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Abstract: The relativistic (Poincaré and conformal) symmetries of classical elementary systems are
briefly discussed and reviewed. The main framework is provided by the Hamiltonian formalism for
dynamical systems exhibiting symmetry described by a given Lie group. The construction of phase
space and canonical variables is given using the tools from the coadjoint orbits method. It is indicated
how the “exotic” Lorentz transformation properties for particle coordinates can be derived; they are
shown to be the natural consequence of the formalism.

Keywords: coadjoint orbits; conformal group; Poincaré group

1. Introduction

We present here a brief review of some results obtained by our colleagues in collaboration with
Yves Brihaye and us. They concern the old topic of the basic role of space-time symmetries in physics.
It appears that some of the main results, which were for the first time obtained and developed in
quantum theory, can be described quite precisely on the classical level in the framework of Hamiltonian
formalism. Then, their quantum counterparts are recovered by applying a straightforward canonical
quantization procedure. The problem is not only academic. For example, in recent years, much effort
has been devoted to exploring the anomaly-related phenomena in kinetic theory [1,2]. This work is
to a great extent based on semiclassical approximation and the description of various symmetries
within this approximation. The sound knowledge concerning the (semi)classical aspects of relativistic
symmetries contributes to a deeper understanding of such phenomena.

Part of the results reported here has been obtained in collaboration with our longtime friend Yves
Brihaye. It was always a great pleasure to work with him.

2. Orbit Method

In physics, beauty is often identified with symmetry. Having at our disposal two theories
explaining the same set of experimental data, we are inclined to choose the one exhibiting more
symmetry. This strategy is somehow supported by our experience. A dazzling example is the success
of general relativity, which is confirmed over and over again by experiments, observations and
even everyday life. Although some physicists warn that beauty can lead one astray [3], we are,
generally speaking, attached to the idea that adopting symmetry as a guiding principle often leads to
the theories with considerable predictive power.

The symmetry of the physical system is described, at the formal level, by the choice of symmetry
group G. In quantum theory, the states of the physical system are classified according to the unitary
representations of G. However, even if the group G represents the maximal symmetry of some
system, there is still much freedom in the choice of the total space of states and relevant observables.
The exception is provided by the so-called elementary systems, which are, by definition, described by
irreducible representations of the symmetry group. For the elementary system, given the symmetry
group G, one can classify all admissible spaces of states and construct all relevant observables in purely
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group-theoretical terms. For example, an elementary relativistic particle is described by an unitary
irreducible representation of the Poincaré group [4,5]. All its states are explicitly known and may be
obtained by acting with group elements on some fixed state; all observables, like energy, momentum
and angular momentum (and coordinate), are constructed out of group generators. The same concerns
nonrelativistic particle; the relevant group here is the (quantum mechanical) Galilei group [6].

Let us note that, in order to construct the quantum description of elementary particles, we do not
have to refer to classical theory, canonical quantization, etc. However, it would be nice to find if the
notion of elementary system, formulated in group-theoretical language, can be extended to classical
physics in such a way that the canonical quantization of the latter yields the corresponding quantum
elementary system. This question has been considered by a number of authors. The mathematical basis
has been laid out by Kirillov [7,8], who developed the so-called orbit method. Souriau [9] elaborated
symplectic aspects of classical and quantum physics.

Let us sketch the main points of the description of the classical system exhibiting symmetry [10,11].
The general framework for classical dynamics is provided by the Hamiltonian formalism. The space
of states is a symplectic manifold—a phase space. The symplectic structure allows one to define the
Poisson bracket. Once a Hamiltonian—some function on the phase space—is selected, one can write the
canonical equations of motion, which determine the actual dynamics. The transformations preserving
symplectic structures are called the canonical transformations. The symmetry transformations are the
canonical transformations which preserve the functional form of the Hamiltonian. The set of symmetry
transformations form a group, which is the symmetry group of a given dynamical system. The classical
system is called elementary if the symmetry group acts transitively on phase space. It appears that in
this case, the Hamiltonian formalism can be described in group-theoretical terms. To this end, let G be
a Lie group with Lie algebra

[Xα, Xβ] = ic γ
αβ Xγ . (1)

In the Lie algebra, G acts through adjoint representation

Adg(Xα) = gXαg−1 = Dβ
α(g)Xβ . (2)

In the dual space to the Lie algebra, there acts the contragradient representation called the
coadjoint one. Let ζα be the coordinates in the dual space; then

Ad∗g(ζα) = Dβ
α(g−1)ζβ . (3)

The orbit of coadjoint action (3) is called the coadjoint orbit.
In the dual space, one can define a natural Poisson structure

{ζα, ζβ} = c γ
αβζγ . (4)

This Poisson structure is, in general, degenerate, i.e., there exist nonconstant functions having
vanishing Poisson brackets with all ζα. However, the important point is that the Poisson brackets (4) can
be consistently restricted to the orbits, and then they become nondegenerate; the orbits are symplectic
manifolds. Moreover, if G acts transitively on phase space, then, modulo some mild (i.e., fulfilled
in most physical contexts) assumptions, the phase space can be identified with some coadjoint orbit
of G. Therefore, for the elementary systems, the phase space together with its symplectic structure
are described in purely group-theoretical terms. All observables, being the functions over the phase
space, are expressible in terms of the coordinates ζα. One can view them as classical counterparts of
the elements of enveloping algebra of the Lie algebra under consideration. What remains is the choice
of the Hamiltonian, which defines the actual physical system. If G describes the space-time symmetry,
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one of its generators is a natural candidate for the Hamiltonian. Then, the group-theoretical description
is complete: all elements of Hamiltonian formalism are expressed in terms of group notions.

The first step to classify the elementary systems with a given symmetry group is to characterize
the set of coadjoint orbits. The generic orbits are the submanifolds of the dual space to Lie algebra
obtained by fixing the values of all functionally independent Casimir functions (which are classical
counterparts of the Casimir operators). However, there exist also nongeneric orbits of lower dimension
(the extreme case being the trivial orbit). They are characterized by an additional relation, which can
be found as follows. The infinitesimal action of the symmetry group on coadjoint orbit/phase space
is given by the Poisson bracket with a relevant generator. Therefore, if we nullify some ideal in the
Poisson algebra of functions over phase space, the resulting relations will be invariant under the
coadjoint action of G. This is quite a convenient way of characterizing nongeneric orbits. Once the orbit
is explicitly characterized, the next step is to find convenient coordinates (Darboux variables). Finally,
we have to write out the Hamiltonian in terms of independent canonical variables, which completes
the description.

3. Poincaré Symmetry

In an attempt to understand the origin of quantum mechanics of spinning particle (in particular,
spin), various classical models have been proposed [12–37]. Let us sketch the description based on the
ideas presented in the previous section [38].

The relativistic symmetry is described by the Poincaré group. It consists of Lorentz
transformations Λ(ΛTηΛ = η, η = diag(+−−−)) and translations a. The composition law reads

(Λ, a) · (Λ′, a′) = (ΛΛ′, Λa′ + a) . (5)

The relevant Lie algebra consists of Lorentz (Mµν) and translation (Pµ) generators obeying

[Mµν, Pα] = i(ηναPµ − ηµαPν) , (6)

[Mµν, Mαβ] = i(ηµβ Mνα + ηνα Mµβ − ηµα Mνβ − ηνβ Mµα) , (7)

[Pµ, Pν] = 0 . (8)

There are two Casimir operators, mass and spin,

M2 ≡ PµPµ , (9)

W2 ≡WµWµ , Wµ =
1
2

εµναβPν Mαβ . (10)

The relevant coordinates in the dual space to Lie algebra are ζµ and ζµν = −ζνµ. For physical
reasons, we are interested in the case M2 > 0; then, the coadjoint orbits consist of two disjoint
pieces corresponding to ζ0 ≷ 0; since ζ0, being the counterpart of time translation generator P0,
represents energy, we restrict ourselves to ζ0 > 0 case.

Now, the generic orbits are obtained by fixing M2 and W2. Therefore, they are eight-dimensional.
This is exactly what we expect: there are three components of position and momentum together with
two variables describing the spin of fixed length (due to fixing W2). Explicitly,

m2 = ζµζµ , (11)
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−m2s2 = wµwµ , wµ =
1
2

εµναβζνζαβ . (12)

Note that for m2 = 0, the invariants are no longer independent. Therefore, we start with m2 > 0.
It can be shown that the canonical point on coadjoint orbit can be chosen as [38]:

ζ
µ
= (m,~0) , (13)

ζ0i = −ζ i0 = 0 , (14)

ζ ij = sε3ij . (15)

Any other point of the orbit is obtained from the canonical one by a coadjoint action of the
Poincaré group. By an appropriate choice of parametrization, we find that the general point of the
orbit can be written as [37,38]

ζµ = pµ , (16)

ζ0i = −p0xi +
εilksl pk
m + p0

, (17)

ζij = xi pj − xj pi + skεkij , (18)

while the Kirillov symplectic structure yields

{xi, pj} = δij , (19)

{si, sj} = εijksk , (20)

the remaining Poisson bracket being vanishing. It is quite straightforward to quantize the resulting
symplectic structure. As a result, one obtains the well-known form of generators of unitary irreducible
representations of the Poincaré group describing massive particles [39].

Assume now that m2 = 0. Then, both invariants vanish independently of the value s.
Moreover, in quantum theory of massless particles, spin is no longer a dynamical variable. In fact,
quantum particles are uniquely characterized by chirality, which can be viewed as the projection of
spin on momentum. However, it is a fixed number, not a dynamical variable. Therefore, we expect the
phase space to be six-dimensional. The corresponding orbits must be nongeneric. There is only one
independent Casimir function, so, according to the prescription given above, we have to construct the
relevant ideal in the Poisson algebra. Consider the following functions on phase space.

Iµ(ζ) ≡ wµ − sζµ . (21)

Then

{Iµ, ζν} = 0 , (22)

{Iµ, ζαβ} = gµα Iβ − gµβ Iα , (23)
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so, one can put consistently Iµ = 0. Iµ are the generators of invariant ideal. The relevant coadjoint
orbit is defined by the equations .

ζµζµ = 0 , (24)

Iν = 0 . (25)

Equation (25) is called “enslaving” condition [40,41] (cf. also [9]). Due to ζν Iν = −sζνζν = 0,
only three Equations (25) are independent. Therefore, we obtain six-dimensional orbit. Again, it is not
difficult to identify some canonical point on the orbit.

ζ
µ
= (k, 0, 0, k) ≡ kµ , (26)

ζ
µν

=


−s , (µν) = (12)

s , (µν) = (21)

0 , (µν) 6= (12), (21) .

(27)

By applying the coadjoint action of the Poincaré group and choosing suitable parametrization,
we find [42]

ζµ = pµ , (28)

ζ0i = −p0xi , (29)

ζij = xi pj − xj pi + s
εijk pk

p0
. (30)

From Equation (30), we conclude that s is the projection of total angular momentum on the
momentum direction.

Equations (28)–(30), when compared with the general form of Poisson brackets (4) and
Equations (6)–(8), yield [42]

{xi, xj} = s
εijk pk

p3
0

, (31)

{xi, pj} = δij . (32)

with the remaining brackets vanishing. Note that the coordinates do not commute any longer (cf. (31)).
This is because we are considering the nongeneric orbit defined by the additional (“enslaving”)
condition. This situation persists on the quantum level. A nice argument can be given [43,44] that it is
not possible to define standard, i.e., commuting, coordinates for massless irreducible representation;
only for reducible representation describing the helicities S = ± 1

2 such a coordinate operator exists [44].
Due to the more complicated form of Poisson brackets, the canonical quantization procedure is

nontrivial. The coordinates cannot be represented by derivatives with respect to momentum; instead,
a covariant derivative in the field of monopole must be used.

The approach described above provides a systematic way of studying symmetries on the level of
classical Hamiltonian formalism. Phase space and dynamical observables are constructed in terms
of group-theoretical notions and put on firm ground. In particular, one can study the transformation
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properties of various observables under the action of the symmetry group. This concerns, for example,
the coordinate variable. It appears that it has “exotic” transformation properties. Consider, as an
example, a massless particle with helicity s. The conserved generator of boosts reads (cf. Equation (29))

ζ0i(t) = p0xi − pit . (33)

By virtue of Equation (31), one finds [40–42,45,46]

δ~x = {~x, δviζ0i(t)} = −δ~vt + ~̇x(δ~v ·~x) + s
δ~v× ~p

p2
0

. (34)

The first term on the right-hand side corresponds to the standard Lorentz transformation, while
the second appears due to the fact that in the Hamiltonian formalism, time is kept fixed, so one has to
recompute everything back to the initial time. The last term, which is helicity dependent, represents
the so-called “side jump”. The latter leads to the kinematical effect playing a role in impurity scattering
caused by spin-orbit interaction [47] and relativistic Hall effect of light [48–54].

4. The Conformal Group

In four-dimensional space-time, the conformal group provides a fifteen-dimensional extension of
the Poincaré group by scaling and special conformal transformations. It describes the approximate
symmetry at energies large as compared to all dimensionful parameters. It would be interesting to
provide the Hamiltonian description of all elementary conformally invariant dynamical systems.

The dual space to conformal Lie algebra is parametrized by ζµ, ζµν (Poincaré algebra),
η (dilatations) and ηµ (special conformal transformations). Apart from the Poisson brackets following
from commutation rules (6)–(8), we have the additional ones

{η, ζµ} = ζµ , (35)

{η, ζµν} = 0 , (36)

{η, ηµ} = −ηµ , (37)

{ζµν, ηρ} = gνρηµ − gµρην , (38)

{ηµ, ζν} = 2(ζµν − gµνη) , (39)

{ηµ, ην} = 0 . (40)

In order to classify the conformally invariant Hamiltonian system, we have to find all coadjoint
orbits. It is not completely straightforward. The convenient way to do this is to use twistor
formalism [55]. There are coadjoint orbits of dimensions 12 (generic), 10, 8 and 6. The latter case is
particularly interesting: the Poincaré symmetry of quantum massless particles can be extended to the
conformal one [56,57].
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Therefore, we expect that the same holds true classically. In order to characterize six-dimensional
orbits, one has to find nine independent generators of the relevant ideal. We already have four
generators: ζµζµ and Iµ (cf. Equation (21)). The remaining five can be chosen as [58]

J ≡ η +
ζkζ0k

ζ0
, (41)

J0 ≡ η0 +
ζ0kζ0k

ζ0
+

λ2

ζ0
, (42)

Ji ≡ ηi +
ζiζ0kζ0k

ζ2
0
− 2

ζ0iζkζ0k

ζ2
0
− 2sεikl

ζ0kζl

ζ2
0
− s2 ζi

ζ2
0

. (43)

Equations (41)–(43) merely imply that the generators of dilatations and special conformal
transformations are functions on the phase space of Poincaré covariant massless particles

D = +pkxk , (44)

Ki = −pixkxk + 2xixk pk − 2sεikl
xk pl
p0

+
s2 pi

p2
0

. (45)

We conclude that, on the classical Hamiltonian level, the Poincaré symmetry of massless particles of
arbitrary helicity may be extended to the conformal one. One can show [58] that the canonical quantization
of the resulting structure can be performed in a more or less straightforward way, leading to the unitary
irreducible representations of the conformal group belonging to the Mack list [57].

The dynamical systems corresponding to the orbits of higher dimensions will be described
elsewhere [59].

5. Conclusions

Canonical quantization is the textbook method of constructing the quantum dynamics. One starts
with some classical dynamical system defined within the Hamiltonian formalism and applies the
canonical quantization procedure consisting in replacing the Poisson brackets by commutators (divided
by ih̄). With a little bit of luck, a consistent mathematical structure is obtained, which defines the
quantum counterpart of the classical system we have started with.

However, the quantum dynamics should be the primary concept with the classical one emerging
in the appropriate limit. Therefore, the question arises as to how to construct the quantum theory
without referring to classical notions. One (the only?) way to do this is to refer to the symmetry
arguments. According to the basic principles of quantum mechanics, the symmetry transformations
are represented by unitary operators acting in the Hilbert space of states. Given a symmetry group
G, all allowed spaces of states of the physical system can be classified and explicitly described,
provided that the (projective) unitary representations of G are known. Furthermore, by identifying the
elementary systems with irreducible representations one concludes that, in this case, all observables
can be, at least in principle, constructed from the elements of the Lie algebra of G.

When such a construction is performed, one may consider (at least on a formal level) the limit
h̄ → 0, yielding some classical dynamics, and pose the question as to whether the former can be
recovered by applying the canonical quantization to the latter. The answer to this question is affirmative
in the case of relativistic space-time symmetries. We have sketched above the main steps of the relevant
construction. The starting point is the notion of the elementary Hamiltonian system: it is the one
exhibiting the symmetry which acts transitively on the phase space. Then, the candidates for the
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admissible phase spaces are provided by the coadjoint orbits of the symmetry group. It appears that
both generic and nongeneric orbits should be considered; for example, the massless particles are
described by nongeneric orbits of the Poincaré group. Once the orbit is selected, the explicit description
of the resulting classical Hamiltonian system is obtained (one should keep in mind that for space-time
symmetries, the Hamiltonian belongs to the Lie algebra of symmetry group).

Thus far, the above program has been completed for the Poincaré symmetry. The next step is to
extend it to the conformal group. We have already shown [58] that the nongeneric six-dimensional
coadjoint orbits of the conformal group describe massless particles; more precisely, in this case,
the Poincaré symmetry can be extended to the conformal one. Canonical quantization (some care
concerning the ordering problem must be exercised) of the generators of conformal group yields its
unitary representation acting in the space of states of massless particles with fixed helicity; this result
agrees with the one obtained by Mack [57]. It remains to consider the nongeneric orbits which are
eight- and ten-dimensional as well as generic, twelve-dimensional ones. They should provide the
classical counterparts of the remaining representations classified by Mack.
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