Lagrangian Formulation of Free Arbitrary N-Extended Massless Higher Spin Supermultiplets in 4D AdS Space
Abstract
:1. Introduction
2. Free Higher Spin Fields
3. Minimal Supermultipets
3.1. Higher Superspins
3.2. Low Superspins
4. -Extended Supermultiplets
4.1.
4.2.
4.3.
4.4.
5. Summary and Prospects
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Notations and Conventions
References
- Vasiliev, M.A. Higher Spin Gauge Theories in Various Dimensions. Fortsch. Phys. 2004, 52, 702. [Google Scholar] [CrossRef] [Green Version]
- Fotopoulos, A.; Tsulaia, M. Gauge Invariant Lagrangians for Free and Interacting Higher Spin Fields. A Review of the BRST formulation. Int. J. Mod. Phys. A 2009, 24, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, X.; Boulanger, N.; Sundell, P. How higher spin gravity surpasses the spin-two barrier: No-go theorems versus yes-go examples. Rev. Mod. Phys. 2012, 84, 987. [Google Scholar] [CrossRef] [Green Version]
- Didenko, V.E.; Skvortsov, E.D. Elements of Vasiliev theory. arXiv 2014, arXiv:1401.2975. [Google Scholar]
- Vasiliev, M.A. Higher-Spin Theory and Space-Time Metamorphoses. Lect. Notes Phys. 2015, 892, 227–264. [Google Scholar]
- Buchbinder, I.L.; Koutrolikos, K. BRST Analysis of the Supersymmetric Higher Spin Field Models. J. High Energy Phys. 2015, 12, 106. [Google Scholar] [CrossRef]
- Kuzenko, S.M.; Ogburn, D.X. Off-shell higher spin N=2 supermultiplets in three dimensions. Phys. Rev. D 2016, 94, 106010. [Google Scholar] [CrossRef] [Green Version]
- Kuzenko, S.M. Higher spin super-Cotton tensors andgeneralisations of the linear-chiral duality in three dimensions. Phys. Lett. B 2016, 763, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Kuzenko, S.M.; Tsulaia, M. Off-shell massive N=1 supermultiplets in three dimensions. Nucl. Phys. B 2017, 914, 160–200. [Google Scholar] [CrossRef] [Green Version]
- Kuzenko, S.M.; Manvelyan, R.; Theisen, S. Off-shell superconformal higher spin multiplets in four dimensions. J. High Energy Phys. 2017, 2017, 34. [Google Scholar] [CrossRef] [Green Version]
- Hutomo, J.; Kuzenko, S.M. The massless integer superspin multiplets revisited. J. High Energy Phys. 2018, 02, 137. [Google Scholar] [CrossRef]
- Hutomo, J.; Kuzenko, S.M. Non-conformal higher spin supercurrents. Phys. Lett. B 2018, 778, 242–246. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Hutomo, J.; Kuzenko, S.M. Higher spin supercurrents in anti-de Sitter space. J. High Energy Phys. 2018, 09, 027. [Google Scholar] [CrossRef] [Green Version]
- Kuzenko, S.M.; Ponds, M. Topologically massive higher spin gauge theories. J. High Energy Phys. 2018, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Hutomo, J.; Kuzenko, S.M. N=2 supersymmetric higher spin gauge theories and current multiplets in three dimensions. Phys. Rev. D 2018, 98, 125004. [Google Scholar] [CrossRef] [Green Version]
- Hutomo, J.; Kuzenko, S.M.; Ogburn, D. Higher spin supermultiplets in three dimensions: (2,0) AdS supersymmetry. Phys. Lett. B 2018, 787, 175–181. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Kuzenko, S.M.; Fontaine, J.L.; Ponds, M. Spin projection operators and higher-spin Cotton tensors in three dimensions. Phys. Lett. B 2019, 790, 389–395. [Google Scholar] [CrossRef]
- Kuzenko, S.M.; Ponds, M. Conformal geometry and (super)conformal higher-spin gauge theories. J. High Energy Phys. 2019, 05, 113. [Google Scholar] [CrossRef] [Green Version]
- Hutomo, J.; Kuzenko, S.M. Field theories with (2,0) AdS supersymmetry in N=1 AdS superspace. Phys. Rev. D 2019, 100, 045010. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, E.I.; Hutchings, D.; Hutomo, J.; Kuzenko, S.M. Linearised actions for N -extended (higher-spin) superconformal gravity. J. High Energy Phys. 2019, 08, 077. [Google Scholar] [CrossRef] [Green Version]
- Kuzenko, S.M.; Ponds, M. Generalised conformal higher-spin fields in curved backgrounds. J. High Energy Phys. 2020, 04, 021. [Google Scholar] [CrossRef] [Green Version]
- Kuzenko, S.M.; Ponds, M.; Raptakis, E.S.N. New locally (super)conformal gauge models in Bach-flat backgrounds. arXiv 2020, arXiv:2005.08657. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Gates, S.J.; Koutrolikos, K. Higher Spin Superfield interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices. Universe 2018, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Gates, S.J.; Koutrolikos, K. Interaction of supersymmetric nonlinear sigma models with external higher spin superfields via higher spin supercurrents. J. High Energy Phys. 2018, 05, 204. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Gates, S.J.; Koutrolikos, K. Conserved higher spin supercurrents for arbitrary spin massless supermultiplets and higher spin superfield cubic interactions. J. High Energy Phys. 2018, 08, 055. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Gates, S.J.; Koutrolikos, K. Integer superspin supercurrents of matter supermultiplets. J. High Energy Phys. 2019, 05, 031. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Gates, S.J.; Koutrolikos, K. Superfield continuous spin equations of motion. Phys. Lett. B 2019, 793, 445–450. [Google Scholar] [CrossRef]
- Gates, S.J.; Koutrolikos, K. From Diophantus to Supergravity and massless higher spin multiplets. J. High Energy Phys. 2017, 11, 063. [Google Scholar] [CrossRef] [Green Version]
- Koutrolikos, K.; Koci, P.; von Unge, R. Higher Spin Superfield interactions with Complex linear Supermultiplet: Conserved Supercurrents and Cubic Vertices. J. High Energy Phys. 2018, 3, 119. [Google Scholar] [CrossRef]
- Gates, S.J.; Koutrolikos, K. Progress on cubic interactions of arbitrary superspin supermultiplets via gauge invariant supercurrents. Phys. Lett. B 2019, 797, 134868. [Google Scholar] [CrossRef]
- Alexander, S.; Gates, S.J.; Jenks, L.; Koutrolikos, K.; McDonough, E. Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB. J. High Energy Phys. 2019, 10, 156. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, D.; Tsulaia, M. Supersymmetric Reducible Higher-Spin Multiplets in Various Dimensions. Nucl. Phys. B 2018, 929, 216–242. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Y.M. Lagrangian formulation of the massive higher spin supermultiplets in three dimensional space-time. J. High Energy Phys. 2015, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Y.M. Unfolded equations for massive higher spin supermultiplets in AdS3. J. High Energy Phys. 2016, 08, 075. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Y.M. Lagrangian description of massive higher spin supermultiplets in AdS3 space. J. High Energy Phys. 2017, 08, 021. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Y.M. Supersymmetric Higher Spin Models in Three Dimensional Spaces. Symmetry 2018, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Khabarov, M.V.; Snegirev, T.V.; Zinoviev, Y.M. Lagrangian formulation of the massive higher spin N=1 supermultiplets in AdS4 space. Nucl. Phys. B 2019, 942, 1–29. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Khabarov, M.V.; Snegirev, T.V.; Zinoviev, Y.M. Lagrangian description of the partially massless higher spin N=1 supermultiplets in AdS4 space. J. High Energy Phys. 2019, 08, 116. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Khabarov, M.V.; Snegirev, T.V.; Zinoviev, Y.M. Lagrangian formulation for the infinite spin N=1 supermultiplets in d=4. Nucl. Phys. B 2019, 946, 114717. [Google Scholar] [CrossRef]
- Khabarov, M.V.; Zinoviev, Y.M. Massive higher spin supermultiplets unfolded. Nucl. Phys. B 2020, 953, 114959. [Google Scholar] [CrossRef]
- Metsaev, R.R. Cubic interaction vertices for N=1 arbitrary spin massless supermultiplets in flat space. J. High Energy Phys. 2019, 2019, 130. [Google Scholar] [CrossRef] [Green Version]
- Metsaev, R.R. Cubic interactions for arbitrary spin N -extended massless supermultiplets in 4d flat space. J. High Energy Phys. 2019, 11, 084. [Google Scholar] [CrossRef] [Green Version]
- Sohnius, M.F. Introducing supersymmetry. Phys. Rep. 1985, 128, 39–204. [Google Scholar] [CrossRef]
- Curtright, T. Massless Field Supermultiplets with Arbitrary Spin. Phys. Lett. B 1979, 85, 214. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Gauge form of description of massless fields with arbitrary spin. Sov. J. Nucl. Phys. 1980, 32, 439. [Google Scholar]
- Vasiliev, M.A. Free Massless Fields of Arbitrary Spin in the de Sitter Space and Initial Data for a Higher Spin Superalgebra. Fortsch.Phys. 1987, 35, 11. [Google Scholar] [CrossRef]
- Konstein, S.E.; Vasiliev, M.A. Extended higher-spin superalgebras and their massless representations. Nucl. Phys. B 1990, 331, 475. [Google Scholar] [CrossRef] [Green Version]
- Engquist, J.; Sezgin, E.; Sundell, P. On N=1, N=2, N=4 higher spin gauge theories in four-dimensions. Class. Quant. Grav. 2002, 19, 6175. [Google Scholar] [CrossRef] [Green Version]
- Sezgin, E.; Sundell, P. Higher spin N=8 supergravity. J. High Energy Phys. 1999, 1998, 016. [Google Scholar] [CrossRef] [Green Version]
- Sezgin, E.; Sundell, P. Supersymmetric Higher Spin Theories. J. Phys. A 2013, 46, 214022. [Google Scholar] [CrossRef] [Green Version]
- Alkalaev, K.B.; Vasiliev, M.A. N=1 supersymmetric theory of higher spin gauge fields in AdS(5) at the cubic level. Nucl. Phys. B 2003, 655, 57. [Google Scholar]
- Ziniviev, Y.M. Massive N=1 supermultiplets with arbitrary superspins. Nucl. Phys. B 2007, 785, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Kuzenko, S.M.; Sibiryakov, A.G.; Postnikov, V.V. Massless gauge superfields of higher half integer superspin. JETP Lett. 1993, 57, 534. [Google Scholar]
- Kuzenko, S.M.; Sibiryakov, A.G. Massless gauge superfields of higher integer superspin. JETP Lett. 1993, 57, 539. [Google Scholar]
- Gates, S.J.; Koutrolikos, K. On 4D,N=1 massless gauge superfelds of arbitrary superhelicity. J. High Energy Phys. 2014, 06, 098. [Google Scholar] [CrossRef] [Green Version]
- Kuzenko, S.M.; Sibiryakov, A.G. Free massless higher superspin superfields on the anti-de-Sitter superspace. Phys. Atom. Nucl. 1994, 57, 1257. [Google Scholar]
- Buchbinder, I.L.; Kuzenko, S.M.; Sibiryakov, A.G. Quantization of higher spin superfields in the anti-De Sitter superspace. Phys. Lett. B 1995, 352, 29. [Google Scholar] [CrossRef] [Green Version]
- Jr, S.J.G.; Kuzenko, S.M.; Sibiryakov, A.G. N=2 supersymmetry of higher spin massless theories. Phys. Lett. B 1997, 412, 59. [Google Scholar]
- James Gates, S., Jr.; Kuzenko, S.M.; Sibiryakov, A.G. Towards a unified theory of massless superfields of all superspins. Phys. Lett. B 1997, 394, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Gates, S.J.; Linch, W.D.; Phillips, J. New 4D,N=1 superfield theory: Model of free massive superspin -3/2 multiplet. Phys. Lett. B 2002, 535, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Gates, S.J.; Linch, W.D.; Phillips, J. Dynamical Theory of free massive superspin-1 multiplet. Phys. Lett. B 2002, 549, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Gates, S.J.; Kuzenko, S.M.; Phillips, J. The off-shell (3/2, 2) supermultiplets revisited. Phys. Lett. B 2003, 576, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, I.L.; Gates, S.J.; Kuzenko, S.M. Massive 4D,N=1 superspin 1 and 3/2 multiplets and dualities. J. High Energy Phys. 2005, 2005, 056. [Google Scholar] [CrossRef] [Green Version]
- Gates, S.J.; Kuzenko, S.M.; Tartagnino-Mazzucchelli, G. New massive supergravity multiplet. J. High Energy Phys. 2007, 07, 052. [Google Scholar] [CrossRef] [Green Version]
- Gates, S.J.; Koutrolikos, K. A dynamical theory of linearized massive superspin 3/2. J. High Energy Phys. 2014, 1403, 030. [Google Scholar] [CrossRef] [Green Version]
- Galperin, A.S.; Ivanov, E.A.; Ogievetsky, V.I.; Sokatchev, E.S. Harmonic Superspace; Cambridge Iniv. Press: Cambridge, UK, 2001. [Google Scholar]
- Buchbinder, I.L.; Kuzenko, S.M. Ideas and Mothods of Supersymmetry and Supergravity or a Wolk Through Superspace; IOP Publisher: Bristol, UK; Philadelphia, PA, USA, 1998. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchbinder, I.L.; Snegirev, T.V. Lagrangian Formulation of Free Arbitrary N-Extended Massless Higher Spin Supermultiplets in 4D AdS Space. Symmetry 2020, 12, 2052. https://doi.org/10.3390/sym12122052
Buchbinder IL, Snegirev TV. Lagrangian Formulation of Free Arbitrary N-Extended Massless Higher Spin Supermultiplets in 4D AdS Space. Symmetry. 2020; 12(12):2052. https://doi.org/10.3390/sym12122052
Chicago/Turabian StyleBuchbinder, Ioseph L., and Timofey V. Snegirev. 2020. "Lagrangian Formulation of Free Arbitrary N-Extended Massless Higher Spin Supermultiplets in 4D AdS Space" Symmetry 12, no. 12: 2052. https://doi.org/10.3390/sym12122052