Relativistic Symmetries and Hamiltonian Formalism
Abstract
:1. Introduction
2. Orbit Method
3. Poincaré Symmetry
4. The Conformal Group
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loganayagam, R.; Surówka, P. Anomaly/Transport in an Ideal Weyl Gas. J. High Energy Phys. 2012, 1204, 97. [Google Scholar] [CrossRef] [Green Version]
- Son, D.T.; Yamamoto, N. Berry Curvature, Triangle Anomalies, and the Chiral Magnetic Effect in Fermi Liquids. Phys. Rev. Lett. 2012, 109, 181602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossenfelder, S. Lost in Math: How Beauty Leads Physics Astray; Basic Books: New York, NY, USA, 2018. [Google Scholar]
- Wigner, E. On Unitary Representations of the Inhomogeneous Lorentz Group. Ann. Math. 1939, 40, 149–204. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields I; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Lévy-Leblond, J.M. Nonrelativistic Particles and Wave Equations. Commun. Math. Phys. 1967, 6, 286–311. [Google Scholar] [CrossRef]
- Kirillov, A.A. Elements of the Theory of Representations; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Kirillov, A.A. Lectures on the Orbit Method. Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2004; Volume 64. [Google Scholar]
- Souriau, J.M. Structure of Dynamical Systems: A Symplectic View of Physics; Birkhauser: Basel, Switzerland, 1997. [Google Scholar]
- Arnol’d, V.I. Mathematical Methods of Classical Mechanics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Marsden, J.E.; Ratiu, T.S. Introduction to Mechanics and Symmetry; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Frenkel, J. Die Elektrodynamik des Rotierenden Elektrons. Z. Phys. 1926, 37, 243–262. [Google Scholar] [CrossRef]
- Thomas, L.H. The Motion of the Spinning Electron. Nature 1926, 117, 514. [Google Scholar] [CrossRef]
- Thomas, L.H. The Kinematics of an Electron with an Axis. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1927, 3, 1–22. [Google Scholar] [CrossRef]
- Kramers, H. On the Classical Theory of the Spinning Electron. Physica 1934, 1, 825–828. [Google Scholar] [CrossRef]
- Mathisson, M. Neue Mechanik Materieller Systeme. Acta Phys. Pol. 1937, 6, 163–2900. [Google Scholar]
- Papapetrou, A. Spinning Test-Particles in General Relativity. I. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 209, 248–258. [Google Scholar]
- Corinaldesi, E.; Papapetrou, A. Spinning Test-Particles in General Relativity. II. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 209, 259–268. [Google Scholar]
- Dixon, W. A Covariant Multipole Formalism for Extended Test Bodies in General Relativity. Il Nuovo Cim. (1955–1965) 1964, 34, 317–339. [Google Scholar] [CrossRef]
- Dixon, W. Description of Extended Bodies by Multipole Moments in Special Relativity. J. Math. Phys. 1967, 8, 1591–1605. [Google Scholar] [CrossRef]
- Dixon, W. Dynamics of Extended Bodies in General Relativity. I. Momentum and Angular Momentum. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1970, 314, 499–527. [Google Scholar]
- Bhabha, H.J.; Corben, H.C. General Classical Theory of Spinning Particles in a Maxwell Field. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1941, 178, 273–314. [Google Scholar]
- Corben, H. Spin in Classical and Quantum Theory. Phys. Rev. 1961, 121, 1833–1839. [Google Scholar] [CrossRef]
- Corben, H. Spin Precession in Classical Relativistic Mechanics. Il Nuovo Cim. (1955–1965) 1961, 20, 529–541. [Google Scholar] [CrossRef]
- Nyborg, P. On Classical Theories of Spinning Particles. Il Nuovo Cim. (1955–1965) 1962, 23, 47. [Google Scholar] [CrossRef]
- Frydryszak, A. Lagrangian Models of Particles with Spin: The First Seventy Years. In From Field Theory to Quantum Groups; World Scientific: Singapore, 1996; pp. 151–172. [Google Scholar]
- Gaioli, F.H.; Alvarez, E.T.G. Classical and Quantum Theories of Spin. Found. Phys. 1998, 28, 1539–1550. [Google Scholar] [CrossRef] [Green Version]
- Deriglazov, A.A. Variational Problem for the Frenkel and the Bargmann–Michel–Telegdi (BMT) Equations. Mod. Phys. Lett. A 2013, 28, 1250234. [Google Scholar] [CrossRef] [Green Version]
- Deriglazov, A.A. Lagrangian for the Frenkel Electron. Phys. Lett. B 2014, 736, 278–282. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.; Herdeiro, C.; Natário, J.; Zilhao, M. Mathisson’s Helical Motions for a Spinning Particle: Are They Unphysical? Phys. Rev. D 2012, 85, 024001. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.; Natário, J. Center of Mass, Spin Supplementary Conditions, and the Momentum of Spinning Particles. In Equations of Motion in Relativistic Gravity; Springer: Berlin/Heidelberg, Germany, 2015; pp. 215–258. [Google Scholar]
- Fradkin, E. Application of Functional Methods in Quantum Field Theory and Quantum Statistics (II). Nucl. Phys. 1966, 76, 588–624. [Google Scholar] [CrossRef]
- Berezin, F.; Marinov, M. Particle Spin Dynamics as the Grassmann Variant of Classical Mechanics. Ann. Phys. 1977, 104, 336–362. [Google Scholar] [CrossRef]
- Howe, P.; Penati, S.; Pernici, M.; Townsend, P. Wave Equations for Arbitrary Spin from Quantization of the Extended Supersymmetric Spinning Particle. Phys. Lett. B 1988, 215, 555–558. [Google Scholar] [CrossRef]
- Brink, L.; Di Vecchia, P.; Howe, P. A Lagrangian Formulation of the Classical and Quantum Dynamics of Spinning Particles. Nucl. Phys. B 1977, 118, 76–94. [Google Scholar] [CrossRef]
- Wiegmann, P.B. Multivalued Functionals and Geometrical Approach for Quantization of Relativistic Particles and Strings. Nucl. Phys. B 1989, 323, 311–329. [Google Scholar] [CrossRef]
- Carinena, J.F.; Garcia-Bondia, J.; Varilly, J.C. Relativistic Quantum Kinematics in the Moyal Representation. J. Phys. A Math. Gen. 1990, 23, 901–933. [Google Scholar] [CrossRef]
- Andrzejewski, K.; Gonera, C.; Goner, J.; Kosiński, P.; Maślanka, P. Spinning Particles, Coadjoint Orbits and Hamiltonian Formalism. arXiv 2020, arXiv:2008.09478. [Google Scholar]
- Novozhilov, Y.V. Introduction to Elementary Particle Theory; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Duval, C.; Horvathy, P. Chiral Fermions as Classical Massless Spinning Particles. Phys. Rev. D 2015, 91, 045013. [Google Scholar] [CrossRef] [Green Version]
- Duval, C.; Elbistan, M.; Horvathy, P.; Zhang, P.M. Wigner–Souriau Translations and Lorentz Symmetry of Chiral Fermions. Phys. Lett. B 2015, 742, 322–326. [Google Scholar] [CrossRef]
- Andrzejewski, K.; Kijanka-Dec, A.; Kosiński, P.; Maślanka, P. Chiral Fermions, Massless Particles and Poincare Covariance. Phys. Lett. B 2015, 746, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Skagerstam, B. Localization of Massless Spinning Particles and the Berry Phase. arXiv 1992, arXiv:hep-th/9210054. [Google Scholar]
- Kosiński, P.; Maślanka, P. Localizability, Gauge Symmetry and Newton–Wigner Operator for Massless Particles. Ann. Phys. 2018, 398, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y.; Son, D.T.; Stephanov, M.A.; Yee, H.U.; Yin, Y. Lorentz Invariance in Chiral Kinetic Theory. Phys. Rev. Lett. 2014, 113, 182302. [Google Scholar] [CrossRef] [Green Version]
- Andrzejewski, K.; Brihaye, Y.; Gonera, C.; Gonera, J.; Kosiński, P.; Maślanka, P. The Covariance of Chiral Fermions Theory. J. High Energy Phys. 2019, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Berger, L. Side-Jump Mechanism for the Hall Effect of Ferromagnets. Phys. Rev. B 1970, 2, 4559. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Bliokh, Y.P. Topological Spin Transport of Photons: The Optical Magnus Effect and Berry Phase. Phys. Lett. A 2004, 333, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Onoda, M.; Murakami, S.; Nagaosa, N. Hall Effect of Light. Phys. Rev. Lett. 2004, 93, 083901. [Google Scholar] [CrossRef] [Green Version]
- Duval, C.; Horvath, Z.; Horváthy, P. Geometrical Spinoptics and the Optical Hall Effect. J. Geom. Phys. 2007, 57, 925–941. [Google Scholar] [CrossRef] [Green Version]
- Duval, C.; Horváth, Z.; Horváthy, P. Fermat Principle for Spinning Light. Phys. Rev. D 2006, 74, 021701. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Nori, F. Relativistic Hall Effect. Phys. Rev. Lett. 2012, 108, 120403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, M.; Dwivedi, V.; Zhou, T. Wigner Translations and the Observer Dependence of the Position of Massless Spinning Particles. Phys. Rev. Lett. 2015, 114, 210402. [Google Scholar] [CrossRef] [Green Version]
- Bolonek-Lasoń, K.; Kosiński, P.; Maślanka, P. Lorentz Transformations, Sideways Shift and Massless Spinning Particles. Phys. Lett. B 2017, 769, 117–120. [Google Scholar] [CrossRef]
- Todorov, I.T. Conformal Description of Spinning Particles; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Mack, G.; Salam, A. Finite Component Field Representations of the Conformal Group. Ann. Phys. 1969, 53, 174–202. [Google Scholar] [CrossRef]
- Mack, G. All Unitary Ray Representations of the Conformal Group SU (2,2) with positive energy. Commun. Math. Phys. 1977, 55, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Gonera, J.; Kosiński, P.; Maślanka, P. Conformal Symmetry, Chiral Fermions and Semiclassical Approximation. Phys. Lett. B 2020, 800, 135111. [Google Scholar] [CrossRef]
- Kosiński, P.; Maślanka, P. Hamiltonian Description of Conformally Invariant Elementary Systems. Work in progress.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosiński, P.; Maślanka, P. Relativistic Symmetries and Hamiltonian Formalism. Symmetry 2020, 12, 1810. https://doi.org/10.3390/sym12111810
Kosiński P, Maślanka P. Relativistic Symmetries and Hamiltonian Formalism. Symmetry. 2020; 12(11):1810. https://doi.org/10.3390/sym12111810
Chicago/Turabian StyleKosiński, Piotr, and Paweł Maślanka. 2020. "Relativistic Symmetries and Hamiltonian Formalism" Symmetry 12, no. 11: 1810. https://doi.org/10.3390/sym12111810
APA StyleKosiński, P., & Maślanka, P. (2020). Relativistic Symmetries and Hamiltonian Formalism. Symmetry, 12(11), 1810. https://doi.org/10.3390/sym12111810