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Abstract: The collaborative filtering algorithm based on the singular value decomposition plus plus 
(SVD++) model employs the linear interactions between the latent features of users and items to 
predict the rating in the recommendation systems. Aiming to further enrich the user model with 
explicit feedback, this paper proposes a user embedding model for rating prediction in SVD++-based 
collaborative filtering, named UE-SVD++. We exploit the user potential explicit feedback from the 
rating data and construct the user embedding matrix by the proposed user-wise mutual information 
values. In addition, the user embedding matrix is added to the existing user bias and implicit 
parameters in the SVD++ to increase the accuracy of the user modeling. Through extensive studies 
on four different datasets, we found that the rating prediction performance of the UE-SVD++ model 
is improved compared with other models, and the proposed model’s evaluation indicators root-
mean-square error (RMSE) and mean absolute error (MAE) are decreased by 1.002%–2.110% and 
1.182%–1.742%, respectively. 

Keywords: recommendation system; rating prediction; SVD++; user embedding 
 

1. Introduction 

The past decades witnessed strong growth of internet use worldwide. The amount of 
information on the internet is increasing explosively, giving rise to the problem of “information 
overload”. Recommendation systems help users automatically retrieve and filter information or 
services required by users from the massive available data. For a long time, recommendation systems 
recommended items in which a particular user may be interested from user–item interaction 
information such as ratings. Under these circumstances, the accuracy of the rating prediction directly 
affects the recommended effect. 

In recent years, the collaborative filtering (CF) algorithms [1–4] was one of the most widely used 
and classic technologies for rating prediction in recommendation systems, among which the matrix 
factorization (MF) model [5–7] was the most commonly used technique. The MF model expresses the 
rating data in a matrix form to mine the low-dimensional implicit feature space. The correlation is 
characterized by the inner product between the user and item vectors. However, the rating data have 
the characteristics of high sparsity and uneven distribution, leading to several problems such as low 
recommendation performance. To solve this problem, researchers introduced additional information 
about the user or item into the MF model, and they obtained good recommendation results to some 
extent. For example, the FUNK-SVD (A model proposed in the context of the Netflix Prize by Simon 
Funk) model decomposed the sparse and high-dimensional rating matrix into two low-dimensional 
matrices and predicted the rating using the reconstructed low-dimensional matrices. Then, the BIAS-
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SVD [8] model not only considered the user-independent or item-independent factors as the biased 
part, but also considered the interaction between the user and item as a personalized part, and it 
considered that the bias component of the MF model plays a more essential role in improving the 
accuracy of the rating prediction than the personalized component. The singular value 
decomposition plus plus (SVD++) model [8] added the implicit feedback to the users based on the 
BIAS-SVD. Guo et al. [9] considered the user’s explicit trust relationship and the item’s rating as the 
implicit feedback information, and they added the social feedback information into the original 
SVD++ model to reconstruct the TRUST-SVD model of the rating prediction.  

Clearly, the bias and the implicit feedback of the user are considered to model the user features, 
while the explicit feedback of the user in the rating is ignored in the existing traditional SVD++ model. 
Therefore, the development of an effective method for further enriching the user features and 
improving the rating prediction precision is a key issue for the future improvement of 
recommendation systems. In this paper, we propose a novel rating prediction model based on user 
embedding and SVD++ named UE-SVD++. The UE-SVD++ model exploits the user potential 
correlation from the rating and constructs the user embedding matrix to enrich the user modeling. 
To build the user embedding matrix, we primarily calculate and extract a collection of strongly 
favored users for each item in the dataset. Inspired by Adomavicius et al. [10,11], we define a user 
with a rating of greater than 70% of the highest rating on the given item as the favored user of this 
item. Then, we calculate the User-wise Mutual Information (UMI) values to obtain the relationship 
between different users, and derive the user embedding matrix according to the set UMI threshold 
k. Finally, the user embedding matrix is added to the existing user bias and implicit parameters in 
the SVD++ to model the user features more accurately on rating prediction. The experimental results 
on four real-world datasets demonstrate that the UE-SVD++ model outperforms the state-of-the-art 
rating prediction models. 

The rest of this paper is organized as follows: we review the related work in Section 2. Then, we 
describe the design and construction of the UE-SVD++ model in Section 3. The selection of the optimal 
model parameters, and the performance comparison and discussion of the UE-SVD++ model with 
other models using extensive experiments are described in Section 4. Finally, we conclude this paper 
in Section 5. 

2. Related Work 

The MF model received extensive attention as a popular and effective rating prediction method 
in recommendation systems for the past few years. The basic MF model splits the rating matrix into 
the user and item potential feature matrix and improves the rating prediction accuracy by learning 
the potential relationship between the user and item. 

With the advent of the information interconnection era, the basic MF model no longer met the 
requirements of the recommendation systems, which prompted the development of many variants 
of this model. To improve the accuracy of the rating prediction, Levy et al. [12] proposed a semi-
supervised non-negative matrix method that can fuse prior information kernels based on the MF 
model. Dong-Kyu et al. [13] and Salakhutdinov et al. [14] added a graph probability model to better 
adapt to the real data of the sparse environment. Salakhutdinov et al. [15] interpreted the MF model 
as a probabilistic graph model to alleviate the sparsity and imbalance of the real dataset. Koren et al.  
[16] introduced the user and item biases to model specific characteristics of the user and item. Kim et 
al. [17] proposed a method based on the content metadata to effectively utilize content metadata to 
alleviate the problem of data sparsity. Koren et al. [18] regarded all of the unobserved user ratings as 
a negative feedback process. Then, Devooght et al. [19] considered the user and item bias and the 
impact of the rated items other than the user- and item-specific vectors on the rating prediction in 
order to objectively describe the user preferences. 

In addition to the above MF models that aimed to further improve recommendation system 
performance based on rating data, researchers integrated the trust relationship between users into 
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the MF model. Jamali et al. [20] proposed a new social recommendation model named SocialMF 
based on the trust propagation mechanism in social networks. Ma et al. [21] introduced the SoRec 
model that adds the user’s social relationship information to the original Probabilistic Matrix 
Factorization (PMF) recommendation model. Different from the social information construction 
method of the SoRec model, the recommended model TrustMF was proposed by Yang et al. [22] 
based on the relationship between the trustees and trusters. The TrustMF model maps each user to 
two different K-dimensional feature vectors according to the directionality of trust relationship. 
Different from the above models which decompose social information into two feature vector inner 
product forms, Tang et al. [23] proposed a social recommendation model named LOCABAL (local 
and global) that combines the local and global social information. Guo et al. regarded the user’s 
explicit trust relationship and the item’s ratings as the implicit feedback information and added the 
social feedback information to the original SVD++ model to reconstruct the TRUST-SVD rating 
prediction model. Hao et al. [24] proposed a new collaborative filtering method based on social 
information fusion. This approach firstly relies on the social information fusion to search for similar 
users, and then uses the similar users to update the product user ratings to generate 
recommendations. 

The user embedding model proposed in this paper was inspired by the word-embedding models 
[25] in the field of natural language processing. Among them, Word2vec is often used to solve the 
similarity problem between words. In recommendation systems, we can think of the collection of all 
users as one document and each user as an individual word. Therefore, Levy et al. [26] used the 
implicit similarity of Word2vec technology for the MF model. Mikolov et al. [27] used the word 
embedding model to model the item features in recommendation systems. Guardiasebaoun et al. [28] 
applied the item embedding technique to the CF algorithm. Barkan et al. [29] not only introduced 
item embedding technology into the MF model, but also quantified the items that users like or dislike, 
improving the rating prediction accuracy. 

3. Proposed UE-SVD++ Model 

In this section, we firstly introduce the fundamental theory of the proposed UE-SVD++ model. 
Then, we describe the user embedding method. Ultimately, the details and the training process of the 
UE-SVD++ model are illustrated. 

3.1. Fundamental Theory 

The abovementioned SVD-based collaborative filtering method is widely used in 
recommendation systems. In particular, the SVD++-based CF algorithms add the bias and implicit 
feedback of the user into the MF model to improve the rating prediction accuracy. Hence, we adopt 
the popular SVD++ model into our proposed rating prediction method. This method firstly analyzes 
the potential correlation between the different users based on the proposed UMI values. Thus, the 
user embedding matrix is extracted from the rating matrix. Finally, the user embedding matrix is 
added to the existing user bias and implicit parameters to model the user features more accurately 
for rating prediction. 

Generally, the proposed UE-SVD++ model for rating prediction has several components, 
including the process of generating the favored users of every item, the user embedding matrix, the 
SVD++ model, and predicting the rating. Figure 1 illustrates the framework of the proposed UE-
SVD++ model. In Figure 1, the data used are the four datasets commonly used in the recommendation 
systems that contain a rating of “0–5” used to represent the user satisfaction. A value of “5” means 
the highest positive rating, while a value of “0” means the lowest negative rating. Therefore, inspired 
by previous works, we define a user with a rating of greater than “3.5” on the given item as the 
favored user of this item and calculate the favored user set for each item. Then, the user embedding 
matrix is constructed based on the proposed UMI values. In addition, based on the preprocessed user 
embedding matrix and the original rating matrix, the SVD++ model is introduced to complete matrix 
factorization, and both the user matrix and the item matrix are obtained sequentially. The user matrix 
represents the latent information of the user. The item matrix represents the latent information of the 
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item. Using these two matrices, it is easy to predict the rating of the target user for all of the items, 
and the dot product between these matrices is computed to complete the rating prediction. 

 
Figure 1. The framework of the proposed user embedding model for rating prediction in singular 

value decomposition plus plus (SVD++)-based collaborative filtering (UE-SVD++). 

3.2. User Embedding Matrix 

Generally, we consider that users who frequently consume the same item are similar, just as the 
words that appear in a document are related to the same topic. For example, “organic food” and 
“fitness” may appear in a series of health articles at the same time. Due to the excellent performance 
of the Word2vec technology in the field of natural language processing, Barkan et al. added the 
Word2vec technology into the CF algorithm for recommendation systems. Inspired by Adomavicius 
et al., when users A and B give the same item a higher rating (>3.5/5), we can set users A and B as 
having similar interests. Therefore, if user A gives a higher rating on an item that is not in user B's 
evaluation item list, we can recommend the item to user B. 

Based on the above description, modeling with the original rating data, all users of item 1 to N 
were statistically evaluated, and the users who rated an item greater than 70% of the highest rating 
were identified as the favored user data for a particular item. For instance, if we consider the rating 
data of three users and three items, the calculation process of the favored users of the three items is 
as shown in Figure 2. 

 

Figure 2. The rating matrix is converted into a list of favored users for each item. 

In Figure 2, {U2, U3}, {U2, U3}, and {U1, U3,} are the favored user collections of I1, I2, and I3. Here, 
we use the user-wise mutual information UMI(i, j) value to measure the potential relationship 
between Ui and Uj. Let a specific user be a word in the context; the total number of words and word 
context pairs is D. Then, the UMI (i, j) between the word Ui and its context Uj is calculated as follows: 𝑈𝑀𝐼(𝑖, 𝑗) = 𝑙𝑜𝑔 𝑃൫𝑈௜, 𝑈௝൯𝑃(𝑈௜) ∗ 𝑃൫𝑈௝൯,                      (1) 

𝑃൫𝑈௜, 𝑈௝൯ = #൫𝑈௜, 𝑈௝൯|𝐷| ,                             (2) 
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  𝑃(𝑈௜) = #(𝑈௜)|𝐷| ,                               (3) 

  𝑃൫𝑈௝൯ = #൫𝑈௝൯|𝐷| ,                             (4) 

where P(𝑈௜ , 𝑈௝ ) is the probability that word 𝑈௜  and word 𝑈௝  appear simultaneously in a fixed 
window, P(𝑈௜) is the probability that 𝑈௜ appears in set D, and P(𝑈௝) is the probability that Uj appears 
in set D. Therefore, substituting Equations (2)–(4) into Equation (1) yields the following equation: 

𝑈𝑀𝐼൫𝑈௜, 𝑈௝൯ = 𝑙𝑜𝑔 #൫𝑈௜, 𝑈௝൯ ∗ |𝐷|#(𝑈௜) ∗ #൫𝑈௝൯ .                         (5) 

By calculating the UMI value of the specific 𝑈௜  and 𝑈௝  in the user set, we can form a UMI 
matrix with dimension m × m. Here, m is the total number of users. To increase the credibility of the 
UMI matrix, we introduce the threshold parameter k to primarily control the credibility of the matrix. 
When k is larger, the calculated UMI value is larger, and the similarity between Ui and Uj is greater. 
Then, we only reserve 𝐾𝑈𝑀𝐼൫𝑈௜, 𝑈௝൯ greater than the threshold k, and the calculation method is as 
shown in Equation (6). 𝐾𝑈𝑀𝐼൫𝑈௜, 𝑈௝൯ = 𝑚𝑎𝑥൛𝑈𝑀𝐼൫𝑈௜, 𝑈௝൯ , 𝑙𝑜𝑔(𝑘)ൟ,               (6) 

where the 𝑚𝑎𝑥൛𝑈𝑀𝐼൫𝑈௜, 𝑈௝൯ , 𝑙𝑜𝑔(𝑘)ൟ means that only the 𝑈𝑀𝐼൫𝑈௜, 𝑈௝൯, which is greater than the 
threshold k, is reserved; finally, the user embedding matrix is constructed. Algorithm 1 shows the 
details of the construction process of the user embedding matrix. 

Algorithm 1: The process of computing the user embedding matrix. 
Input: the rating matrix  

Output: the user embedding matrix  

1. Count all user collections that rated on the item based on the rating matrix. 

2. Calculate the number of the favored users for a particular item. The users 

who rated for an item with a rating greater than 70% of the highest rating 

are the favored user data. 

3. Compute the user-wise mutual information (UMI) value of specific U௜ and U୨ using Equations (1)–(4). 

4. Filter the UMI values using Equation (6). 

5. Generate the user embedding matrix. 

3.3. Proposed UE-SVD++ Model. 

Compared with the traditional MF algorithm, the singular value decomposition plus plus 
(SVD++) model adds the user bias information and implicit parameters to objectively describe the 
user preferences. User ratings imply preference information; some ratings are low (or high). 
Therefore, we design our model based on the SVD++ to better mine user preferences and accurately 
calculate predicted rating. The rating prediction calculation in the SVD++ model is given by Equation 
(7). 

𝑅௨,ప෢ = 𝐵௨ + 𝐵௜ + 𝜇 + 𝑄௜் ቌ𝑃௨ + |𝑁௨|ିଵଶ ෍ 𝑌௡௡∈ேೠ ቍ,      (7) 

where 𝑅෠௨,௜ represents the predicted rating given by user u to item i, and 𝜇 represents the mean of 
the global ratings. 𝐵௨  represents the user bias (the rate habits of a particular user), which is 
independent of the items’ characteristics. 𝐵௜ represents the item bias (a rating given for a particular 
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item), which is independent of the user interest. Then, 𝜇 represents the mean of the global ratings. 𝑄௜ and 𝑃௨ are the latent feature vectors of item i and user u. For a particular user u, the collection of 
items that provides the implicit feedback is defined as 𝑁௨. 𝑌௡ denotes the implicit influence of items 
rated by user u in the past on the ratings of unknown items in the future, and all of the user u’s ratings 
revised values are ∑ 𝑌௡௡∈ேೠ . These are usually expressed as 𝑄௜் 𝑌௡ , and |𝑁௨|ିଵ/ଶ is introduced to 
eliminate the difference caused by different 𝑁௨ numbers. To sum up, the SVD++ model describes the 
user preferences based on bias information, implicit parameters, etc. The object function in the SVD++ 
model is given by Equation (8). 

J଴ = 12 ෍ ቐ𝑅௨,௜ − 𝜇 − 𝐵௨ − 𝐵௜ − 𝑄௜் ቌ𝑃௨ + |𝑁௨|ିଵ ଶ⁄ ෍ 𝑌௡௡∈ேೠ ቍቑଶ
(௨,௜)∈ோ + 𝜆2 ൝෍൫𝐵௨ଶ + ‖𝑃௨‖ଶ൯௨ + ෍൫𝐵௜ଶ + ‖𝑄௜‖ଶ + ‖𝑌௡‖ଶ൯௜ ൡ. (8) 

The loss value is calculated in the first part of Equation (8), where R is the rating matrix, the latter 
part 𝜆൛∑ ൫𝐵௨ଶ + ‖𝑃௨‖ଶ൯௨ + ∑ ൫𝐵௜ଶ + ‖𝑄௜‖ଶ + ‖𝑌௡‖ଶ൯௜ ൟ is a regularization term for preventing the over-
fitting of the model, and λ is the regularization coefficient.  

The UE-SVD++ model adds the user embedding matrix to the user structure based on the 
existing user bias information and implicit parameters of the SVD++ model to improve the accuracy 
of the rating prediction. The rating prediction calculation method is given by Equation (9). 

𝑅௨,ప෢ = 𝐵௨ + 𝐵௜ + 𝜇 + 𝑄௜் ቌ𝑃௨ + |𝑁௨|ିଵ ଶ⁄ ෍ 𝑌௡௡∈ேೠ + |𝐷௨|ିଵ ଶ⁄ ෍ 𝑍ఠఠ∈஽ೠ ቍ,           (9) 

where 𝐷௨ is the dependent dataset of user u, and 𝑍ఠ is the specific user potential feature vector on 
which user u depends. Therefore, 𝑄௜் |𝐷௨|ିଵ ଶ⁄ ∑ 𝑍ఠఠ∈஽ೠ  represents the influence of the dependent 
user on the rating of a particular user based on a certain item. In simple terms, we model the user 
feature vectors based on the item rating matrices and the user embedding matrices. The optimization 
objective function of the UE-SVD++ model is given by Equation (10). 𝐽ଵ = 12 ෍ ෍(𝑅௨,௜ − 𝑅௨,ప෢ )ଶ + 𝜃ௗ2௜∈ூೠ௨ ෍ ෍ (𝐷௨,ఠ − 𝐷௨,ఠ෣ )ଶఠ∈஽ೠ௨ ,            (10) 

where 𝐷௨,ఠ෣  is the prediction dependence between users u and ω, and 𝜃ௗ  is a parameter that 
controls the degree of dependence between different users. 

Guo et al. proposed the use of smaller penalties for the popular users and items to decrease the 
likelihood of over-fitting. In contrast, those items which rarely get a rating or users with very few 
ratings have a large likelihood of over-fitting, and they should be weighted. Then, the new objective 
function is given by Equation (11). 𝐽ଶ = 12 ෍ ෍൫𝑅௨,௜ − 𝑅௨,ప෢ ൯ଶ + 𝜃ௗ2௜∈ூೠ௨ ෍ ෍ ൫𝐷௨,ఠ − 𝐷௨,ఠ෣൯ଶఠ∈஽ೠ௨+ 𝜃2 ൝෍|𝑁௨|ିଵ ଶ⁄ ൫𝐵௨ଶ + ‖𝑃௨‖ଶ + ‖𝑌௡‖ଶ൯ + ෍|𝑁௜|ିଵ ଶ⁄ ൫𝐵௜ଶ + ‖𝑄௜‖ଶ൯௜௨ ൡ

+ 𝜃ௗ2 ൝෍|𝐷௨|ିଵ ଶ⁄ ‖𝑃௨‖ଶ + ෍|𝐷ఠ|ିଵ ଶ⁄ ‖𝑍ఠ‖ଶఠ௨ ൡ. 
(11) 

The first part of 𝐽ଶ is the loss based on the least square method. The second part of 𝐽ଶ is the 
regularization term. In addition, the initial values of 𝐵௨ and 𝐵௜ are set as the null vectors, and the 
initial values of 𝑃௨ and 𝑄௜ are obtained from the normal distribution by sampling with the zero mean 
value. The UE-SVD++ model is optimized by the stochastic gradient descent (SGD) [30] method. 
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𝑒௨,௜ = ห𝑅௨,௜ − 𝑅௨,ప෢ ห, (12) 𝐵௨(௧) ← 𝐵௨(௧ିଵ) + 𝛾൫𝑒௨,௜ − 𝜃|𝑁௨|−1 2⁄ 𝐵௨(௧ିଵ)൯, (13) 𝐵௜(௧) ← 𝐵௜(௧ିଵ) + 𝛾൫𝑒௨,௜ − 𝜃|𝑁௜|−1 2⁄ 𝐵௜(௧ିଵ)൯, (14) 𝑃௨(௧) ←  𝑃௨(௧ିଵ) + 𝛾൛𝑒௨,௜ − ൫𝜃|𝑁௨|−1 2⁄ + 𝜃ௗ|𝐷௨|−1 2⁄ ൯𝑃௨(௧ିଵ)ൟ, (15) 𝑄௜(௧) ← 𝑄௜(௧ିଵ) + 𝛾൛𝑒௨,௜൫𝑃௨(௧ିଵ) + |𝑁௨|−1 2⁄ ∑ 𝑌௡(௧ିଵ)௡∈ேೠ + |𝐷௨|−1 2⁄ ∑ 𝑍ఠ(௧ିଵ)ఠ∈஽ೠ ൯ − 𝜃𝑄௜(௧ିଵ)ൟ, (16) 

𝑌௡(௧) ← 𝑌௡(௧ିଵ) + 𝛾൫𝑒௨,௜|𝑁௨|−1 2⁄ 𝑄௜(௧ିଵ) − 𝜃𝑄௜(௧ିଵ)൯, (17) 𝑍ఠ(௧) ← 𝑍ఠ(௧ିଵ) + 𝛾൛𝑒௨,௜൫|𝐷௨|−1 2⁄ 𝑄௜(௧ିଵ) + 𝜃𝑃௨(௧ିଵ)൯ − 𝜃ௗ𝑍ఠ(௧ିଵ)ൟ, (18) 

where e௨,௜  is the prediction error, 𝛾 is the learning rate, and 𝜃 is the regularization parameter. 
Additionally, (t) represents the current iteration, and (t − 1) represents the previous iteration update. 
Algorithm 2 shows the details of the proposed UE-SVD++ model based on the SVD++ model.  

Algorithm 2: The Proposed UE-SVD++ algorithm. 
Input: the rating matrix, the user embedding matrix  

Output: the predicted rating matrix 

1. Calculate the mean rating 𝜇 based on the rating matrix. 

2. Initialize the “bias information” 𝐵௨ and 𝐵௜. Initialize the user vector 𝑃௨ and the 

item vector 𝑄௜. Initialize the user embedding hidden feature 𝑍ఠ. Initialize the 

implicit parameters 𝑌௡. 

3. Calculate the inner product of the user vector 𝑃௨ and the item vector 𝑄௜ using 

Equation (9). User ratings are predicted. 

4. Calculate the prediction error e௨,௜ based on the real rating and the predicted 

rating. The stochastic gradient descent (SGD) method is utilized to complete 

optimization, as shown in Equations (12)–(18). 

5. Repeat the third step and fourth step to get the prediction rating 𝑅௨,ప෢ . Update the 

predicted rating matrix. 

4. Experiment 

In this section, we firstly introduce the four datasets used in our experiment and the evaluation 
indexes of the model. Secondly, we carry out several experiments to select the optimal parameters of 
our proposed model. Finally, we compare the performance of the UE-SVD++ with other rating 
prediction models.  

4.1. Experimental Datasets and Evaluations 

The experiment used four widely used datasets in the recommended field, FilmTrust, Epinions, 
MovieLens-100K, and EachMovie, to evaluate the effectiveness of the UE-SVD++ model. The statistics 
of the four datasets are presented in Table 1. 
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Table 1. Statistics of the experimental datasets. 
 Users Items Ratings Ratings Range Density 

FilmTrust 1508 2071 35,497 {0.5, …, 4.0} 1.136% 
Epinions 49,289 139,738 664,823 {1.0, …, 5.0} 0.051% 

MovieLens-100K 943 1682 100,000 {1.0, …, 5.0} 6.304% 
EachMovie 29,520 1648 1,048,575 {0.2, …, 1.0} 2.155% 

To measure the accuracy of the rating prediction, we used two commonly used evaluation 
indicators, namely, the root-mean-square error (RMSE) and the mean absolute error (MAE), which 
were obtained by calculating the difference between the true rating and the predicted rating to 
measure the accuracy of the rating prediction of recommendation systems. A smaller value 
corresponds to a higher accuracy of the rating prediction. RMSE and MAE are defined by the 
following equations: 

𝑅𝑀𝑆𝐸 = ඨ1𝑇 ෍൫𝑅௨,௜ − 𝑅௨,ప෢  ൯ଶ௨,௜ ,                              (19) 

𝑀𝐴𝐸 = 1𝑇 ෍ห𝑅௨,௜ − 𝑅௨,ప෢  ห௨,௜ ,                                    (20) 

where T is the number of the rating records of the test set, 𝑹𝒖,𝒊 is the true rating value, and 𝑹𝒖,ଙ෢  is the 
predicted rating value. 

4.2. Model Parameter Selection 

The selection of the UE-SVD++ model parameters has great impact on rating prediction 
performance. To obtain more accurate data, we used the average values obtained from five 
experiments as our data. As shown in Figures 3–6, we listed the effects of the changes in the 
parameters on each dataset during training on the performance of the UE-SVD++ model. 

It is worth mentioning that the method to select optimal parameters was the control variable 
method in this section. For example, when we wanted to find the optimal value of the parameter k, 
we fixed the other three parameters unchanged, and so on. Of course, the selection of the initial value 
of the parameter was not random. We determined the value range of the parameter based on previous 
work, so as to try to find the optimal value of this parameter. 
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Figure 3. Parameter optimization for UE-SVD++ in FilmTrust dataset. 

 

Figure 4. Parameter optimization for UE-SVD++ in Epinions dataset. 
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Figure 5. Parameter optimization for UE-SVD++ in MovieLens-100K dataset. 

 

Figure 6. Parameter optimization for UE-SVD++ in Eachmovie dataset. 

As can be seen in Figures 3–6, the change in rating prediction accuracy of UE-SVD++ was mostly 
caused by the change in parameter k. The reason is that parameter k controls the density of the user 
embedding matrix in the model. When the value of k is small, the density of the embedding matrix 
is very high, and users with low correlation are also added, which leads to inaccurate modeling of 
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users and low prediction accuracy. When the value of parameter k is large, only a few users are added 
into the embedding matrix, which also leads to the weak generalization ability of the model and the 
decline in prediction accuracy. θ is the parameter used to prevent the model from over-fitting, θd is 
the parameter used to control the weight of the relationship between users in the model, and γ is the 
model’s learning rate. From the above description, it can be seen that, when the value of parameter k 
is determined, the changes in the other three parameters only cause slight changes in the model. 

Based on the experimental results, we can draw a few conclusions. The optimal parameters of 
the FilmTrust were as follows: UMI threshold parameter k = 6, regularization parameter θ = 0.5, θd 
= 0.25, learning rate γ = 0.002. The optimal parameters of the Epinions were as follows: UMI threshold 
parameter k = 8, regularization parameter θ = 0.9, θd = 0.5, learning rate γ = 0.005. The optimal 
parameters of MovieLens-100K were as follows: UMI threshold parameter k = 4, regularization 
parameter θ = 0.5, θd = 0.05, learning rate γ = 0.003 The optimal parameters of the EachMovie were 
as follows: UMI threshold parameter k = 9, regularization parameter θ = 0.001, θd = 0.05, learning 
rate γ = 0.003. The training order of parameters was k, θ, θd, γ. For instance, when the parameter θ 
is trained, the remaining parameters were fixed. 

4.3. Compared Models 

To further prove the good performance of the UE-SVD++ model in rating prediction, we used 10 
classical models based on the CF algorithm for comparison. The comparison models used in this 
paper are described below.  

USER-MF (user based matrix factorization) and ITEM-MF (item based matrix factorization) 
perform rating prediction based on the user's given item rating and the average of the ratings received 
by the items. SOCIAL-MF uses the direct social relationship (user trust) to model the user feature 
matrix to achieve a better effect of the rating prediction. PMF introduces a probabilistic model based 
on the regularization matrix factorization to further optimize the effect of the rating prediction. A 
social recommendation model (LOCABAL) [31] combines the rating matrix and the social relation 
matrix by using local and global social relations. FUNK-SVD decomposes the sparse and high-
dimensional rating matrix into two low-dimensional matrices and predicts the user’s rating for the 
item using the reconstructed low-dimensional matrices. BIAS-SVD considers the user-independent 
or item-independent factors as the biased part, and considers the interaction between the user and 
the item as a personalized part, and it is considered that the bias part in the MF model plays a more 
essential role in improving the accuracy of rating prediction than the personalized part. A 
recommendation model (MFC) [32] of regularization and integration of social information in 
overlapping communities considers that users classified into the same communities have similar 
tastes. The SVD++ model adds the implicit feedback to the users based on BIAS-SVD. The TRUST-
SVD model follows the approach of SVD++, while adding the implicit social feedback information to 
represent the user feature matrix, and the social relationship matrix is also decomposed to form the 
user feature matrix and the social feature matrix.  

Since the MovieLens-100K and EachMovie datasets do not contain user trust data, the SOCIAL-
MF, LOCABAL, MFC, and TRUST-SVD models were not applied to the above two datasets. To make 
the experimental results more accurate and representative, we used the classic evaluation indicators 
(RMSE and MAE) in the rating prediction. Each group of data was tested five times to obtain the 
mean value. An examination of the results presented in Table 2 shows that the RMSE and MAE values 
of the UE-SVD++ model on the four different datasets were superior to the other compared models, 
and it is clear that the evaluation performance was stable. 
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Table 2. Comparison of rating prediction performance of different models. RMSE—root-mean-
square error; MAE—mean absolute error. 

Datasets FilmTrust Epinions MovieLens-100K EachMovie 
Metrics 
Models RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

ITEM-MF 0.9274 0.7138 1.2001 0.9134 1.0872 0.8717 0.2842 0.2228 
USER-MF 0.8960 0.6646 1.1894 0.9128 1.0946 0.8648 0.2847 0.2296 

PMF 0.8541 0.6554 1.1152 0.8426 0.9573 0.7602 0.2627 0.2058 
BIAS-SVD 0.8199 0.6311* 1.0809* 0.8342 0.9629 0.7587* 0.2597 0.2029* 

FUNK-SVD 0.8487 0.6546 1.0970 0.8331 0.9587 0.7594 0.2615 0.2054 
SVD++ 0.8340 0.6315 1.1194 0.8315 0.9521* 0.7624 0.2594* 0.2035 

LOCABAL 0.8297 0.6519 1.1316 0.8477     
SOCIAL-MF 0.8506 0.659 1.0823 0.8314     

MFC 0.8198 0.6496 1.1263 0.836     
TRUST-SVD 0.8197* 0.6349 1.0908 0.8258*     
UE-SVD++ 0.8024 0.6201 1.0583 0.8153 0.9417 0.7501 0.2568 0.2005 

Improve 2.110% 1.742% 2.091% 1.271% 1.092% 1.133% 1.002% 1.182% 

4.4. Performance Comparison 

In this section, we compare our proposed UE-SVD++ with the above comparison models. The 
model was trained and tested by the method of five-fold cross validation. Specifically, the datasets 
were divided equally at random, with 80% of the dataset used as the training set and 20% as the test 
set in each test. The use of five experiments ensured that all of the data were tested, and the final test 
result was the average of the results of the five experiments. 

In Table 2, we show the performance of all the comparison models and our proposed model on 
the four datasets. We use a bold font to represent the best performance on each of the four datasets, 
and the symbol * to indicate the second best performance. Among the models tested, TRUST-SVD 
and BIAS-SVD performed better on the FilmTrust and Epinions datasets. SVD++ and BIAS-SVD 
performed better on Movielens-100k and EachMovie datasets. The main reason is that the above 
models added the implicit feedback information to re-express the user feature matrix. It is clear that 
our model (UE-SVD++) was superior to the other models in terms of each metric for both datasets. 
Relative to the second best performance, we showed an improvement of our model. The RMSE index 
of UE-SVD++ improved by 1.002%–2.110%, and the MAE index improved by 1.133%–1.742%. The 
above experimental results show that our model has a high accuracy when effectively rating 
prediction. 

4.5. The Influence of the Training Data Volume on Model Performance and the Execution Time 

In this section, we used the FilmTrust dataset to study the influence of the amount of training 
data on the model performance and the execution time, and the results are shown in Table 3. We 
reduced the amount of training data during model training randomly. For example, 50% of the 
training data meant that we randomly selected 50% data from the total rating data for the training of 
the model. The experimental results show that, when the training data were more than or equal to 
60%, the prediction accuracy did not fluctuate too much. When the data were lower than 60%, the 
fluctuation of accuracy increased obviously. Then, with the increase in training data, the time used 
to train the model also increased gradually. In conclusion, it is apt to take 80% of the training data as 
the benchmark of the model. Although the model takes a long time, it is acceptable to have the best 
prediction accuracy. 
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Table 3. The impact of less training data on performance in the FilmTrust dataset. 

 30%  
Training 

40% 
Training 

50% 
Training 

60% 
Training 

70% 
Training 

80% 
Training 

RMSE 0.8634 0.8406 0.8291 0.8196 0.8109 0.8024 
MAE 0.6742 0.6684 0.6521 0.6324 0.6259 0.6201 
Time 

(s) 
1394.2 1420.6 1482.4 1549.7 1636.4 1719.1 

5. Conclusions 

The rating prediction is one of the key tasks in recommendation systems, and the user preference 
mining is a key factor that restricts the accuracy of rating prediction. In this paper, we propose a novel 
rating prediction model based on user embedding and SVD++ named UE-SVD++.  

As a classical rating prediction model in the CF algorithm, the SVD++ model ignores the explicit 
feedback of the user in the rating. To enrich the user features and improve the accuracy of rating 
prediction, the user embedding matrix based on the rating is proposed in this paper to enhance the 
correlation between the users. The user embedding matrix represents the potential association 
between two users. Based on the rating data, we calculate the number of times that any two users 
consumed the same item at the same time to obtain the user-wise mutual information values, and 
then construct the user embedding matrix. Eventually, the user embedding matrix is added to the 
existing user bias and implicit parameters to model the user features on rating prediction. The 
experimental results on four real-world datasets demonstrate that the UE-SVD++ model outperforms 
the state-of-the-art rating prediction models.  

Despite the good rating prediction effect, there are still some areas we ignored in this method. 
In future work, we will consider the introduction of new metrics to measure the proposed approach 
more comprehensively. We will also introduce user assistance information as much as possible, such 
as the social relationship data between users. 

Author Contributions: Conceptualization, J.Q.; data curation, W.S. and L.W.; formal analysis, J.Q.; funding 
acquisition, L.W. and J.Q.; methodology, J.Q.; resources, W.S. and L.W.; supervision, J.Q.; validation, W.S. and 
L.W.; writing—original draft, W.S.; writing—review and editing, W.S., L.W., and J.Q. 

Funding: This work was funded by the National Science Foundation of China (Grant Nos. 61867006, 61471311, 
and 61771416), the China Postdoctoral Science Foundation (No. 2016M592867), the CERNET Innovation Project 
(Nos. NGII20160510 and NGII20170502), the Doctoral Scientific Research Foundation of Xinjiang University 
(Grant No. BS150263), the fourth 21st Century Education Reform Project of Higher Education of Xinjiang 
University (Grant No. XJU2015JGY47), and the Higher Education Innovation Project of Xinjiang Uygur 
Autonomous Region (Grant No. XJEDU2017T002). The authors would like to thank the anonymous reviewers 
for their constructive comments that helped to improve the quality of this paper. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Hu, Y.; Koren, Y.; Volinsky, C. Collaborative filtering for implicit feedback datasets. In Proceedings of the 
Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 263–272. 

2. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 
2009, 30–37. 

3. Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; Riedl, J. GroupLens: an open architecture for 
collaborative filtering of netnews. 1994. Available online: https://dl.acm.org/doi/10.1145/192844.192905 
(accessed on 11 December 2019). 

4. Su, X.; Khoshgoftaar, T.M. A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 2009, 1–19. 
5. Deshpande, M.; Karypis, G. Item-Based top-n, recommendation algorithms. ACM Trans. Inf. Syst. 2004, 22, 

143−177. 
6. Linden, G.; Smith, B.; York, J. Amazon.com recommendations: Item-to-Item collaborative filtering. IEEE 

Internet Comput. 2003, 7, 76−80. 



Symmetry 2020, 12, 121 14 of 15 

 

7. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 
42, 30−38. 

8. Koren, Y. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov. 
Data 2010, 4, 1. 

9. Guo G, Zhang J, Yorke-Smith, N. TrustSVD: Collaborative filtering with both the explicit and implicit 
influence of user trust and of item ratings. In Proceedings of the 29th AAAI Conference on Artificial 
Intelligence, 25–29 January 2015; AAAI Press: Menlo Park, CA, USA, 2015; pp. 123−129. 

10. Adomavicius, G.; Kwon, Y.O. Overcoming accuracy-diversity tradeoff in recommender systems: A 
variance-based approach. In Proceedings of WITS, Paris, France, 1 January 2008; p. 8. 

11. Adomavicius, G.; Kwon, Y. Improving recommendation diversity using ranking-based techniques. IEEE 
Trans. Knowl. Data Eng. 2009; pp.896–911. 

12. Levy, O.; Goldberg, Y. Neural word embedding as implicit matrix factorization. In Proceedings of the 
Advances in Neural Information Processing Systems, 2014; pp. 2177–2185. Available online ： 
http://papers.nips.cc/paper/5477-neural-word-embedding-as (accessed on 11 December 2019) 

13. Chae, D.K.; Shin, J.A.; Kim, S.W. Collaborative Adversarial Autoencoders: An Effective Collaborative 
Filtering Model under the GAN Framework. IEEE Access 2019, 7, 37650–37663. 

14. Mnih, A.; Salakhutdinov, R. Probabilistic matrix factorization. In Proceedings of the Advances in Neural 
Information Processing Systems, 2008; pp. 1257–1264. Available online: http://papers.nips.cc/paper/3208-
probabilistic-matrix-factorization.pdf (accessed on 11 December 2019) 

15. Salakhutdinov, R.; Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. 
In Proceedings of the 25th International Conference on Machine Learning, 2008; pp. 880–887. Available 
online: https://dl.acm.org/doi/10.1145/1390156.1390267 (accessed on 11 December 2019) 

16. Koren, Y.; Bell, R. Advances in collaborative filtering. In Recommender Systems Handbook; Springer: Boston, 
MA, USA, 2015; pp. 77–118. 

17. Kim, K.S.; Chang, D.S.; Choi, Y.S. Boosting Memory-Based Collaborative Filtering Using Content-
Metadata. Symmetry 2019, 11, 561. 

18. Koren, Y. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD 
International Conference on Knowledge Discovery and data mining, 2009; pp. 447–456. Available online: 
https://dl.acm.org/doi/10.1145/1557019.1557072 (accessed on 11 December 2019) 

19. Devooght, R.; Kourtellis, N.; Mantrach, A. Dynamic matrix factorization with priors on unknown values. 
In Proceedings of the 21th ACM SIGKDD international Conference on knowledge discovery and data 
mining, 2015; pp. 189–198. Available online: https://dl.acm.org/doi/10.1145/2783258.2783346 (accessed on 
11 December 2019) 

20. Jamali, M.; Ester, M. A matrix factorization technique with trust propagation for recommendation in social 
networks. In Proceedings of the 4th ACM Conference on Recommender Systems, 2010; pp. 135−142. 
Available online: https://dl.acm.org/doi/10.1145/1864708.1864736 (accessed on 11 December 2019) 

21. Ma, H.; Yang, H.; Lyu, M.R.; King, I. SoRec: Social recommendation using probabilistic matrix factorization. 
In Proceedings of the 17th ACM Conference on Information and Knowledge Management, New York, NY, 
USA, 2008; pp. 931−940. Available online: https://dl.acm.org/doi/10.1145/1458082.1458205 (accessed on 11 
December 2019) 

22. Yang, B.; Lei, Y.; Liu, D.Y.; Liu, J.M. Social collaborative filtering by trust. In Proceedings of the 23rd Int’l 
Joint Conference on Artificial Intelligence, AAAI Press, 2013; pp. 2747−2753. Available online: 
https://ieeexplore.ieee.org/abstract/document/7558226/ (accessed on 11 December 2019) 

23. Tang, J.; Hu, X.; Gao, H.; Liu, H. Exploiting local and global social context for recommendation. In 
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, 2013; pp. 
2712−2718. Available online: https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/viewPaper/6936 
(accessed on 11 December 2019) 

24. Wang, H.; Song, Y.; Mi, P.; Duan, J. The Collaborative Filtering Method Based on Social Information Fusion. 
Math. Probl. Eng. 2019. Available online: https://www.hindawi.com/journals/mpe/2019/9387989/abs/ 
(accessed on 11 December 2019) 

25. Koren, Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In 
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge discovery and data mining, 
Las Vegas, Nevada, 24–27 August 2008; ACM Press: New York, NY, USA, 2008; pp. 426–434. 



Symmetry 2020, 12, 121 15 of 15 

 

26. Levy, O.; Goldberg, Y. Neural Word Embedding as Implicit Matrix Factorization. In Proceedings of the 
28th Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 2014; pp. 2177–
2185. Available online: http://papers.nips.cc/paper/5477-neural-word-embedding-as (accessed on 11 
December 2019) 

27. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and 
phrases and their compositionality. In Proceedings of the Advances in Neural Information Processing 
Systems, 2013; pp. 3111–3119. Available online: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-andphrases (accessed on 11 December 2019) 

28. Guàrdia-Sebaoun, E.; Guigue, V.; Gallinari, P. Latent trajectory modeling: A light and efficient way to 
introduce time in recommender systems. In Proceedings of the 9th ACM Conference on Recommender 
Systems, ACM: New York, NY, USA, 2015; pp. 281–284. Available online: 
https://dl.acm.org/doi/10.1145/2792838.2799676 (accessed on 11 December 2019) 

29. Barkan, O.; Koenigstein, N. Item2vec: neural item embedding for collaborative filtering. In Proceedings of 
the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul 
Mare, Italy, 2016; pp. 1–6. Available online: https://ieeexplore.ieee.org/abstract/document/7738886/ 
(accessed on 11 December 2019) 

30. Yang, X.; Steck, H.; Liu, Y. Circle-based recommendation in online social networks. In Proceedings of the 
18th ACM SIGKDD International Conference on Knowledge discovery and data mining, ACM: New York, 
NY, USA, 2012; pp. 1267–1275. Available online: https://dl.acm.org/doi/10.1145/2339530.2339728 (accessed 
on 11 December 2019) 

31. Tang J., Hu, X., Gao, HJ, Liu, H. Exploiting local and global social context for recommendation. In 
Proceedings of the 23rd Int’l Joint Conference on Artificial Intelligence, AAAI Press: Menlo Park, CA, USA, 
2013; pp. 2712−2718. Available online: 
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/viewPaper/6936 (accessed on 11 December 
2019) 

32. Li, H.; Wu, D.; Tang, W.; Mamoulis, N. Overlapping community regularization for rating prediction in 
social recommender systems. In Proceedings of the 9th ACM Conference on Recommender Systems ACM: 
New York, NY, USA, 2015; pp. 27–34. Available online: https://dl.acm.org/doi/10.1145/2792838.2800171 
(accessed on 11 December 2019) 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


