Spin and Polarization in High-Energy Hadron-Hadron and Lepton-Hadron Scattering
Abstract
:1. Introduction
- Is the input pomeron a simple Regge pole? What are the alternatives, if any?
- Do resonances terminate, abruptly replaced by a continuum or they gradually fade, their peaks becoming progressively wider and lower? This issue is connected with the Hagedorn spectrum and possible phase transition between hadronic and quark-gluon matter.
- Origin of the diffraction (dip-bump) pattern in elastic hadron scattering;
- Role of unitarization in producing the dip-bump structure;
- Are there two (or more) pomerons—a “soft” and a “QCD-inspired”, “hard” one?
- Can the Regge-pomeron pole be dependent?
2. Hadron-Hadron Scattering
2.1. Elastic Proton-Proton Scattering
2.2. Regge Trajectories
2.3. Unitarity
2.3.1. “U-matrix” Unitarization
2.3.2. Eikonal
3. Nuclear Structure: From Deeply Virtual Compton Scattering (DVCS) to Generalized Parton Distributions (GPDs)
3.1. Deeply Virtual Compton Scattering
3.2. Relating DVCS Observables to GPDs
4. Modelling DVCS
Simple Model of DVCS
5. Reggeometry
Two-Component Reggeometric Pomeron
Fitting the Two-Component Pomeron to VMP and DVCS HERA Data
6. Balancing between “Soft” and “Hard” Dynamics
- sub-leading Regge contributions must be included in any extension of the model to lower energies (below 30 GeV);
- the dependence of the scattering amplitude, introduced empirically has to be compared with the results of unitarization and/or QCD evolution.
- as seen from Section 6, the “soft” component of the pomeron dominates in the region of small t and small . Hence, any parameter responsible for the “softness” and/or “hardness” of processes, should be a combination of t and . A simple solution was suggested in Ref. [44] with the introduction of the variable . The interplay of these two variables remains an important open problem that requires further investigation.
7. Spin of the Proton in Terms of Its Constituents
Ji’s and J-M’s Decompositions
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Ashman, J. European Muon Collaboration. Phys. Lett. B 1988, 206, 364. [Google Scholar] [CrossRef] [Green Version]
- Deur, A.; Brodsky, S.J.; De Teramond, G.F. The Spin Structure of the Nucleon. Rept. Prog. Phys. 2019, 82. [Google Scholar] [CrossRef] [Green Version]
- Volker Burkert, L.; Elouadrhihiri, F.X. Girod. Nature 2018, 557, 396–399. [Google Scholar]
- Gibson, A.; Stanisalus, S.; Koetke, D.D.; STAR Collaboration. Global Lambda hyperon polarization in nuclear collisions: Evidence for the most vortical fluid. Nature 2017, 548, 62–65. [Google Scholar] [CrossRef]
- Becattini, F.; Chandra, V.; Del Zanna, L.; Grossi, E. Relativistic distribution function for particles with spin at local thermodynamical equilibrium. Ann. Phys. 2013, 338, 32–49. [Google Scholar] [CrossRef] [Green Version]
- Karpenko, I.; Becattini, F. Study of Λ polarization in relativistic nuclear collisions at = 7.7–200 GeV. Eur. Phys. J. 2017, C77, 213. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wang, D.; Csernai, L.P. Global polarization in high energy collisions. Phys. Rev. 2017, C95, 031901. [Google Scholar] [CrossRef]
- Cane, G.L.; Pumplin, J.; Repko, W. Transverse Quark Polarization a Test of Quantum Chromodynsmics. Phys. Rev. Lett. 1978, 41, 1689–1692. [Google Scholar]
- Struminsky, B.V. Quark Dynamics of Polarization Phenomena in Inclusive Processes. Sov. J. Nucl. Phys. 1981, 34, 885. [Google Scholar]
- Kuhn, S.E.; Chen, J.-P.; Leader, E. Spin Structure of the Nucleon—Status and Recent Results. Prog. Part. Nucl. Phys. 2009, 63, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Aidala, C.A.; Bass, S.D.; Hasch, D.; Mallot, G.K. The Spin Structure of the Nucleon. Rev. Mod. Phys. 2013, 85, 655–691. [Google Scholar] [CrossRef] [Green Version]
- Biró, T.; Schramm, Z.; Jenkovszky, L. Entropy Production During Hadronization of a Quark-Gluon Plasma. Eur. Phys. J. A 2018, 54, 17. [Google Scholar] [CrossRef] [Green Version]
- Vall, A.N.; Jenkovszky, L.L.; Struminsky, B.V. High-Energy Hadron Interactions. Sov. J. Part. Nucl. 1988, 19, 1. [Google Scholar]
- Bystricky, J.; Lehar, F.; Winternitz, P. Formalism Of Nucleon-Nucleon Elastic Scattering Experiments. J. Phys. 1978, 39, 1. [Google Scholar] [CrossRef]
- Lechanoine-LeLuc, C.; Lehar, F. Nucleon-nucleon elastic scattering and total cross-sections. Rev. Mod. Phys. 1993, 65, 47. [Google Scholar] [CrossRef]
- Troshin, S.M.; Tyurin, N.E. Spin Phenomena in Particle Interactions; World Scientific: Singapore, 1994; p. 211. [Google Scholar]
- Edneral, V.F.; Troshin, S.M.; Tyurin, N.E. On Spin Effects in Elastic Scattering at Large Momentum Transfers. JETP Lett. 1979, 30, 330. [Google Scholar]
- Cudell, J.-R.; Selyugin, O.V. The spin-flip amplitude in the impact-parameter representation. arXiv 2008, arXiv:0812.4371. [Google Scholar]
- Selyugin, V. High Energy Hadron Spin Flip Amplitude. arXiv 2016, arXiv:1512.05130. [Google Scholar] [CrossRef] [Green Version]
- Capella, A.; Contogouris, A.P.; Van, J.T. Factorization and constraints in Regge pole theory. Phys. Rev. 1968, 175, 1892. [Google Scholar] [CrossRef]
- Szanyi, I.; Jenkovszky, L.; Schicker, R.; Svintozelskyi, V. Pomeron/glueball and odderon/oddball trajectories. Nucl. Phys. A 2020, 998, 121728. [Google Scholar] [CrossRef]
- Jenkovszky, L.; Schicker, R.; Szanyi, I. Elastic and diffractive scattering in the LHC era. Int. J. Mod. Phys. E 2018, 27, 1830005. [Google Scholar] [CrossRef] [Green Version]
- Jenkovszky, L.L.; Paccanoni, F. Impact parameter Analysis of DAMA. Nouvo Cim. 1976, 33A, 329. [Google Scholar] [CrossRef]
- Troshin, S.M.; Tyurin, N.E. The Emergent Black Ring. Mod. Phys. Lett. A 2019, 33, 1950259. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.J.N. A Dipole Pomeron Ansatz; PL-74-03 Preprint; Rutherford Lab.: Chilton, UK, 1974. [Google Scholar]
- Jenkovszky, L.L. Phenomenology of Elactic Hadron Scattering. Fortschr. Phys. 1986, 34, 701. [Google Scholar]
- Müller, D.; Robaschik, D.; Geyer, B.; Dittes, F.-M.; Hořejši, J. Wave Functions, Evolution Equations and Evolution Kernels from Light-Ray Operators of QCD. Fortschr. Phys. 1994, 42, 101. [Google Scholar] [CrossRef] [Green Version]
- Radyushkin, A.V. Scaling Limit of Deeply Virtual Compton Scattering. Phys. Lett. 1996, B380, 41. [Google Scholar] [CrossRef] [Green Version]
- Ji, X. Deeply Virtual Compton Scattering. Phys. Rev. 1997, D55, 7114. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.; Frankfurt, L.; Strikman, M. Factorization for Hard Exclusive Electroproduction of Mesons in QCD. Phys. Rev. 1997, D56, 2982. [Google Scholar]
- Collins, J.; Freund, A. Proof of Factorization for Deeply Virtual Compton Scattering in QCD. Phys. Rev. 1999, D59, 074009. [Google Scholar] [CrossRef] [Green Version]
- Diehl, M.; Feldmann, T.; Jakob, R.; Kroll, P. Linking parton distributions to form factors and Compton scattering. Eur. Phys. J. 1999, C8, 409. [Google Scholar] [CrossRef]
- Diehl, M.; Feldmann, T.; Jakob, R.; Kroll, P. The Overlap Representation of Skewed Quark and Gluon Distributions. Nucl. Phys. 2001, B596, 33. [Google Scholar] [CrossRef] [Green Version]
- Diehl, M. Generalized Parton Distributions. Phys. Rept. 2003, 388, 41. [Google Scholar] [CrossRef] [Green Version]
- Belitsky, A.V.; Radyushkin, A.V. Unraveling Hadron Structure with Generalized Parton Distributions. Phys. Rept. 2005, 418, 1. [Google Scholar] [CrossRef] [Green Version]
- Burkardt, M. Off-Forward Parton Distributions in 1+1 Dimensional QCD. Phys. Rev. 2000, D62, 071503. [Google Scholar]
- Diehl, M. Generalized parton distributions in impact parameter space. Eur. Phys. J. 2002, C25, 223. [Google Scholar] [CrossRef] [Green Version]
- Kogut, J.; Soper, D. Quantum Electrodynamics in the Infinite-Momentum Frame. Phys. Rev. 1970, D1, 2901. [Google Scholar]
- Ji, X. Gauge-Invariant Decomposition of Nucleon Spin and Its Spin-Off. Phys. Rev. Lett. 1997, 78, 610. [Google Scholar] [CrossRef]
- Aschenauer, E.-C.; Fazio, S.; Kumericki, K.; Mueller, D. Deeply Virtual Compton Scattering at a Proposed High-Luminosity Electron-Ion Collider. arXiv 2013, arXiv:1304.0077. [Google Scholar] [CrossRef] [Green Version]
- Accardi, A.; Albacete, J.L.; Anselmino, M.; Armesto, N.; Aschenauer, E.C.; Bacchetta, A.; Boer, D.; Brooks, W.; Burton, T.; Chang, N.-B.; et al. Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all. arXiv 2012, arXiv:1212.1701. [Google Scholar]
- Ji, X.-D. Off-Forward Parton Distributions. J. Phys. G 1998, 24, 1181. [Google Scholar] [CrossRef]
- Belitsky, A.V.; Müller, D.; Kirchner, A. Theory of Deeply Virtual Compton Scattering on the Nucleon. Nucl. Phys. 2002, B629, 323. [Google Scholar] [CrossRef] [Green Version]
- Capua, M.; Fiore, R.; Jenkovszky, L.; Paccanoni, F. A Deeply Virtual Compton Scattering Amplitude. Phys. Lett. 2007, B645, 161. [Google Scholar] [CrossRef] [Green Version]
- Fazio, S.; Fiore, R.; Lavorini, A.; Jenkovszky, L.; Salii, A. Reggeometry of Deeply Virtual Compton Scattering (DVCS) and Exclusive Vector Veson Production (VMP) at HERA. Acta Phys. Pol. B 2013, 44, 1333. [Google Scholar] [CrossRef] [Green Version]
- Fazio, S.; Fiore, R.; Jenkovszky, L.; Salii, A. Unifying “Soft” and “Hard” Diffractive Exclusive Vector Meson Production and Deeply Virtual Compton Scattering. Phys. Rev. D 2014, 90, 016007-1. [Google Scholar]
- Donnachie, A.; Landshoff, P. Elastic Scattering and Diffraction Dissociation. Nucl. Phys. 1984, B231, 189. [Google Scholar]
- Donnachie, A.; Landshoff, P.V. Small x: Two Pomerons! Phys. Lett. 1998, B437, 408. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, R.L.; Manohar, A. The g1 Problem: Deep Inelastic Electron Scattering and the Spin of the Proton. Nucl. Phys. 1990, 337, 509. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Ma, B.Q. The Quark/Antiquark Asymmetry of the Nucleon Sea. Phys. Lett. B 1996, 381, 317. [Google Scholar] [CrossRef] [Green Version]
- Bloom, E.D.; Gilman, F.J. Scaling, Duality, and the Behavior of Resonances in Inelastic Electron-Proton Scattering. Phys. Rev. Lett. 1970, 25, 1140. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Yuan, F.; Zhao, Y. Proton spin after 30 years: What we know and what we don’t? arXiv 2009, arXiv:2009.01291. [Google Scholar]
- Accardi, A.; Albacete, J.L.; Anselmino, M.; Armesto, N.; Aschenauer, E.C.; Bacchetta, A.; Deng, W.T. Electron Ion Collider: The Next QCD Frontier. Eur. Phys. J. A 2016, 52, 268. [Google Scholar] [CrossRef] [Green Version]
n | a | b | ||||||
---|---|---|---|---|---|---|---|---|
344 ± 376 | 0.29 ± 0.14 | 1.24 ± 0.07 | 1.16 ± 0.14 | 0.21 ± 0.53 | 0.60 ± 0.33 | 0.9 ± 4.3 | 2.74 | |
58 ± 112 | 0.89 ± 1.40 | 1.30 ± 0.28 | 1.14 ± 0.19 | 0.17 ± 0.78 | 0.0 ± 19.8 | 1.34 ± 5.09 | 1.22 | |
30 ± 31 | 2.3 ± 2.2 | 1.45 ± 0.32 | 1.21 ± 0.09 | 0.077 ± 0.072 | 1.72 | 1.16 | 0.27 | |
(1S) | 37 ± 100 | 0.93 ± 1.75 | 1.45 ± 0.53 | 1.29 ± 0.25 | 0.006 ± 0.6 | 1.90 | 1.03 | 0.4 |
14.5 ± 41.3 | 0.28 ± 0.98 | 0.90 ± 0.18 | 1.23 ± 0.14 | 0.04 ± 0.71 | 1.6 | 1.9 ± 2.5 | 1.05 |
soft | 2104 ± 1749 | 0.29 ± 0.20 | 1.63 ± 0.40 | 1.005 ± 0.090 | 0.32 ± 0.57 | 2.93 ± 5.06 |
hard | 44 ± 22 | 1.15 ± 0.52 | 1.34 ± 0.16 | 1.225 ± 0.055 | 0.0 ± 17 | 2.22 ± 3.09 |
Meson | |||||||
---|---|---|---|---|---|---|---|
Production | |||||||
0.47 | 4 | 0.00 | 1 | 0.00 | 1 | 0.469 | |
0.47 | 43 | 0.47 | 16 | 2.37 | 92 | 1.105 | |
0.10 | 3 | 0.09 | 4 | 0.33 | 7 | 0.174 | |
1.19 | 46 | 1.42 | 22 | 1.10 | 85 | 1.238 | |
1.49 | 112 | 0.97 | 64 | 3.85 | 94 | 2.104 | |
1.83 | 89 | 2.20 | 38 | 1.41 | 84 | 1.815 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenkovszky, L. Spin and Polarization in High-Energy Hadron-Hadron and Lepton-Hadron Scattering. Symmetry 2020, 12, 1784. https://doi.org/10.3390/sym12111784
Jenkovszky L. Spin and Polarization in High-Energy Hadron-Hadron and Lepton-Hadron Scattering. Symmetry. 2020; 12(11):1784. https://doi.org/10.3390/sym12111784
Chicago/Turabian StyleJenkovszky, László. 2020. "Spin and Polarization in High-Energy Hadron-Hadron and Lepton-Hadron Scattering" Symmetry 12, no. 11: 1784. https://doi.org/10.3390/sym12111784
APA StyleJenkovszky, L. (2020). Spin and Polarization in High-Energy Hadron-Hadron and Lepton-Hadron Scattering. Symmetry, 12(11), 1784. https://doi.org/10.3390/sym12111784