General Slow-Roll Inflation in f(R) Gravity under the Palatini Approach
Abstract
:1. Introduction
2. Palatini Gravity
3. Inflation in Gravities
4. Slow-Roll Inflation in Palatini Gravity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Liberati, S. Metric-affine f(R) theories of gravity. Ann. Phys. 2007, 322, 935–966. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J. Palatini Approach to Modified Gravity: f(R) Theories and Beyond. Int. J. Mod. Phys. D 2011, 20, 413–462. [Google Scholar] [CrossRef] [Green Version]
- Vitagliano, V.; Sotiriou, T.P.; Liberati, S. The dynamics of metric-affine gravity. Ann. Phys. 2011, 326, 1259–1273. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Laurentis, M.D. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Hybrid metric-Palatini gravity. Universe 2015, 1, 199–238. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. Teleparallel Palatini theories. JCAP 2018, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Baghram, S.; Rahvar, S. Inverse problem: Reconstruction of modified gravity action in Palatini formalism by Supernova Type Ia data. Phys. Rev. D 2009, 80, 124049. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.; Shimada, K. Galileon and generalized Galileon with projective invariance in a metric-affine formalism. Phys. Rev. D 2018, 98, 044038. [Google Scholar] [CrossRef] [Green Version]
- Leanizbarrutia, I.; Lobo, F.S.N.; Saez-Gomez, D. Crossing SNe Ia and BAO observational constraints with local ones in hybrid metric-Palatini gravity. Phys. Rev. D 2017, 95, 084046. [Google Scholar] [CrossRef] [Green Version]
- Böhmer, C.G.; Lobo, F.S.N.; Tamanini, N. Einstein static Universe in hybrid metric-Palatini gravity. Phys. Rev. D 2013, 88, 104019. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Cosmology of hybrid metric-Palatini f(X)-gravity. JCAP 2013, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D 2012, 85, 084016. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.M.; Liu, Y.X.; Zhong, Y. Stable Palatini f(R) braneworld. Phys. Rev. D 2018, 98, 024027. [Google Scholar] [CrossRef] [Green Version]
- Rosa, J.L.; Carloni, S.; Lemos, J.P.S. Cosmological phase space of generalized hybrid metric-Palatini theories of gravity. Phys. Rev. D 2020, 1, 104056. [Google Scholar] [CrossRef]
- Rosa, J.L.; Carloni, S.; de Sande e Lemos, J.P.; Lobo, F.S.N. Cosmological solutions in generalized hybrid metric-Palatini gravity. Phys. Rev. D 2017, 95, 124035. [Google Scholar] [CrossRef] [Green Version]
- Borowiec, A.; Kamionka, M.; Kurek, A.; Szydlowski, M. Cosmic acceleration from modified gravity with Palatini formalism. JCAP 2012, 2, 27. [Google Scholar] [CrossRef]
- Yang, X.J.; Chen, D.M. f(R) gravity theories in the Palatini Formalism constrained from strong lensing. Mon. Not. R. Astron. Soc. 2009, 394, 1449. [Google Scholar] [CrossRef] [Green Version]
- Fay, S.; Tavakol, R.; Tsujikawa, S. f(R) gravity theories in Palatini formalism: Cosmological dynamics and observational constraints. Phys. Rev. D 2007, 75, 063509. [Google Scholar] [CrossRef] [Green Version]
- Lee, S. Stability of Palatini-f(R) cosmology. arXiv 2007, arXiv:0710.2395. [Google Scholar]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Generalized energy conditions in Extended Theories of Gravity. Phys. Rev. D 2015, 91, 124019. [Google Scholar] [CrossRef] [Green Version]
- Toniato, J.D.; Rodrigues, D.C.; Wojnar, A. Palatini f(R) gravity in the solar system: Post-Newtonian equations of motion and complete PPN parameters. Phys. Rev. D 2020, 101, 064050. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Stellar structure models in modified theories of gravity: Lessons and challenges. Phys. Rep. 2020, 876, 1–75. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D. Junction conditions in Palatini f(R) gravity. Class. Quant. Grav. 2020, 37, 215002. [Google Scholar] [CrossRef]
- Goenner, H.F.M. Alternative to the Palatini method: A new variational principle. Phys. Rev. D 2010, 81, 124019. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Vignolo, S. The Cauchy problem for metric-affine f(R)-gravity in the presence of a Klein-Gordon scalar field. Int. J. Geom. Methods Mod. Phys. 2011, 8, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V. The Jebsen-Birkhoff theorem in alternative gravity. Phys. Rev. D 2010, 81, 044002. [Google Scholar] [CrossRef] [Green Version]
- Afonso, V.I.; Olmo, G.J.; Rubiera-Garcia, D. Mapping Ricci-based theories of gravity into general relativity. Phys. Rev. D 2018, 97, 021503. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D. Nonsingular Black Holes in f(R) Theories. Universe 2015, 1, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D. Reissner-Nordströom black holes in extended Palatini theories. Phys. Rev. D 2012, 86, 044014. [Google Scholar] [CrossRef] [Green Version]
- Menchon, C.; Olmo, G.J.; Rubiera-Garcia, D. Nonsingular black holes, wormholes, and de Sitter cores from anisotropic fluids. Phys. Rev. D 2017, 96, 104028. [Google Scholar] [CrossRef] [Green Version]
- Bambi, C.; Cardenas-Avendano, A.; Olmo, G.J.; Rubiera-Garcia, D. Wormholes and nonsingular spacetimes in Palatini f(R) gravity. Phys. Rev. D 2016, 93, 064016. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D 2012, 86, 127504. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, J.B.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. Born–Infeld inspired modifications of gravity. Phys. Rep. 2018, 727, 1–129. [Google Scholar] [CrossRef] [Green Version]
- Kozak, A.; Borowiec, A. Palatini frames in scalar–tensor theories of gravity. Eur. Phys. J. C 2019, 79, 335. [Google Scholar] [CrossRef]
- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Dodelson, S. Modern Cosmology; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Mukhanov, V.F. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 1992, 215, 203. [Google Scholar] [CrossRef] [Green Version]
- Liddle, A.R. An Introduction to cosmological inflation. arXiv 1998, arXiv:astro-ph/9901124. [Google Scholar]
- Langlois, D. Lectures on inflation and cosmological perturbations. arXiv 2010, arXiv:1001.5259. [Google Scholar]
- Lidsey, J.E.; Liddle, A.R.; Kolb, E.W.; Copeland, E.J.; Barreiro, T.; Abney, M. Reconstructing the inflation potential: An overview. Rev. Mod. Phys. 1997, 69, 373. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D.; Faraoni, V. Reconstructing the universe history, from inflation to acceleration, with phantom and canonical scalar fields. Phys. Rev. D 2008, 77, 106005. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday A., J.; Barreiro R., B.; et al. [Planck], Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 2016, 594, A20. [Google Scholar]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. arXiv 2018, arXiv:1807.06211. [Google Scholar]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 2008, 77, 046009. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified f(R) gravity unifying Rm inflation with Lambda CDM epoch. Phys. Rev. D 2008, 77, 026007. [Google Scholar] [CrossRef] [Green Version]
- Cognola, G.; Elizalde, E.; Odintsov, S.D.; Tretyakov, P.; Zerbini, S. Initial and final de Sitter universes from modified f(R) gravity. Phys. Rev. D 2009, 79, 044001. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Nojiri, S.; Odintsov, S.D.; Sáez-Gómez, D. Inflationary universe from perfect fluid and F(R) gravity and its comparison with observational data. Phys. Rev. D 2014, 90, 124061. [Google Scholar] [CrossRef] [Green Version]
- De La Cruz-Dombriz, A.; Elizalde, E.; Odintsov, S.D.; Sáez-Gómez, D. Spotting deviations from R2 inflation. JCAP 2016, 1605, 60. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Gómez, D.S.C.; Sharov, G.S. Is exponential gravity a viable description for the whole cosmological history? Eur. Phys. J. C 2017, 77, 862. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, L.; Cognola, G.; Myrzakulov, R.; Odintsov, S.D.; Zerbini, S. Nearly Starobinsky inflation from modified gravity. Phys. Rev. D 2014, 89, 023518. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, L.; Myrzakulov, R. F(R) gravity and inflation. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1530003. [Google Scholar] [CrossRef] [Green Version]
- Myrzakulov, R.; Odintsov, S.; Sebastiani, L. Inflationary universe from higher-derivative quantum gravity. Phys. Rev. D 2015, 91, 083529. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Myrzakulov, R.; Odintsov, S.D.; Sebastiani, L. Trace-anomaly driven inflation in modified gravity and the BICEP2 result. Phys. Rev. D 2014, 90, 043505. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. 1980, 91B, 99. [Google Scholar] [CrossRef]
- Bauer, F.; Demir, D.A. Inflation with Non-Minimal Coupling: Metric versus Palatini Formulations. Phys. Lett. B 2008, 665, 222–226. [Google Scholar] [CrossRef] [Green Version]
- Shimada, K.; Aoki, K.; Maeda, K.I. Metric-affine Gravity and Inflation. Phys. Rev. D 2019, 99, 104020. [Google Scholar] [CrossRef] [Green Version]
- Gialamas, I.D.; Karam, A.; Racioppi, A. Dynamically induced Planck Scale and Inflation in the Palatini Formulation. Available online: https://iopscience.iop.org/article/10.1088/1475-7516/2020/11/014 (accessed on 25 November 2020).
- Tenkanen, T. Tracing the high energy theory of gravity: An introduction to Palatini inflation. Gen. Relat. Grav. 2020, 52, 33. [Google Scholar] [CrossRef] [Green Version]
- Das, N.; Panda, S. Inflation in f(R,h) theory formulated in the Palatini formalism. arXiv 2020, arXiv:2005.14054. [Google Scholar]
- Järv, L.; Racioppi, A.; Tenkanen, T. Palatini side of inflationary attractors. Phys. Rev. D 2018, 97, 083513. [Google Scholar] [CrossRef] [Green Version]
- Tenkanen, T. Resurrecting Quadratic Inflation with a non-minimal coupling to gravity. JCAP 2017, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Markkanen, T.; Tenkanen, T.; Vaskonen, V.; Veermäe, H. Quantum corrections to quartic inflation with a non-minimal coupling: Metric vs. Palatini. JCAP 2018, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Karam, A.; Lykkas, A.; Pappas, T.; Tamvakis, K. Rescuing Quartic and Natural Inflation in the Palatini Formalism. JCAP 2019, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Karam, A.; Lykkas, A.; Tamvakis, K. Palatini inflation in models with an R2 term. JCAP 2018, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Enckell, V.M.; Enqvist, K.; Rasanen, S.; Wahlman, L.P. Inflation with R2 term in the Palatini formalism. JCAP 2019, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Edery, A.; Nakayama, Y. Palatini formulation of pure R2 gravity yields Einstein gravity with no massless scalar. Phys. Rev. D 2019, 99, 124018. [Google Scholar] [CrossRef] [Green Version]
- Stachowski, A.; Szydłowski, M.; Borowiec, A. Starobinsky cosmological model in Palatini formalism. Eur. Phys. J. C 2017, 77, 406. [Google Scholar] [CrossRef] [Green Version]
- Järv, L.; Karam, A.; Kozak, A.; Lykkas, A.; Racioppi, A.; Saal, M. Equivalence of inflationary models between the metric and Palatini formulation of scalar-tensor theories. Phys. Rev. D 2020, 102, 044029. [Google Scholar] [CrossRef]
- Koivisto, T.; Kurki-Suonio, H. Cosmological perturbations in the palatini formulation of modified gravity. Class. Quant. Grav. 2006, 23, 2355–2369. [Google Scholar] [CrossRef]
- Tamanini, N.; Contaldi, C.R. Inflationary Perturbations in Palatini Generalised Gravity. Phys. Rev. D 2011, 83, 044018. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Wu, P.; Yu, H. Inflationary dynamics and preheating of the nonminimally coupled inflaton field in the metric and Palatini formalisms. Phys. Rev. D 2017, 96, 103542. [Google Scholar] [CrossRef] [Green Version]
- Gialamas, I.D.; Lahanas, A.B. Reheating in R2 Palatini inflationary models. Phys. Rev. D 2020, 101, 084007. [Google Scholar] [CrossRef] [Green Version]
- Rubio, J.; Tomberg, E.S. Preheating in Palatini Higgs inflation. JCAP 2019, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Bauer, F.; Demir, D.A. Higgs-Palatini Inflation and Unitarity. Phys. Lett. B 2011, 698, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Rasanen, S. Higgs inflation in the Palatini formulation with kinetic terms for the metric. Open J. Astrophys. 2019, 2, 1. [Google Scholar] [CrossRef]
- Gialamas, I.D.; Karam, A.; Lykkas, A.; Pappas, T.D. Palatini-Higgs inflation with nonminimal derivative coupling. Phys. Rev. D 2020, 102, 063522. [Google Scholar] [CrossRef]
- Racioppi, A. Coleman-Weinberg linear inflation: Metric vs. Palatini formulation. JCAP 2017, 12, 41. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekov, S.; Myrzakulov, K.; Myrzakulov, R.; Sáez-Chillón Gómez, D. General Slow-Roll Inflation in f(R) Gravity under the Palatini Approach. Symmetry 2020, 12, 1958. https://doi.org/10.3390/sym12121958
Bekov S, Myrzakulov K, Myrzakulov R, Sáez-Chillón Gómez D. General Slow-Roll Inflation in f(R) Gravity under the Palatini Approach. Symmetry. 2020; 12(12):1958. https://doi.org/10.3390/sym12121958
Chicago/Turabian StyleBekov, Sabit, Kairat Myrzakulov, Ratbay Myrzakulov, and Diego Sáez-Chillón Gómez. 2020. "General Slow-Roll Inflation in f(R) Gravity under the Palatini Approach" Symmetry 12, no. 12: 1958. https://doi.org/10.3390/sym12121958