firm
m. A symmetry of parameters α1 and α2 exists in this system. Assuming continuous time scales and
replacing xm(t + 1)− xm(t) (m = 1, 2) in (1) with ẋm(t) = dxm(t)/dt, system (1) can be transformed
into a continuous-time model, which may be further extended to a dynamic environment characterised
by differential equations with two fixed delays. Within this framework, we show how the introduction
of delays may cause chaotic dynamics that cannot be observed when time delays are absent, therefore
providing a starting point for building on more sophisticated models with R&D.

The structure of this article is organised as follows. In Section 2, the continuous two-stage Cournot
model with R&D spillover is established. In Section 3, the corresponding model with time delays is
considered. The stability of its equilibrium points is discussed in case of one or two delays, and the
occurrence of Hopf bifurcations is shown. Section 4 outlines the conclusions.

2. Continuous-Time Dynamics Model

After a simple algebraic manipulation, system (1) can be rewritten as

ẋ1(t) = α1x1(t)
{

4Bb
9

[x1(t) + x2(t)] +
4A
9
− γx1(t)

}
,

ẋ2(t) = α2x2(t)
{

4Bb
9

[x1(t) + x2(t)] +
4A
9
− γx2(t)

}
.

(2)

Noticing that the steady states of (2) are the same as the ones of system (1), from work in [29] we
know that there exist three equilibrium points

E0 = (0, 0), E1 =

(
0,

4A
9γ− 4Bb

)
, E2 =

(
4A

9γ− 4Bb
, 0
)
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and a Nash–Cournot equilibrium point

E3 =

(
4A

9γ− 8Bb
,

4A
9γ− 8Bb

)
.

To guarantee the economic meaningfulness of these equilibria, we assume the conditions

a > 2bc, γ > 8Bb.

Let E∗ = (x∗1 , x∗2) denote a steady state of (2). The local stability of E∗ is governed by the roots of
the corresponding characteristic equation for (2). By linearising (2) at E∗, we obtain the Jacobian matrix

JE∗ =


(

4Bb
9
− γ

)
α1x∗1

4Bbα1x∗1
9

4Bbα2x∗2
9

(
4Bb

9
− γ

)
α2x∗2

 .

It is well-known that stable solutions occur if and only if both eigenvalues of JE∗ have negative
real part, and this happens exactly when the trace of JE∗ is negative, i.e.,

tr(JE∗) =

(
4Bb

9
− γ

)
(α1x∗1 + α2x∗2) < 0, (3)

and the determinant of JE∗ is positive, i.e.,

det(JE∗) =

(
−8Bb

9
+ γ

)
γα1α2x∗1 x∗2 > 0. (4)

Lemma 1. E0, E1 or E2 are unstable equilibrium points, whereas E3 is a stable equilibrium point.

Proof. As the equilibrium point E1 is symmetric with E2 in the rectangular coordinate system, their
stability analysis is very similar. When E∗ = E1 or E∗ = E2, one has tr(JE∗) = det(JE∗) = 0. On the
other hand, when E∗ = E3, we see that tr(JE∗) < 0 and det(JE∗) > 0. The conclusion is then
straightforward.

3. Delay Dynamics Model

We now transform the discrete-time model (1) into a continuous-time model with delays by
following the approach of [30], and derive the following two-dimensional system with distinct time
delays τ1 ≥ 0, τ2 ≥ 0,

ẋ1(t) = α1x1(t− τ1)

{
4Bb

9
[x1(t− τ1) + x2(t− τ1)] +

4A
9
− γx1(t− τ1)

}
,

ẋ2(t) = α2x2(t− τ2)

{
4Bb

9
[x1(t− τ2) + x2(t− τ2)] +

4A
9
− γx2(t− τ2)

}
.

(5)

It is clear that the equilibrium points E∗ = (x∗1 , x∗2) of (5) coincide with those of system (1).
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3.1. Existence of Equilibria and Local Bifurcations with Homogeneous Time Delays

By setting τ1 = τ2 = τ ≥ 0, system (5) becomes

ẋ1(t) = α1x1(t− τ)

{
4Bb

9
[x1(t− τ) + x2(t− τ)] +

4A
9
− γx1(t− τ)

}
,

ẋ2(t) = α2x2(t− τ)

{
4Bb

9
[x1(t− τ) + x2(t− τ)] +

4A
9
− γx2(t− τ)

}
.

(6)

To examine the stability of E∗, we consider the characteristic equation of the linearisation of (6) at
E∗ = (x∗1 , x∗2) and get∣∣∣∣∣∣∣∣∣∣∣

−λ +

[(
4Bb

9
− γ

)
α1x∗1

]
e−λτ

(
4Bbα1x∗1

9

)
e−λτ

(
4Bbα2x∗2

9

)
e−λτ −λ +

[(
4Bb

9
− γ

)
α2x∗2

]
e−λτ

∣∣∣∣∣∣∣∣∣∣∣
= 0,

which writes as
λ2 − tr(JE∗)λe−λτ + det(JE∗)e

−2λτ = 0. (7)

If all the roots of (7) have negative real parts, then the equilibrium E∗ of (6) is locally asymptotically
stable, and it is unstable if (7) has at least one root with positive real part. In case τ = 0, assume that
E∗ is stable. Let τ > 0. For computational purpose, we multiply both sides of (7) by eλτ and get

λ2eλτ − tr(JE∗)λ + det(JE∗)e
−λτ = 0. (8)

We use this equation to yield purely imaginary roots iω to the characteristic Equation (7).
Substituting λ = iω (ω > 0) into (8), we derive

−ω2eiωτ − tr(JE∗)iω + det(JE∗)e
−iωτ = 0. (9)

Using eiωτ = cos ωτ + i sin ωτ, e−iωτ = cos ωτ − i sin ωτ, we separate the real and imaginary
parts of (9) and find that ω satisfies

[
−ω2 + det(JE∗)

]
cos ωτ = 0,[

ω2 + det(JE∗)
]

sin ωτ = −tr(JE∗)ω.
(10)

Proposition 1. System (10) has no positive solution if E∗ = E0, it has a positive root given by

ω0 = −tr(JE∗), τ = τ
j
0 =

1
ω0

(π

2
+ 2jπ

)
,

where j = 0, 1, 2, ..., if E∗ = E1 or E∗ = E2, or by

ω1 =
√

det(JE∗), τ = τ
j
1 =

1
ω1

arcsin

[
− tr(JE∗)ω1

ω2
1 + det(JE∗)

]
+ 2jπ (11)

if E∗ = E3, and it has two positive roots

ω2,3 =
−tr(JE∗)±

√
[tr(JE∗)]

2 − 4 det(JE∗)

2
, τ = τ

j
2,3 =

1
ω2,3

(π

2
+ 2π j

)
(12)
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if E∗ = E3.

Proof. The statement follows from Equations (3), (4) and (10). Let E∗ = E0. Then, cos ωτ = 0,
sin ωτ = 0, and so system (10) has no solution. Let E∗ = E1 or E∗ = E2. Then, cos ωτ = 0, ω sin ωτ =

−tr(JE∗) > 0, yielding ωτ = π/2 and ω = −tr(JE∗). Finally, let E∗ = E3 and consider the cases −ω2 +

det(JE∗) = 0, cos ωτ 6= 0 and−ω2 +det(JE∗) 6= 0. cos ωτ = 0, together with
[
ω2 + det(JE∗)

]
sin ωτ =

−tr(JE∗)ω.

Let ω∗ ∈ {ω0, ω1, ω2, ω3} be a root of system (10) and τ∗ the corresponding value of τ. To perform
the delay Hopf bifurcation theorem, we need to guarantee simple root and transversality at λ = iω∗
and τ = τ∗, respectively.

Proposition 2. The characteristic equation (7) admits a pair of simple conjugate pure imaginary roots λ =

±iω∗ at τ = τ∗. The crossing direction of the pair of simple conjugate pure imaginary roots through the
imaginary axis is determined by

sign
[

dRe(λ)
dτ

]
τ=τ∗

> 0.

Proof. Differentiating (8) with respective to τ we get{
2λeλτ − tr(JE∗)− τ

[
det(JE∗)e

−λτ − λ2eλτ
]}(dλ

dτ

)
= λ

[
det(JE∗)e

−λτ − λ2eλτ
]

. (13)

If λ = iω∗ were a multiple root of (8), then (13) would give iω∗
[
det(JE∗)e

−iω∗τ∗ + ω2
∗eiω∗τ∗

]
= 0,

leading to
[
ω2
∗ − det(JE∗)

]
cos ω∗τ∗ = 0 and

[
ω2
∗ + det(JE∗)

]
sin ω∗τ∗ = 0. Thus, sin ω∗τ∗ = 0 and so

(10) yields −tr(JE∗)ω∗ = 0, i.e., an absurd. It remains to determine the direction of motion of λ as τ is
varied. From (13), we have (

dλ

dτ

)−1
=

2λeλτ − tr(JE∗)

λ
[
det(JE∗)e−λτ − λ2eλτ

] − τ

λ
.

After some calculations, we get

sign
[

dRe(λ)
dτ

]
τ=τ∗

= sign

[
Re
(

dλ

dτ

)−1
]

τ=τ∗

= sign {Γ} ,

where
Γ = 2ω3

∗ + 2 det(JE∗)ω∗ cos 2ω∗τ∗ + tr(JE∗)
[
ω2
∗ − det(JE∗)

]
sin ω∗τ∗.

If ω∗ = ω0 (ω
2
0 = det(JE∗)), one has

sign {Γ} = sign
{

2ω3
0 (1 + cos 2ω0τ0)

}
> 0,

while if ω∗ = ω1,2 (cos ω1,2τ1,2 = 0, sin ω1,2τ1,2 = 1), it is

sign {Γ} = sign
{
−tr(JE∗)ω

2
∗ − 4 det(JE∗)ω∗ − det(JE∗)tr(JE∗)

}
.

In the latter, we have used the fact that ω2
∗ + det(JE∗) = −tr(JE∗)ω∗. Noticing that −tr(JE∗)ω

2
∗ −

4 det(JE∗)ω∗ − det(JE∗)tr(JE∗) = 0 has a negative discriminant, we can conclude that the sign of Γ is
the same as the sign of −tr(JE∗) > 0.

As each crossing of the real part of characteristic roots at τ∗ is from left to right as τ increases,
based on the above analysis, we have the following result.
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Theorem 1. Let ω∗ ∈ {ω1, ω2, ω3} and τ
j
∗ (j = 1, 2, 3) its corresponding value of τ be defined as in Equations

(11) and (12).

(1) Let E∗ = E0, E1 or E2. System (6) is unstable for τ ≥ 0.

(2) Let E∗ = E3. If system (10) has one positive root ω∗ = ω1 at the values τ
j
1, then the equilibrium E∗ of

system (6) is locally asymptotically stable for τ ∈ [0, τ1) and unstable for τ > τ1. A Hopf bifurcation
occurs at the equilibrium E∗ for τ = τ1.

(3) Let E∗ = E3. If system (10) has two positive solutions ω∗ = ω2,3, ω2 < ω3, then the equilibrium
E∗ of system (6) is locally asymptotically stable for τ ∈ [0, τ̂) and unstable for τ > τ̂, where τ̃ =

min
{

τ
j
2,3, j = 0, 1, 2, ...

}
. System (6) undergoes a Hopf bifurcation at the equilibrium E∗ for τ = τ̃.

3.2. Existence of Equilibria and Local Bifurcations with Heterogeneous Time Delays

The aim is to extend the analysis developed in the previous section when τ1 6= τ2, τ1 ≥ 0 and
τ2 ≥ 0, in system (5), and the equilibrium point E∗ is the Nash equilibrium E3. The Jacobian matrix
evaluated at E3 leads us to the following characteristic equation,∣∣∣∣∣∣∣∣∣∣

−λ +

[(
4Bb

9
− γ

)
α1x∗1

]
e−λτ1

[
4Bbα1x∗1

9

]
e−λτ1

[
4Bbα2x∗2

9

]
e−λτ2 −λ +

[(
4Bb

9
− γ

)
α2x∗2

]
e−λτ2

∣∣∣∣∣∣∣∣∣∣
= 0,

namely,
λ2 + Mα1λe−λτ1 + Mα2λe−λτ2 + det(JE3)e

−λ(τ1+τ2) = 0, (14)

where

det(JE3) =
16A2γα1α2

9 (9γ− 8Bb)
> 0, M =

4A (9γ− 4Bb)
9 (9γ− 8Bb)

> 0.

3.2.1. Case τ1 = 0, τ2 > 0

Equation (14) reduces to

λ2 + Mα1λ +
[
Mα2λ + det(JE3)

]
e−λτ2 = 0. (15)

In absence of delay, i.e., τ2 = 0, E3 is stable. With the time delay τ2 varying, system (5) will lose the
stability. To obtain such critical values of time delay, supposing λ = iω, ω > 0, is a purely imaginary
root of (14), one has

ω2 = Mα2ω sin ωτ2 + det(JE3) cos ωτ2, −Mα1ω = −det(JE3) sin ωτ2 + Mα2ω cos ωτ2. (16)

Taking the square, adding the equations and performing some simplification processes, and
setting z = ω2, we have

z2 + M2
(

α2
1 − α2

2

)
z−

[
det(JE3)

]2
= 0. (17)

Obviously, if (17) has no positive solution for z, then (15) cannot have purely imaginary roots.
Noticing that −

[
det(JE3)

]2
< 0, it follows that Equation (17) has a unique positive root ω+, where

ω+ =

√√√√−M2
(
α2

1 − α2
2
)
+
√

M4
(
α2

1 − α2
2
)2

+ 4
[
det(JE3)

]2
2

.
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Solving (16) for sin ωτ2 and cos ωτ2, we get

sin ωτ2 =

[
α1 det(JE3) + α2ω2]Mω[

det(JE3)
]2

+ M2α2
2ω2

, cos ωτ2 =

[
det(JE3)−M2α1α2

]
ω2[

det(JE3)
]2

+ M2α2
2ω2

.

As sign (cos ωτ2) = sign(det(JE3)− M2α1α2) = sign(−72γ2 − 16B2b2), one has the following
sequence of critical delays

τ+
2,j =

1
ω+

{
2π − sin−1

{[
α1 det(JE3) + α2ω2]Mω[

det(JE3)
]2

+ M2α2
2ω2

}
+ 2jπ

}
, (18)

where j = 0, 1, 2, ...

Lemma 2. When τ = τ+
2,j, then (15) has a pair of pure imaginary roots ±iω+.

We next detect the stability switch at which the equilibrium loses stability. As λ is a function of
delay τ2, we need the minimum solution of for which a derivative of λ(τ2) is positive. By selecting τ2

as the bifurcation parameter and differentiating the characteristic equation (15), with respect, we get{
2λ + Mα1 + Mα2e−λτ2 +

[
−Mα2λ− det(JE3)

]
τ2e−λτ2

}( dλ

dτ2

)
=
[
Mα2λ + det(JE3)

]
λe−λτ2 . (19)

We now prove λ = iω+ to be a simple root for (15). If this root is repeated, then (19) implies[
Mα2iω+ + det(JE3)

]
iω+e−iω+τ+2,j = 0, i.e., a contradiction. Next, we can obtain that(

dξ

dτ2

)−1
=

(2λ + Mα1) eλτ2 + Mα2[
Mα2λ + det(JE3)

]
λ
− τ2

λ
.

Therefore, we have

sign

 d ( Reλ)

dτ2

∣∣∣∣
τ=τ+2,j

 = sign

 Re
(

dλ

dτ2

)−1

τ=τ+2,j


= sign

M2α2
2ω4

+ + 2
[
det(JE3)

]2
ω2
+ + M2α2

1
[
det(JE3)

]2{
M2α2

2ω2
+ +

[
det(JE3)

]2} (
ω2
+ + M2α2

1
)

ω2
+

 > 0.

This inequality implies that the real parts of complex eigenvalues of (15) turn to be positive from
negative when crosses the imaginary axis as τ2 increases. The previous analysis can be summarized as
follows.

Theorem 2. Let τ+
2,j (j = 0, 1, 2, ...) be defined as in (18). The equilibrium E3 of system (5) is locally

asymptotically stable for τ2 ∈ [0, τ+
2,0), unstable for τ > τ+

2,0 and undergoes a Hopf bifurcation at the equilibrium
at τ2 = τ+

2,0.
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3.2.2. Case τ1 > 0, τ2 Fixed in Its StableInterval

To investigate the effect of multiple delays on the local stability of equilibrium point E3, we regard
τ1 as the varying parameter for any fixed delay τ2 in its stable interval, i.e. τ2 ∈ [0, τ+

2,0). Let λ = iω
(ω > 0) be a root of the characteristic Equation (14), then

−ω2 + Mα1iω(cos ωτ1 − i sin ωτ1) + Mα2iω(cos ωτ2 − i sin ωτ2)

+ det(JE3) [cos ω (τ1 + τ2)− i sin ω (τ1 + τ2)] = 0.

Therefore, it follows

ω2 −Mα1ω sin ωτ1 −Mα2ω sin ωτ2 = det(JE3) cos ω (τ1 + τ2) , (20)

−Mα1ω cos ωτ1 −Mα2ω cos ωτ2 = −det(JE3) sin ω (τ1 + τ2) . (21)

Squaring and adding these equations yields(
ω2 −Mα1ω sin ωτ1 −Mα2ω sin ωτ2

)2
+ (Mα1ω cos ωτ1 + Mα2ω cos ωτ2)

2 =
[
det(JE3)

]2 ,

so that we get

g(ω) = ω4 + (−2Mα1 sin ωτ1 − 2Mα2 sin ωτ2)ω3

+
[

M2α2
1 + M2α2

2 + 2M2α1α2 cos ω (τ1 − τ2)
]

ω2 −
[
det(JE3)

]2
= 0. (22)

It is easy to see that g(0) = −
[
det(JE3)

]2
< 0 and g(ω) = +∞ as t → +∞. Thus, g(ω) = 0 has

at least one positive solution. Assume Equation (22) has finitely many positive solutions and denote
them by ω1, ω2, ..., ωN . For every fixed ωl , l = 1, 2, ..., N, we can derive from (20) and (21) the sequence
of critical values τ

j
1,l > 0 (j = 1, 2, ...). Let

τ̃1 = min
{

τ
j
1,l , l = 1, 2, ..., N, j = 0, 1, 2, ...

}
. (23)

For τ1 = τ̃1, Equation (14) has a pair of purely imaginary roots λ = ±iω̃. Let λ (τ1) be the root
of (14) near τ1 = τ̃1 such that Re(λ (τ̃1)) = 0 and Im(λ (τ̃1)) = ω̃. Then, taking differentiation of both
sides of (14) with respect to τ1, we have[

2λ + Mα1e−λτ1 + Mα2e−λτ2 −Mα2λτ2e−λτ2 − det(JE3) (τ1 + τ2) e−λ(τ1+τ2) −Mα1τ1λe−λτ1
] ( dλ

dτ1

)

= λ
[

Mα1λe−λτ1 + det(JE3)e
−λ(τ1+τ2)

]
. (24)

Now, notice that from (24) it follows that the root λ = ±iω̃ is simple. Otherwise,

iω̃
[

Mα1iω̃e−iω̃τ̃1 + det(JE3)e
−iω̃(τ̃1+τ2)

]
= 0

and (14) evaluated at λ = iω̃ give iω̃
(
iω̃ + Mα2e−iω̃τ2

)
= 0, namely, i (ω̃−Mα2 sin ω̃τ2) +

Mα2 cos ω̃τ2 = 0. This means we have ω̃ = Mα2 sin ω̃τ2 and cos ω̃τ2 = 0, i.e. ω̃ = Mα2, sin ω̃τ2 = 1
and cos ω̃τ2 = 0. On the other hand, using the formulas cos ω (τ̃1 + τ2) = cos ωτ̃1 cos ωτ2 −
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sin ωτ̃1 sin ωτ2 and sin ω (τ̃1 + τ2) = sin ωτ̃1 cos ωτ2 + cos ωτ̃1 sin ωτ2 in (20),(21) leads to sin ω̃τ̃1 = 0
and cos ω̃τ̃1 = 0, which is a contradiction. Then, from (24), we find(

dλ

dτ1

)−1
=

2λ + Mα1e−λτ1 + Mα2e−λτ2 −Mα2λτ2e−λτ2 − det(JE3)τ2e−λ(τ1+τ2)

λ
[
Mα1λe−λτ1 + det(JE3)e

−λ(τ1+τ2)
] − τ1

λ
, (25)

which can be rewritten by (15) as(
dλ

dτ1

)−1
= −

2λ + Mα1e−λτ1 + Mα2e−λτ2 + τ2
(
λ2 + Mα1λe−λτ1

)
λ
(
λ2 + Mα2λe−λτ2

) − τ1

λ
.

Consequently, Equation (25) becomes(
dλ

dτ1

)−1

τ1=τ̃1

=
P + iR

ω̃ (Q− iS)
− τ̃1

iω̃
,

where

P = Mα1 cos ω̃τ̃1 + Mα2 cos ω̃τ2 − τ2

(
−Mα1ω̃ sin ω̃τ̃1 + ω̃2

)
, Q = Mα2ω̃ cos ω̃τ2

R = 2ω̃−Mα1 sin ω̃τ̃1 −Mα2 sin ω̃τ2 + Mα1ω̃τ2 cos ω̃τ̃1, S = Mα2ω̃ sin ω̃τ2 − ω̃2.

Therefore, we have

sign
[

dRe(λ)
dτ1

]
τ1=τ̃1

= sign

[
Re
(

dλ

dτ1

)−1
]

τ1=τ̃1

= sign {G(ω̃, τ̃1)} ,

where

G(ω̃, τ̃1) = PQ− RS =
(

2ω̃2 + M2α2
2

)
ω̃−M2α2

1ω̃ sin ω̃τ̃1

− 3Mα2ω̃2 sin ω̃τ2 + M2α1α2ω̃ cos ω̃(τ̃1 − τ2)

+ τ2

{
Mα1ω̃3 cos ω̃τ̃1 −Mα2ω̃3 cos ω̃τ2 + M2α1α2 sin ω̃(τ̃1 − τ2)

}
. (26)

The pair of purely imaginary roots crosses the imaginary axis from left (resp. right) to right
(resp. left) at τ̃1 if the sign of PQ− RS is positive (resp. negative). Based on the found transversality
condition and the Hopf bifurcation theorem, one has the following assertions.

Theorem 3. Let τ̃1 and G(ω̃, τ̃1) be defined as in (23) and (26).

(1) If Equation (22) exhibits one single positive root satisfying sign {G(ω̃, τ̃1)} 6= 0, then the equilibrium E3

of system (5) is locally asymptotically stable for τ1 ∈ [0, τ̃1) and system (5) displays a Hopf bifurcation
from E3 if τ1 = τ̃1 when sign {G(ω̃, τ̃1)} > 0,; it is locally asymptotically stable for τ1 ≥ 0 if
sign {G(ω̃, τ̃1)} < 0.

(2) If Equation (22) presents at least two positive roots, then there exists some delayed interval sequence where
the equilibrium E3 of system (5) is locally asymptotically stable. The dynamical behaviour of system (5)
near E3 switches from stability to instability, and back again as time delays increase beyond the critical
values, and Hopf bifurcations may occur.

4. Conclusions

This paper extends the discrete-time two-stage game of R&D competition between two high-tech
enterprises of Zhou and Wang [29] to the case of continuous-time version with delays. The use of delay
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differential equations makes it possible to go beyond some limitations of other modelling approaches
in a natural way. It is found that the boundary equilibrium points are always unstable and the Nash
equilibrium loses its stability. The emergence of Hopf bifurcations is also characterised. Our findings,
therefore, stress how the extent of time delays may be responsible for the existence of interesting
dynamic outcomes, and underline the importance of the theoretical modelling framework used as a
tool that may dramatically change the long-term findings of an economy.
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