Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay
Abstract
1. Introduction
2. Theoretical Framework and Analysis Results of All Possible Triangle Singularities
3. Detailed Analysis of the Amplitudes for the Diagram with Loop
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, J.J.; Molina, R.; Oset, E.; Zou, B.S. Prediction of narrow N* and Λ* resonances with hidden charm above 4 GeV. Phys. Rev. Lett. 2010, 105, 232001. [Google Scholar] [CrossRef] [PubMed]
- Aaij, R. Observation of J/ψp Resonances Consistent with Pentaquark States in → J/ψK−p Decays. Phys. Rev. Lett. 2015, 115, 072001. [Google Scholar] [CrossRef] [PubMed]
- Aaij, R. Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+. Phys. Rev. Lett. 2019, 122, 222001. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.W.; Nieves, J.; Oset, E. Prediction of hidden charm strange molecular baryon states with heavy quark spin symmetry. Phys. Lett. 2019, B799, 135051. [Google Scholar] [CrossRef]
- Xiao, C.W.; Nieves, J.; Oset, E. Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons. Phys. Rev. 2013, D88, 056012. [Google Scholar] [CrossRef]
- Wang, B.; Meng, L.; Zhu, S.L. Spectrum of the strange hidden charm molecular pentaquarks in chiral effective field theory. Phys. Rev. 2020, D101, 034018. [Google Scholar] [CrossRef]
- Irie, Y.; Oka, M.; Yasui, S. Flavor-singlet hidden charm pentaquark. Phys. Rev. 2018, D97, 034006. [Google Scholar] [CrossRef]
- Chen, R.; He, J.; Liu, X. Possible strange hidden-charm pentaquarks from and interactions. Chin. Phys. 2017, C41, 103105. [Google Scholar] [CrossRef]
- Shen, C.W.; Wu, J.J.; Zou, B.S. Decay behaviors of possible states in hadronic molecule pictures. Phys. Rev. 2019, D100, 056006. [Google Scholar] [CrossRef]
- Lu, J.X.; Wang, E.; Xie, J.J.; Geng, L.S.; Oset, E. The Λb → J/ψK0Λ reaction and a hidden-charm pentaquark state with strangeness. Phys. Rev. 2016, D93, 094009. [Google Scholar] [CrossRef]
- Feijoo, A.; Magas, V.K.; Ramos, A.; Oset, E. A hidden-charm S = −1 pentaquark from the decay of Λb into J/ψ,ηΛ states. Eur. Phys. J. 2016, C76, 446. [Google Scholar] [CrossRef]
- Chen, H.X.; Geng, L.S.; Liang, W.H.; Oset, E.; Wang, E.; Xie, J.J. Looking for a hidden-charm pentaquark state with strangeness S = −1 from decay into J/ψK−Λ. Phys. Rev. 2016, C93, 065203. [Google Scholar] [CrossRef]
- Aaij, R. Observation of the → J/ψΛK− decay. Phys. Lett. 2017, B772, 265–273. [Google Scholar] [CrossRef]
- Coleman, S.; Norton, R.E. Singularities in the physical region. Nuovo Cim. 1965, 38, 438–442. [Google Scholar] [CrossRef]
- Karplus, R.; Sommerfield, C.M.; Wichmann, E.H. Spectral Representations in Perturbation Theory. 1. Vertex Function. Phys. Rev. 1958, 111, 1187–1190. [Google Scholar] [CrossRef]
- Landau, L.D. On analytic properties of vertex parts in quantum field theory. Nucl. Phys. 1960, 13, 181–192. [Google Scholar] [CrossRef]
- Bjorken, J.D. Experimental Tests of Quantum Electrodynamics and Spectral Representations of Green’s Functions in Perturbation Theory. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1959. [Google Scholar]
- Schmid, C. Final-State Interactions and the Simulation of Resonances. Phys. Rev. 1967, 154, 1363. [Google Scholar] [CrossRef]
- Wu, J.J.; Liu, X.H.; Zhao, Q.; Zou, B.S. The Puzzle of anomalously large isospin violations in η(1405/1475) → 3π. Phys. Rev. Lett. 2012, 108, 081803. [Google Scholar] [CrossRef]
- Aceti, F.; Liang, W.H.; Oset, E.; Wu, J.J.; Zou, B.S. Isospin breaking and f0(980)-a0(980) mixing in the η(1405) → π0f0(980) reaction. Phys. Rev. 2012, D86, 114007. [Google Scholar] [CrossRef]
- Wu, X.G.; Wu, J.J.; Zhao, Q.; Zou, B.S. Understanding the property of η(1405/1475) in the J/ψ radiative decay. Phys. Rev. 2013, D87, 014023. [Google Scholar] [CrossRef]
- Wang, Q.; Hanhart, C.; Zhao, Q. Decoding the riddle of Y(4260) and Zc(3900). Phys. Rev. Lett. 2013, 111, 132003. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hanhart, C.; Zhao, Q. Systematic study of the singularity mechanism in heavy quarkonium decays. Phys. Lett. 2013, B725, 106–110. [Google Scholar] [CrossRef]
- Mikhasenko, M.; Ketzer, B.; Sarantsev, A. Nature of the a1(1420). Phys. Rev. 2015, D91, 094015. [Google Scholar] [CrossRef]
- Achasov, N.N.; Kozhevnikov, A.A.; Shestakov, G.N. Isospin breaking decay η(1405) → f0(980)π0 → 3π. Phys. Rev. 2015, D92, 036003. [Google Scholar] [CrossRef]
- Liu, X.H.; Oka, M.; Zhao, Q. Searching for observable effects induced by anomalous triangle singularities. Phys. Lett. 2016, B753, 297–302. [Google Scholar] [CrossRef]
- Liu, X.H.; Wang, Q.; Zhao, Q. Understanding the newly observed heavy pentaquark candidates. Phys. Lett. 2016, B757, 231–236. [Google Scholar] [CrossRef]
- Guo, F.K.; Meißner, U.G.; Wang, W.; Yang, Z. How to reveal the exotic nature of the Pc(4450). Phys. Rev. 2015, D92, 071502. [Google Scholar] [CrossRef]
- Szczepaniak, A.P. Triangle Singularities and XYZ Quarkonium Peaks. Phys. Lett. 2015, B747, 410–416. [Google Scholar] [CrossRef]
- Guo, F.K.; Meißner, U.G.; Nieves, J.; Yang, Z. Remarks on the Pc structures and triangle singularities. Eur. Phys. J. 2016, A52, 318. [Google Scholar] [CrossRef]
- Bayar, M.; Aceti, F.; Guo, F.K.; Oset, E. A Discussion on Triangle Singularities in the Λb → J/ψK−p Reaction. Phys. Rev. 2016, D94, 074039. [Google Scholar] [CrossRef]
- Wang, E.; Xie, J.J.; Liang, W.H.; Guo, F.K.; Oset, E. Role of a triangle singularity in the γp → K+Λ(1405) reaction. Phys. Rev. 2017, C95, 015205. [Google Scholar] [CrossRef]
- Pilloni, A.; Fernandez-Ramirez, C.; Jackura, A.; Mathieu, V.; Mikhasenko, M.; Nys, J.; Szczepaniak, A. Amplitude analysis and the nature of the Zc(3900). Phys. Lett. B 2017, 772, 200–209. [Google Scholar] [CrossRef]
- Xie, J.J.; Geng, L.S.; Oset, E. f2(1810) as a triangle singularity. Phys. Rev. 2017, D95, 034004. [Google Scholar] [CrossRef]
- Szczepaniak, A.P. Dalitz plot distributions in presence of triangle singularities. Phys. Lett. 2016, B757, 61–64. [Google Scholar] [CrossRef]
- Roca, L.; Oset, E. Role of a triangle singularity in the πΔ decay of the N(1700)(3/2−). Phys. Rev. 2017, C95, 065211. [Google Scholar] [CrossRef]
- Debastiani, V.R.; Sakai, S.; Oset, E. Role of a triangle singularity in the πN(1535) contribution to γp → pπ0η. Phys. Rev. 2017, C96, 025201. [Google Scholar] [CrossRef]
- Samart, D.; Liang, W.; Oset, E. Triangle mechanisms in the build up and decay of the N*(1875). Phys. Rev. 2017, C96, 035202. [Google Scholar] [CrossRef]
- Sakai, S.; Oset, E.; Ramos, A. Triangle singularities in B− → K−π− and B− → K−π−. Eur. Phys. J. 2018, A54, 10. [Google Scholar] [CrossRef]
- Pavao, R.; Sakai, S.; Oset, E. Triangle singularities in B− → D*0π−π0η and B− → D*0π−π+π−. Eur. Phys. J. 2017, C77, 599. [Google Scholar] [CrossRef]
- Xie, J.J.; Guo, F.K. Triangular singularity and a possible ϕp resonance in the → π0ϕp decay. Phys. Lett. 2017, B774, 108–113. [Google Scholar] [CrossRef]
- Bayar, M.; Pavao, R.; Sakai, S.; Oset, E. Role of the triangle singularity in Λ(1405) production in the π−p → K0πΣ and pp → pK+πΣ processes. Phys. Rev. 2018, C97, 035203. [Google Scholar] [CrossRef]
- Liang, W.H.; Sakai, S.; Xie, J.J.; Oset, E. Triangle singularity enhancing isospin violation in → J/ψπ0f0(980). Chin. Phys. 2018, C42, 044101. [Google Scholar] [CrossRef]
- Oset, E.; Roca, L. Triangle singularity in τ → f1(1285)πντ decay. Phys. Lett. 2018, B782, 332–338. [Google Scholar] [CrossRef]
- Dai, L.R.; Pavao, R.; Sakai, S.; Oset, E. Anomalous enhancement of the isospin-violating Λ(1405) production by a triangle singularity in Λc → π+π0π0Σ0. Phys. Rev. 2018, D97, 116004. [Google Scholar] [CrossRef]
- Dai, L.R.; Yu, Q.X.; Oset, E. Triangle singularity in τ− → ντπ−f0(980) (a0(980)) decays. Phys. Rev. 2019, D99, 016021. [Google Scholar] [CrossRef]
- Guo, F.K. Novel Method for Precisely Measuring the X(3872) Mass. Phys. Rev. Lett. 2019, 122, 202002. [Google Scholar] [CrossRef]
- Liang, W.H.; Chen, H.X.; Oset, E.; Wang, E. Triangle singularity in the J/ψ → K+K−f0(980)(a0(980)) decays. Eur. Phys. J. 2019, C79, 411. [Google Scholar] [CrossRef]
- Nakamura, S.X. Triangle singularities in → χc1K−π+ relevant to Z1(4050) and Z2(4250). Phys. Rev. 2019, D100, 011504. [Google Scholar] [CrossRef]
- Du, M.C.; Zhao, Q. Internal particle width effects on the triangle singularity mechanism in the study of the η(1405) and η(1475) puzzle. Phys. Rev. 2019, D100, 036005. [Google Scholar] [CrossRef]
- Liu, X.H.; Li, G.; Xie, J.J.; Zhao, Q. Visible narrow cusp structure in → pK−π+ enhanced by triangle singularity. Phys. Rev. 2019, D100, 054006. [Google Scholar] [CrossRef]
- Jing, H.J.; Sakai, S.; Guo, F.K.; Zou, B.S. Triangle singularities in J/ψ → ηπ0ϕ and π0π0ϕ. Phys. Rev. 2019, D100, 114010. [Google Scholar] [CrossRef]
- Braaten, E.; He, L.P.; Ingles, K. Triangle Singularity in the Production of X(3872) and a Photon in e+e− Annihilation. Phys. Rev. 2019, D100, 031501. [Google Scholar] [CrossRef]
- Sakai, S.; Oset, E.; Guo, F.K. Triangle singularity in the B− → K−π0X(3872) reaction and sensitivity to the X(3872) mass. Phys. Rev. 2020, D101, 054030. [Google Scholar] [CrossRef]
- Sakai, S. Role of the triangle mechanism in the Λb → Λcπ−f0(980) reaction. Phys. Rev. 2020, D101, 074041. [Google Scholar] [CrossRef]
- Molina, R.; Oset, E. Triangle singularity in B− → K−X(3872); X → π0π+π− and the X(3872) mass. Eur. Phys. J. 2020, C80, 451. [Google Scholar] [CrossRef]
- Braaten, E.; He, L.P.; Ingles, K.; Jiang, J. Charm-meson triangle singularity in e+e− annihilation into D*0 + γ. Phys. Rev. D 2020, 101, 096020. [Google Scholar] [CrossRef]
- Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Azevedo, C.D.R.; Badelek, B.; et al. A Triangle Singularity as the Origin of the a1(1420). arXiv 2020, arXiv:2006.05342. [Google Scholar]
- Ortega, P.G.; Ruiz Arriola, E. On the precise measurement of the X(3872) mass and its counting rate. arXiv 2020, arXiv:2007.11608. [Google Scholar]
- Guo, F.K.; Liu, X.H.; Sakai, S. Threshold cusps and triangle singularities in hadronic reactions. Prog. Part. Nucl. Phys. 2020, 112, 103757. [Google Scholar] [CrossRef]
- Sakai, S.; Jing, H.J.; Guo, F.K. Decays of Pc into J/ψN and ηcN with heavy quark spin symmetry. Phys. Rev. D 2019, 100, 074007. [Google Scholar] [CrossRef]
- Chen, H.X.; Chen, W.; Liu, X.; Steele, T.G.; Zhu, S.L. Towards exotic hidden-charm pentaquarks in QCD. Phys. Rev. Lett. 2015, 115, 172001. [Google Scholar] [CrossRef] [PubMed]
- Roca, L.; Nieves, J.; Oset, E. LHCb pentaquark as a Σc- molecular state. Phys. Rev. 2015, D92, 094003. [Google Scholar] [CrossRef]
- He, J. and Σc interactions and the LHCb hidden-charmed pentaquarks. Phys. Lett. 2016, B753, 547–551. [Google Scholar] [CrossRef]
- Lin, Y.H.; Shen, C.W.; Guo, F.K.; Zou, B.S. Decay behaviors of the Pc hadronic molecules. Phys. Rev. 2017, D95, 114017. [Google Scholar] [CrossRef]
- He, J. Understanding spin parity of Pc(4450) and Y(4274) in a hadronic molecular state picture. Phys. Rev. 2017, D95, 074004. [Google Scholar] [CrossRef]
- Chen, H.X.; Cui, E.L.; Chen, W.; Liu, X.; Steele, T.G.; Zhu, S.L. QCD sum rule study of hidden-charm pentaquarks. Eur. Phys. J. 2016, C76, 572. [Google Scholar] [CrossRef]
- Xiang, J.B.; Chen, H.X.; Chen, W.; Li, X.B.; Yao, X.Q.; Zhu, S.L. Revisiting hidden-charm pentaquarks from QCD sum rules. Chin. Phys. 2019, C43, 034104. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Brodzicka, J. Observation of a new DsJ meson in B+ → D0K+ decays. Phys. Rev. Lett. 2008, 100, 092001. [Google Scholar] [CrossRef]
- Lees, J. Dalitz plot analyses of B0 → D−D0K+ and B+ → D0K+ decays. Phys. Rev. D 2015, 91, 052002. [Google Scholar] [CrossRef]
- Aaij, R.; De Cian, M.; De Miranda, J.M.; De Paula, L.; De Silva, W. Observation of overlapping spin-1 and spin-3 K− resonances at mass 2.86 GeV/c2. Phys. Rev. Lett. 2014, 113, 162001. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.S.; Hussain, F. Covariant L-S scheme for the effective N*NM couplings. Phys. Rev. 2003, C67, 015204. [Google Scholar] [CrossRef]
- Alitti, J.; Barnes, V.E.; Flaminio, E.; Metzger, W.; Radojičić, D.; Rau, R.R.; Richardson, C.R.; Samios, N.P.; Bassano, D.; Goldberg, M.; et al. Strangeness S = −2 baryon resonance. Phys. Rev. Lett. 1969, 22, 79–82. [Google Scholar] [CrossRef]
- Hemingway, R.J.; Armenteros, R.; Berge, J.P.; Diaz, J.; Gay, J.B.; Trepagnier, P.; Jongejans, B.; Massaro, G.G.G.; Voorthuis, H.; Heinen, P.M.; et al. Xi* (2030) Production in K− p Reactions at 4.2-GeV/c. Phys. Lett. 1977, 68B, 197. [Google Scholar] [CrossRef]
- Bartsch, J.; Bartsch, J.; Deutschmann, M.; Hermanns, M.; Keppel, E.; Speth, R.; Gensch, U.; Grote, C.; Pose, D.; Schiller, H.; et al. Evidence for a new xi resonance at 2500 mev in 10 gev/c k-minus p interactions. Phys. Lett. 1969, 28B, 439–442. [Google Scholar] [CrossRef]
No. | Position of Triangle Singularity (MeV) | ||
---|---|---|---|
1 | 4232 | ||
2 | 4546 | ||
3 | 4665 | ||
4 | 4628 | ||
5 | 4696 | ||
6 | 4680 | ||
7 | 4644 | ||
8 | 4730 | ||
9 | 4754 | ||
10 | 4797 | ||
11 | 4810 |
No. | Intermediate Particle 3 | Position of Triangle Singularity (MeV) | ||
---|---|---|---|---|
1 | 4838 | |||
2 | 4922 | |||
3 | 4957 | |||
4 | 4959 | |||
5 | 5089 | |||
6 | 4990 | |||
7 | 5149 |
S-wave | P-wave | |
S-wave | S-wave | |
S-wave | P-wave | |
S-wave | D-wave | |
P-wave | F-wave | |
P-wave | D-wave |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.-W.; Jing, H.-J.; Guo, F.-K.; Wu, J.-J. Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay. Symmetry 2020, 12, 1611. https://doi.org/10.3390/sym12101611
Shen C-W, Jing H-J, Guo F-K, Wu J-J. Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay. Symmetry. 2020; 12(10):1611. https://doi.org/10.3390/sym12101611
Chicago/Turabian StyleShen, Chao-Wei, Hao-Jie Jing, Feng-Kun Guo, and Jia-Jun Wu. 2020. "Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay" Symmetry 12, no. 10: 1611. https://doi.org/10.3390/sym12101611
APA StyleShen, C.-W., Jing, H.-J., Guo, F.-K., & Wu, J.-J. (2020). Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay. Symmetry, 12(10), 1611. https://doi.org/10.3390/sym12101611