Tetra- and Penta-Quark Structures in the Constituent Quark Model
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Chiral Quark Model
2.2. Cornell Potential
2.3. Wave-Function of Multi-Quark System
2.3.1. Color Wave-Function
- Tetraquark
- Pentaquark
2.3.2. Spin Wave-Function
- Tetraquark
- Pentaquark
2.3.3. Flavor Wave-Function
- Tetraquark
- Pentaquark
2.3.4. Spatial Wave-Function
- Tetraquark
- Pentaquark
2.4. Relativity and Mode Independence
3. Results and Discussions
3.1. Doubly and Fully Heavy Tetraquarks
3.1.1. Tetraquarks
- Double-charm tetraquarks
- Double-bottom tetraquarks
- Charm-bottom tetraquarks
- state
- state
- state
3.1.2. Tetraquarks
- tetraquarks
- state
- 2.
- state
- 3.
- state
- tetraquarks
- state
- 2.
- state
- 3.
- state
- tetraquarks
- 1.
- state
- 2.
- state
- 3.
- state
3.1.3. Tetraquarks
- 1.
- state
- 2.
- state
- 3.
- state
- Fully-bottom tetraquarks
- 1.
- state
- 2.
- state
- 3.
- state
3.2. Hidden and Open Heavy Flavor Pentaquarks
3.2.1. Hidden Charm Pentaquarks
- state
- state
- state
3.2.2. Hidden Bottom Pentaquarks
- -
- state
- state
- state
- state
- state
3.2.3. Doubly Charmed Pentaquarks
- state
- state
- state
- state
- state
- state
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vijande, J.; Fernandez, F.; Valcarce, A. Constituent quark model study of the meson spectra. J. Phys. G 2005, 31, 481. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.C.; Deng, C.; Huang, H.; Ping, J. Dynamical study of heavy-baryon spectroscopy. Mod. Phys. Lett. A 2008, 23, 1819–1828. [Google Scholar] [CrossRef]
- Yang, G.; Ping, J.; Segovia, J. The S- and P-Wave Low-Lying Baryons in the Chiral Quark Model. Few-Body Syst. 2018, 59, 113. [Google Scholar] [CrossRef] [Green Version]
- Gell-Mann, M. A schematic model of baryons and mesons. Phys. Lett. 1964, 8, 214. [Google Scholar] [CrossRef]
- Choi, S.K.; Olsen, S.L.; Abe, K.; Abe, T.; Adachi, I.; Ahn, B.S.; Aihara, H.; Akai, K.; Akatsu, M.; Akemoto, M.; et al. Observation of a Narrow Charmoniumlike State in Exclusive B±→K±π+π−J/ψ Decays. Phys. Rev. Lett. 2003, 91, 262001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, D.; Affolder, T.; Ahn, M.H.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; et al. Observation of the Narrow State X(3872)→J/ψπ+π− in p Collisions at = 1.96 TeV. Phys. Rev. Lett. 2004, 93, 072001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.L.; Ahmed, S.N.; et al. Observation and Properties of the X(3872) Decaying to J/ψπ+π− in p Collisions at = 1.96 TeV. Phys. Rev. Lett. 2004, 93, 162002. [Google Scholar] [CrossRef] [Green Version]
- Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Gaillard, J.M.; Hicheur, A.; Karyotakis, Y.; Lees, J.P.; Tisserand, V.; Zghiche, A.; et al. Study of the B−→J/ψK−π+π− decay and measurement of the B−→X(3872)K− branching fraction. Phys. Rev. D 2005, 71, 071103. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-K.; Olsen, S.L.; Abe, K.; Abe, K.; Adachi, I.; Aihara, H.; Asano, Y.; Bahinipati, S.; Bakich, A.M.; Belle Collaboration. Observation of a near-threshold ωJ/ψ mass enhancement in exclusive B→KωJ/ψ decays. Phys. Rev. Lett. 2005, 94, 182002. [Google Scholar] [CrossRef]
- Choi, S.-K.; Olsen, S.L.; Adachi, I.; Aihara, H.; Aulchenko, V.; Aushev, T.; Aziz, T.; Bakich, A.M.; Belle Collaboration. Observation of a resonance-like structure in the π±ψ′ mass distribution in exclusive B→Kπ±ψ′ decays. Phys. Rev. Lett. 2008, 100, 142001. [Google Scholar] [CrossRef] [Green Version]
- Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; et al. Observation of a broad structure in the π+π−J/ψ mass spectrum around 4.26 GeV/c2. Phys. Rev. Lett. 2005, 95, 142001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Insler, J.; Muramatsu, H.; Park, C.S.; Thorndike, E.H.; Yang, F.; Coan, T.E.; Gao, Y.S.; Artuso, M.; Blusk, S.; et al. Confirmation of the Y(4260) resonance production in ISR. Phys. Rev. D 2006, 74, 091104. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.Z.; Shen, C.P.; Wang, P.; McOnie, S.; Adachi, I.; Aihara, H.; Aulchenko, V.; Aushev, T.; Bahinipati, S.; Balagura, V.; et al. Measurement of e+e−→π+π−J/ψ cross-section via initial state radiation at Belle. Phys. Rev. Lett. 2007, 99, 182004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Particle Data Group. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; CMS Collaboration. Observation of Υ(1S) pair production in proton-proton collisions at = 8 TeV. J. High Energ. Phys. 2017, 5, 13. [Google Scholar] [CrossRef]
- Durgut, S. Evidence of a Narrow Structure in Υ(1S)1+1− Mass Spectrum and CMS Phase I and II Silicon Detector Upgrade Studies. Ph.D. Thesis, University of Iowa, Iowa City, IA, USA, 2018. Available online: https://ir.uiowa.edu/etd/6411/ (accessed on 13 April 2018).
- Durgut, S. APS April Meeting 2018. Search for Exotic Mesons at CMS. Available online: http://meetings.aps.org/Meeting/APR18/Session/U09.6 (accessed on 16 April 2018).
- Yi, K. Things that go bump in the night: From J/ψϕ to other mass spectrum. Intl. J. Mod. Phys. A 2018, 33, 1850224. [Google Scholar] [CrossRef]
- Bland, L.C.; Brash, E.J.; Crawford, H.J.; Derevschikov, A.A.; Drees, K.A.; Engelage, J.; Folz, C.; Judd, E.G.; Li, X.; Minaev, N.G.; et al. Observation of Feynman scaling violations and evidence for a new resonance at RHIC. arXiv 2019, arXiv:1909.03124. [Google Scholar]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; Alexander, M.; et al. Search for beautiful tetraquarks in the Υ(1S)μ+μ− invariant-mass spectrum. J. High Energ. Phys. 2018, 10, 086. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Beteta, C.A.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Observation of structure in the J/ψ-pair mass spectrum. arXiv 2020, arXiv:2006.16957. [Google Scholar]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Observation of J/ψp Resonances Consistent with Pentaquark States in →J/ψK−p Decays. Phys. Rev. Lett. 2015, 115, 072001. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Beteta, C.A.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Model-independent evidence for J/ψp contributions to →J/ψK−p decays. Phys. Rev. Lett. 2016, 117, 082002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaij, R.; Beteta, C.A.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; et al. Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+. Phys. Rev. Lett. 2019, 122, 222001. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Albero, A.A.; Ali, S.; et al. Search for weakly decaying b-flavored pentaquarks. Phys. Rev. D 2018, 97, 032010. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.; Heller, L.; Tjon, J.A. Stability of dimesons. Phys. Rev. D 1988, 37, 744. [Google Scholar] [CrossRef] [PubMed]
- Karliner, M.; Rosner, J.L. Discovery of the Doubly Charmed Ξcc Baryon Implies a Stable bb Tetraquark. Phys. Rev. Lett. 2017, 119, 202001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichten, E.J.; Quigg, C. Heavy-Quark Symmetry Implies Stable Heavy Tetraquark Mesons QiQjkl. Phys. Rev. Lett. 2017, 119, 202002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijande, J.; Valcarce, A.; Tsushima, K. Dynamical study of QQ- mesons. Phys. Rev. D 2006, 74, 054018. [Google Scholar] [CrossRef] [Green Version]
- Vijande, J.; Valcarce, A.; Barnea, N. Exotic meson-meson molecules and compact four-quark states. Phys. Rev. D 2009, 79, 074010. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Deng, C.; Ping, J.; Goldman, T. S-wave QQ state in the constituent quark model. Phys. Rev. D 2009, 80, 114023. [Google Scholar] [CrossRef]
- Hernández, E.; Vijande, J.; Valcarce, A.; Richard, J.-M. Spectroscopy, lifetime and decay modes of the tetraquark. Phys. Lett. B 2020, 800, 135073. [Google Scholar] [CrossRef]
- Ebert, D.; Faustov, R.N.; Galkin, V.O.; Lucha, W. Masses of tetraquarks with two heavy quarks in the relativistic quark model. Phys. Rev. D 2007, 76, 114015. [Google Scholar] [CrossRef] [Green Version]
- Fontoura, C.E.; Krein, G.; Valcarce, A.; Vijande, J. Production of exotic tetraquarks QQ in heavy-ion collisions at the LHC. Phys. Rev. D 2019, 99, 094037. [Google Scholar] [CrossRef] [Green Version]
- Leskovec, L.; Meinel, S.; Pflaumer, M.; Wagner, M. Lattice QCD investigation of a doubly-bottom ud tetraquark with quantum numbers I(JP) = 0(1+). Phys. Rev. D 2019, 100, 014503. [Google Scholar] [CrossRef] [Green Version]
- Francis, A.; Hudspith, R.J.; Lewis, R.; Maltman, K. Lattice Prediction for Deeply Bound Doubly Heavy Tetraquarks. Phys. Rev. Lett. 2017, 118, 142001. [Google Scholar] [CrossRef] [Green Version]
- Junnarkar, P.; Mathur, N.; Padmanath, M. Study of doubly heavy tetraquarks in lattice QCD. Phys. Rev. D 2019, 99, 034507. [Google Scholar] [CrossRef] [Green Version]
- Agaev, S.S.; Azizi, K.; Sundu, H. Double-heavy axial-vector tetraquark Nucl. Phys. B 2020, 951, 114890. [Google Scholar] [CrossRef]
- Francis, A.; Hudspith, R.J.; Lewis, R.; Maltman, K. Evidence for charm-bottom tetraquarks and the mass dependence of heavy-light tetraquark states from lattice QCD. Phys. Rev. D 2019, 99, 054505. [Google Scholar] [CrossRef] [Green Version]
- Manohar, A.V.; Wise, M.B. Exotic QQqq states in QCD. Nucl. Phys. B 1993, 399, 17. [Google Scholar] [CrossRef] [Green Version]
- Silvestre-Brac, B.; Semay, C. Systematics of L = 0 systems. Z. Phys. C 1993, 57, 273. [Google Scholar] [CrossRef]
- Semay, C.; Silvestre-Brac, B. Diquonia and potential models. Z. Phys. C 1994, 61, 271. [Google Scholar] [CrossRef]
- Brink, D.M.; Stancu, F.L. Tetraquarks with heavy flavors. Phys. Rev. D 1998, 57, 6778. [Google Scholar] [CrossRef] [Green Version]
- Janc, D.; Rosina, M. The Tcc = DD* Molecular State. Few-Body Syst. 2004, 35, 175. [Google Scholar] [CrossRef] [Green Version]
- Gelman, B.A.; Nussinov, S. Does a narrow tetraquark cc state exist? Phys. Lett. B 2003, 551, 296. [Google Scholar] [CrossRef] [Green Version]
- Del Fabbro, A.; Janc, D.; Rosina, M.; Treleani, D. Production and detection of doubly charmed tetraquarks. Phys. Rev. D 2005, 71, 014008. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, Q. A search for a promising tetraquark candidate X (ud) in pn⟶ΛΛX. J. Phys. G 2009, 36, 015003. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Chen, H.; Ping, J. Systematical investigation on the stability of doubly heavy tetraquark states. Eur. Phys. J. A 2020, 56, 9. [Google Scholar] [CrossRef] [Green Version]
- Vijande, J.; Valcarce, A.; Richard, J.-M. Stability of multiquarks in a simple string model. Phys. Rev. D 2007, 76, 114013. [Google Scholar] [CrossRef] [Green Version]
- Richard, J.; Valcarce, A.; Vijande, J. Few-body quark dynamics for doubly heavy baryons and tetraquarks. Phys. Rev. C 2018, 97, 035211. [Google Scholar] [CrossRef] [Green Version]
- Vijande, J.; Fernandez, F.; Valcarce, A.; Silvestre-Brac, B. Tetraquarks in a chiral constituent-quark model. Eur. Phys. J. A 2004, 19, 383. [Google Scholar] [CrossRef]
- Luo, S.; Chen, K.; Liu, X.; Liu, Y.; Zhu, S. Exotic tetraquark states with the qq configuration. Eur. Phys. J. C 2017, 77, 709. [Google Scholar] [CrossRef] [Green Version]
- Agaev, S.S.; Azizi, K.; Sundu, H. Strong decays of double-charmed pseudoscalar and scalar cc tetraquarks. Phys. Rev. D 2019, 99, 114016. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ping, J. Investigation of cs tetraquark in the chiral quark model. Phys. Rev. D 2019, 99, 094032. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-G. Analysis of the axial vector Bc-like tetraquark states with the QCD sum rules. EuroPhys. Lett. 2019, 128, 11001. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Zhu, R. Weak decays of stable doubly heavy tetraquark states. Phys. Rev. D 2018, 98, 053005. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Yu, F.; Zhu, R. Weak decays of stable open-bottom tetraquark by SU(3) symmetry analysis. Eur. Phys. J. C 2019, 79, 373. [Google Scholar] [CrossRef]
- Ali, A.; Parkhomenko, A.Y.; Qin, Q.; Wang, W. Prospects of discovering stable double-heavy tetraquarks at a Tera-Z factory. Phys. Lett. B 2018, 782, 412. [Google Scholar] [CrossRef]
- Ali, A.; Qin, Q.; Wei, W. Discovery potential of stable and near-threshold doubly heavy tetraquarks at the LHC. Phys. Lett. B 2018, 785, 605. [Google Scholar] [CrossRef]
- Yang, G.; Ping, J.; Segovia, J. QQ tetraquarks in the chiral quark model. Phys. Rev. D 2020, 102, 054023. [Google Scholar] [CrossRef]
- Tan, Y.; Lu, W.; Ping, J. Systematics of QQ in a chiral constituent quark model. Eur. Phys. J. Plus 2020, 135, 716. [Google Scholar] [CrossRef]
- Anwar, M.N.; Ferretti, J.; Guo, F.-K.; Santopinto, E.; Zou, B.-S. Spectroscopy and decays of the fully-heavy tetraquarks. Eur. Phys. J. C 2018, 78, 647. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-G. Analysis the QQ tetraquark states with QCD sum rules. Eur. Phys. J. C 2017, 77, 432. [Google Scholar] [CrossRef]
- Bai, Y.; Lu, S.; Osborne, J. Beauty-full tetraquarks. Phys. Lett. B 2019, 798, 134930. [Google Scholar] [CrossRef]
- Karliner, M.; Nussinov, S.; Rosner, J.L. QQ states: Masses, production, and decays. Phys. Rev. D 2017, 95, 034011. [Google Scholar] [CrossRef] [Green Version]
- Bedolla, M.A.; Ferretti, J.; Roberts, C.D.; Santopinto, E. Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective. Eur. Phys. J. C 2020, 80, 1004. [Google Scholar] [CrossRef]
- Berezhnoy, A.V.; Luchinsky, A.V.; Novoselov, A.A. Heavy tetraquarks production at the LHC. Phys. Rev. D 2012, 86, 034004. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chen, H.-X.; Liu, X.; Steele, T.G.; Zhu, S.-L. Hunting for exotic doubly hidden-charm/bottom tetraquark states. Phys. Lett. B 2017, 773, 247. [Google Scholar] [CrossRef]
- Esposito, A.; Polosa, A.D. A bb di-bottomonium ar the LHC? Eur. Phys. J. C 2018, 78, 782. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Ping, J.; He, L.; Wang, Q. A potential model prediction of fully-heavy tetraquarks QQ (Q = c,b). arXiv 2020, arXiv:2006.13756v2. [Google Scholar]
- Kawanai, T.; Sasaki, S. Charmonium potential from full lattice QCD. Phys. Rev. D 2012, 85, 091503. [Google Scholar] [CrossRef] [Green Version]
- Berezhnoy, A.V.; Likhoded, A.K.; Luchinsky, A.V.; Novoselov, A.A. Production of J/ψ-meson pairs and 4c tetraquark at the LHC. Phys. Rev. D 2011, 84, 094023. [Google Scholar] [CrossRef] [Green Version]
- Yi, K. EXPERIMENTAL REVIEW OF STRUCTURES IN THE J/ψϕ MASS SPECTRUM. Int. J. Mod. Phys. A 2013, 28, 1330020. [Google Scholar] [CrossRef] [Green Version]
- Heupel, W.; Eichmann, G.; Fischer, C.S. Tetraquark bound states in a Bethe-Salpeter approach. Phys. Lett. B 2012, 718, 545. [Google Scholar] [CrossRef]
- Debastiani, V.R.; Navarra, F.S. A non-relativistic model for the [cc][] tetraquark. Chin. Phys. C 2019, 43, 013105. [Google Scholar] [CrossRef]
- Lundhammar, P.; Ohlsson, T. A Non-Relativistic Model of Tetraquarks and Predictions for Their Masses from Fits to Charmed and Bottom Meson Data. Phys. Rev. D 2020, 102, 054018. [Google Scholar] [CrossRef]
- Liu, M.S.; Liu, F.X.; Zhong, X.H.; Zhao, Q. Full-heavy tetraquark states and their evidences in the LHCb di-J/ψ spectrum. arXiv 2020, arXiv:2006.11952. [Google Scholar]
- Giron, J.F.; Lebed, R.F. The Simple Spectrum of cc States in the Dynamical Diquark Model. Phys. Rev. D 2020, 102, 074003. [Google Scholar] [CrossRef]
- Wang, Z.G. Tetraquark candidates in the LHCb’s di-J/ψ mass spectrum. Chin. Phys. C 2020, 44, 113106. [Google Scholar] [CrossRef]
- Lü, Q.; Chen, D.; Bing, Y. Masses of fully heavy tetraquarks QQ in an extended relativized quark model. Eur. Phys. J. C 2020, 80, 871. [Google Scholar]
- Karliner, M.; Rosner, J.L. Interpretation of structure in the di-J/ψ spectrum. arXiv 2020, arXiv:2009.04429v3. [Google Scholar]
- Jin, X.; Xue, Y.; Huang, H.; Ping, J. Full-heavy tetraquarks in constituent quark models. arXiv 2020, arXiv:2006.13745. [Google Scholar]
- Albuquerque, R.M.; Narison, S.; Rabemananjara, A.; Rabetiarivony, D.; Randriamanatrika, G. Doubly-hidden scalar heavy molecules and tetraquarks states from QCD at NLO. arXiv 2020, arXiv:2008.01569v2. [Google Scholar]
- Sonnenschein, J.; Weissman, D. Deciphering the recently discovered tetraquark candidates around 6.9 GeV. arXiv 2020, arXiv:2008.01095. [Google Scholar]
- Richard, J. About the J/ψJ/ψ peak of LHCb: Fully-charmed tetraquark? arXiv 2020, arXiv:2008.01962. [Google Scholar] [CrossRef]
- Chao, K.T.; Zhu, S.L. The possible tetraquark states cc observed by the LHCb experiment. arXiv 2020, arXiv:2008.07670. [Google Scholar]
- Chen, H.X.; Chen, W.; Liu, X.; Zhu, S.L. Strong decays of fully-charm tetraquarks into di-charmonia. Sci. Bull. 2020, 65, 1994–2000. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lin, Q.Y.; Xu, H.; Xie, Y.P.; Huang, Y.; Chen, X. Discovery potential for the LHCb fully-charm tetraquark X(6900) state via annihilation reaction. arXiv 2020, arXiv:2007.09697v2. [Google Scholar]
- Zhang, J.; Chen, D.; Liu, X.; Matsuki, T. Producing fully-charm structures in the J/ψ-pair invariant mass spectrum. arXiv 2020, arXiv:2008.07430v2. [Google Scholar]
- Richard, J.-M.; Valcarce, A.; Vijande, J. String dynamics and metastability of all-heavy tetraquarks. Phys. Rev. D 2017, 95, 054019. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liu, Y.-R.; Chen, K.; Liu, X.; Zhu, S.-L. Heavy-flavored tetraquark states with the QQ configuration. Phys. Rev. D 2018, 97, 094015. [Google Scholar] [CrossRef] [Green Version]
- Chen, X. Analysis of hidden-bottom bb states. Eur. Phys. J. A 2019, 55, 106. [Google Scholar] [CrossRef]
- Liu, M.-S.; Lü, Q.-F.; Zhong, X.-H.; Zhao, Q. All-heavy tetraquarks. Phys. Rev. D 2019, 100, 016006. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-J.; Meng, L.; Zhu, S.-L. Spectrum of the fully-heavy tetraquark state QQ′′. Phys. Rev. D 2019, 100, 096013. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.; Eichten, E.; Davies, C.T. Searching for beauty-fully bound tetraquarks using lattice nonrelativistic QCD. Phys. Rev. D 2018, 97, 054505. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Chen, H.; Ping, J. Towards the understanding of fully-heavy tetraquark states from various models. arXiv 2020, arXiv:2003.05154v2. [Google Scholar]
- Wang, B.; Meng, L.; Zhu, S. Deciphering the charged heavy quarkoniumlike states in chiral effective field theory. arXiv 2020, arXiv:2009.01980. [Google Scholar]
- Aaij, R.; Beteta, C.A.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Amplitude analysis of the B+→D+D−K+ decay. arXiv 2019, arXiv:2009.00026v2. [Google Scholar]
- Aaij, R.; Beteta, C.A.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. A model-independent study of resonant structure in B+→D+D−K+ decays. arXiv 2020, arXiv:2009.00025v2. [Google Scholar]
- Cheng, J.; Li, S.; Liu, Y.; Liu, Y.; Si, Z.; Yao, T. Spectrum and rearrangement decays of tetraquark states with four different flavors. Phys. Rev. D 2020, 101, 114017. [Google Scholar] [CrossRef]
- Molina, R.; Branz, T.; Oset, E. New interpretation for the (2573) and the prediction of novel exotic charmed mesons. Phys. Rev. D 2010, 82, 014010. [Google Scholar] [CrossRef] [Green Version]
- He, X.G.; Wang, W.; Zhu, R. Open-charm tetraquark Xc and open-bottom tetraquark Xb. Eur. Phys. J. C 2020, 80, 1026. [Google Scholar] [CrossRef]
- Chen, H.X.; Chen, W.; Dong, R.R.; Su, N. X0(2900) and X1(2900): Hadronic molecules or compact tetraquarks. Chin. Phys. Lett. 2020, 37, 101201. [Google Scholar] [CrossRef]
- Agaev, S.S.; Azizi, K.; Sundu, H. New scalar resonance X0(2900) as a *K* molecule: Mass and width. arXiv 2020, arXiv:2008.13027. [Google Scholar]
- Liu, M.Z.; Xie, J.J.; Geng, L.S. X0(2866) as a D** molecular state. arXiv 2020, arXiv:2008.07389. [Google Scholar] [CrossRef]
- He, J.; Chen, D.Y. Molecular picture for X0(2900) and X1(2900). arXiv 2020, arXiv:2008.07782v3. [Google Scholar]
- Xue, Y.; Jin, X.; Huang, H.; Ping, J. Tetraquark with open charm favor. arXiv 2020, arXiv:2008.09516. [Google Scholar]
- Molina, R.; Oset, E. Molecular picture for the X0(2866) as a D**JP = 0+ state and related 1+, 2+ states. Phys. Lett. B 2020, 811, 135870. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, J.X.; Xie, J.J.; Geng, L.S. Strong decays of *K* molecules and the newly observed X0,1 states. arXiv 2020, arXiv:2008.07959. [Google Scholar]
- Zhang, J. An open charm tetraquark candidate: Note on X0(2900). arXiv 2020, arXiv:2008.07295. [Google Scholar]
- Wang, Z. Analysis of the X0(2900) as the scalar tetraquark state via the QCD sum rules. Int. J. Mod. Phys. 2020, A35, 2050187. [Google Scholar] [CrossRef]
- Karliner, M.; Rosner, J.L. First exotic hadron with open heavy flavor: cs tetraquark. arXiv 2020, arXiv:2008.05993v2. [Google Scholar]
- Hu, M.W.; Lao, X.Y.; Ling, P.; Wang, Q. The molecular nature of the X0(2900). arXiv 2020, arXiv:2008.06894v2. [Google Scholar]
- Liu, X.H.; Yan, M.J.; Ke, H.W.; Li, G.; Xie, J.J. Triangle singularity as the origin of X0(2900) and X1(2900) observed in B→D+D−K+. arXiv 2020, arXiv:2008.07190. [Google Scholar]
- Burns, T.J.; Swanson, E.S. Triangle Cusp and Resonance Interpretations of the X(2900). arXiv 2020, arXiv:2008.12838. [Google Scholar]
- Lü, Q.F.; Chen, D.Y.; Dong, Y.B. Open charm and bottom tetraquarks in an extended relativized quark model. Phys. Rev. D 2020, 102, 074021. [Google Scholar] [CrossRef]
- Wu, J.; Molina, R.; Oset, E.; Zou, B.S. Prediction of Narrow N* and Λ* Resonances with Hidden Charm above 4 GeV. Phys. Rev. Lett. 2010, 105, 232001. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Molina, R.; Oset, E.; Zou, B.S. Dynamically generated N* and Λ* resonances in the hidden charm sector around 4.3 GeV. Phys. Rev. C 2011, 84, 015202. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.S.; Lee, H.; Zou, B.S. Nucleon resonances with hidden charm in coupled-channels models. Phys. Rev. C 2012, 85, 044002. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Recio, C.; Nieves, J.; Romanets, O.; Salcedo, L.L.; Tolos, L. Hidden charm N and Δ resonances with heavy-quark symmetry. Phys. Rev. D 2013, 87, 074034. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.W.; Nieves, J.; Oset, E. Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons. Phys. Rev. D 2013, 88, 056012. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.C.; Sun, Z.F.; He, J.; Liu, X.; Zhu, S.L. Possible hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon. Chin. Phys. C 2012, 36, 6. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Liu, X.; Li, X.Q.; Zhu, S.L. Identifying Exotic Hidden-Charm Pentaquarks. Phys. Rev. Lett. 2015, 115, 132002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Ping, J.; Wang, F. The structure of pentaquarks in the chiral quark model. Phys. Rev. D 2017, 95, 014010. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Deng, C.; Ping, J.; Wang, F. Possible pentaquarks with heavy quarks. Eur. Phys. J. C 2016, 76, 624. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Ping, J. Investigating the hidden-charm and hidden-bottom pentaquark resonances in scattering process. Phys. Rev. D 2019, 99, 014010. [Google Scholar] [CrossRef] [Green Version]
- He, J. and * interactions and the LHCb hidden-charmed pentaquarks. Phys. Lett. B 2016, 753, 547. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.X.; Chen, W.; Liu, X.; Steel, T.G.; Zhu, S.L. Towards Exotic Hidden-Charm Pentaquarks in QCD. Phys. Rev. Lett. 2015, 115, 172001. [Google Scholar] [CrossRef]
- Wang, Z.G. Analysis of Pc(4380) and Pc(4450) as pentaquark states in the diquark model with QCD sum rules. Eur. Phys. J. C 2016, 76, 70. [Google Scholar] [CrossRef] [Green Version]
- Azizi, K.; Sarac, Y.; Sundu, H. Analysis of (4380) and (4450) as pentaquark states in the molecular picture with QCD sum rules. Phys. Rev. D 2017, 95, 094016. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Qiao, C. Pentaquark states in a diquark-triquark model. Phys. Lett. B 2016, 756, 259. [Google Scholar] [CrossRef] [Green Version]
- Bayar, M.; Aceti, F.; Guo, F.; Oset, E. Discussion on triangle singularities in the Λb→J/ψK−p reaction. Phys. Rev. D 2016, 94, 074039. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, Q.; Zhao, Q. Understanding the newly observed heavy pentaquark candidates. Phys. Lett. B 2016, 757, 231. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Oka, M. Understanding the nature of heavy pentaquarks and searching for them in pion-induced recations. Nucl. Phys. A 2016, 954, 352. [Google Scholar] [CrossRef] [Green Version]
- Azizi, K.; Sarac, Y.; Sundu, H. Strong decay of Pc(4380) pentaquark in a molecular picture. Phys. Lett. B 2018, 782, 694. [Google Scholar] [CrossRef]
- Liu, M.; Pan, Y.; Peng, F.; Sánchez, M.; Geng, L.; Hosaka, A.; Valderrama, M.P. Emergence of a complete heavy-quark spin symmetry multiplet: Seven molecular pentaquarks in light of the latest LHCb analysis. Phys. Rev. Lett. 2019, 122, 242001. [Google Scholar] [CrossRef] [Green Version]
- He, J. Study of Pc(4457), Pc(4440), and Pc(4312) in a quasipotential Bethe-Salpeter equation approach. Eur. Phys. J. C 2019, 79, 393. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Meng, L.; Zhu, S. Hidden-charm and hidden-bottom molecular pentaquarks in chiral effective field theory. JHEP 2019, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z. Analysis of the Pc(4312), Pc(4440), Pc(4457) and related hidden-charm pentaquark states with QCD sum rules. Int. J. Mod. Phys. A 2020, 35, 2050003. [Google Scholar] [CrossRef]
- Guo, Z.; Oller, J.A. Anatomy of the newly observed hidden-charm pentaquark states: Pc(4457), Pc(4440), and Pc(4312). Phys. Lett. B 2019, 793, 144. [Google Scholar] [CrossRef]
- Huang, H.; He, J.; Ping, J. Looking for the hidden-charm pentaquark resonances in J/ψp scattering. arXiv 2019, arXiv:1904.00221. [Google Scholar]
- Mutuk, H. Neural Network Study of Hidden-Charm Pentaquark Resonances. Chin. Phys. C 2019, 43, 093103. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, X.; Huang, H.; Qiao, C. Analyzing doubly heavy tetra- and penta-quark states by variational method. Phys. Lett. B 2019, 797, 134869. [Google Scholar] [CrossRef]
- Eides, M.; Yu, I.; Petrov, V.; Polyakov, M.V. New LHCb pentaquarks as Hadrocharmonium States. Mod. Phys. Lett. A 2020, 35, 2050151. [Google Scholar] [CrossRef]
- Weng, X.; Chen, X.; Deng, W.; Zhu, S. Hidden-charm pentaquarks and Pc states. Phys. Rev. D 2019, 100, 016014. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.W.; Nieves, J.; Oset, E. Heavy quark spin symmetric molecular states from and other coupled channels in the light of the recent LHCb pentaquarks. Phys. Rev. D 2019, 100, 014021. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Yamaguchi, Y.; Harada, M. Heavy quark spin multiplet structure of Pc(4457), Pc(4440), and Pc(4312). arXiv 2019, arXiv:1904.00587. [Google Scholar]
- Meng, L.; Wang, B.; Wang, G.; Zhu, S. The hidden charm pentaquark states and Σc* interaction in chiral perturbation theory. Phys. Rev. D 2019, 100, 014031. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Dai, J.-P. Confronting pentaquark photoproduction with new LHCb observations. Phys. Rev. D 2019, 100, 054033. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-Y.; Chen, X.-R.; He, J. Possibility to study the pentaquark states Pc(4312), Pc(4440), and Pc(4457) in the reaction γp→J/ψp. Phys. Rev. D 2019, 99, 114007. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Huang, Y.; Dong, Y.; Geng, L.; Chen, D. Exploring the molecular scenario of Pc(4312), Pc(4440), and Pc(4457). Phys. Rev. D 2019, 100, 014022. [Google Scholar] [CrossRef] [Green Version]
- Gutsche, T.; Lyubovitskij, V.E. Structure and decays of hidden heavy pentaquarks. Phys. Rev. D 2019, 100, 094031. [Google Scholar] [CrossRef] [Green Version]
- Richard, J.-M.; Valcarce, A.; Vijande, J. Pentaquarks with anticharm or beauty revisited. Phys. Lett. B 2019, 790, 248. [Google Scholar] [CrossRef]
- Wang, F.; Chen, R.; Liu, Z.; Liu, X. Probing new types of Pc states inspired by the interaction between an S-wave charmed baryon and an anticharmed meson in a doublet state. Phys. Rev. C 2020, 101, 025201. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.-S.; Chen, K.; Liu, X.; Liu, Y.-R.; Zhu, S.-L. Surveying exotic pentaquarks with the typical QQqq configuration. Phys. Rev. C 2018, 98, 045204. [Google Scholar] [CrossRef] [Green Version]
- Giannuzzi, F. Heavy pentaquark spectroscopy in the diquark model. Phys. Rev. D 2019, 99, 094006. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J.; Segovia, J. Doubly charmed pentaquarks. Phys. Rev. D 2020, 101, 074030. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Chen, R.; Liu, Z.; Liu, X. Possible triple-charm molecular pentaquarks from ΞccD1/Ξcc interactions. Phys. Rev. D 2019, 99, 054021. [Google Scholar] [CrossRef] [Green Version]
- Azizi, K.; Sarac, Y.; Sundu, H. Possible molecular pentaquark states with different spin and quark configurations. Phys. Rev. D 2018, 98, 054002. [Google Scholar] [CrossRef] [Green Version]
- Vijande, J.; Richard, J.; Valcarce, A. Few-body insights of multiquark exotic hadrons. arXiv 2018, arXiv:1902.09799. [Google Scholar]
- Liu, Y.; Chen, H.; Chen, W.; Liu, X.; Zhu, S. Pentaquark and Tetraquark states. Prog. Part. Nucl. Phys. 2019, 107, 237. [Google Scholar] [CrossRef] [Green Version]
- Valcarce, A.; Fernandez, F.; Gonzalez, P.; Vento, V. Chiral quark cluster model study of the low-energy baryon spectrum. Phys. Lett. B 1996, 367, 35. [Google Scholar] [CrossRef] [Green Version]
- Segovia, J.; Entem, D.R.; Fernandez, F. Is chiral symmetry restored in the excited meson spectrum? Phys. Lett. B 2008, 662, 33. [Google Scholar] [CrossRef]
- Segovia, J.; Yasser, A.M.; Entem, D.R.; Fernández, F. JPC = 1−− hidden charm resonances. Phys. Rev. D 2008, 78, 114033. [Google Scholar] [CrossRef]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Canonical description of the new LHCb resonances. Phys. Rev. D 2016, 94, 114018. [Google Scholar] [CrossRef] [Green Version]
- Fernández, F.; Valcarce, A.; Straub, U.; Faessler, A. The Nucleon-nucleon interaction in terms of quark degrees of freedom. J. Phys. G 1993, 19, 2013. [Google Scholar] [CrossRef]
- Valcarce, A.; Fernández, F.; Buchmann, A.; Faessler, A. Can one simultaneously describe the deuteron properties and the nucleon-nucleon phase shifts in the quark cluster model? Phys. Rev. C 1994, 50, 2246. [Google Scholar] [CrossRef]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Coupled channel approach to the structure of the X(3872). Phys. Rev. D 2010, 81, 054023. [Google Scholar] [CrossRef] [Green Version]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Molecular components in P-wave charmed-strange mesons. Phys. Rev. D 2016, 94, 074037. [Google Scholar] [CrossRef] [Green Version]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Threshold effects in P-wave bottom-strange mesons. Phys. Rev. D 2017, 95, 034010. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J. Dynamical study of in the chiral quark model. Phys. Rev. D 2018, 97, 034023. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J.; Segovia, J. Double-heavy tetraquarks. Phys. Rev. D 2020, 101, 014001. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J.; Segovia, J. Hidden-bottom pentaquarks. Phys. Rev. D 2019, 99, 014035. [Google Scholar] [CrossRef] [Green Version]
- Alexandrou, C.; De Forcrand, P.; Tsapalis, A. The Static three quark SU(3) and four quark SU(4) potentials. Phys. Rev. D 2002, 65, 054503. [Google Scholar] [CrossRef] [Green Version]
- Okiharu, F.; Suganuma, H.; Takahashi, T.T. First study for the pentaquark potential in SU(3) lattice QCD. Phys. Rev. Lett. 2005, 94, 192001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prelovsek, S.; Lang, C.B.; Leskovec, L.; Mohler, D. Study of the channel using lattice QCD. Phys. Rev. D 2015, 91, 014504. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.B.; Leskovec, L.; Mohler, D.; Prelovsek, S.; Woloshyn, R.M. Ds mesons with DK and D*K scattering near threshold. Phys. Rev. D 2014, 90, 034510. [Google Scholar] [CrossRef] [Green Version]
- Briceno, R.A.; Dudek, J.J.; Young, R.D. Scattering processes and resonances from lattice QCD. Rev. Mod. Phys. 2018, 90, 025001. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.; Combes, J.M. A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 1971, 22, 269. [Google Scholar] [CrossRef]
- Balslev, E.; Combes, J.M. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Commun. Math. Phys. 1971, 22, 280. [Google Scholar] [CrossRef]
- Myo, T.; Kikuchi, Y.; Masui, H.; Kato, K. Recent development of complex scaling method for many-body resonances and continua in light nuclei. Prog. Part. Nucl. Phys. 2014, 79, 1. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Neff, H.; Duessel, T.; Lippert, T.; Schilling, K. Observation of string breaking in QCD. Phys. Rev. D 2005, 71, 114513. [Google Scholar] [CrossRef] [Green Version]
- Segovia, J.; Entem, D.R.; Fernandez, F.; Hernandez, E. Constituent quark model description of charmonium phenomenology. Int. J. Mod. Phys. 2013, E22, 1330026. [Google Scholar] [CrossRef] [Green Version]
- Scadron, M.D. SPONTANEOUS BREAKDOWN AND THE SCALAR NONET. Phys. Rev. D 1982, 26, 239. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, K.; Chen, S.; Zhuang, P. Heavy flavors under extreme conditions in high energy nuclear collisions. arXiv 2020, arXiv:2005.08277. [Google Scholar] [CrossRef]
- Alexandrou, C.; de Forcrand, P.; Jahn, O. The ground state of three quarks. Nucl. Phys. B (Proc. Suppl.) 2003, 119, 667. [Google Scholar] [CrossRef] [Green Version]
- Harvey, M. Effective nuclear forces in the quark model with Delta and hidden color channel coupling. Nucl. Phys. A 1981, 352, 326. [Google Scholar] [CrossRef]
- Hiyama, E.; Kino, Y.; Kamimura, M. Gaussian expansion method for few-body systems. Prog. Part. Nucl. Phys. 2003, 51, 223. [