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Abstract: In this paper the model of infection diseases by Marchuk is considered. Mathematical
questions which are important in its study are discussed. Among them there are stability of stationary
points, construction of the Cauchy matrices of linearized models, estimates of solutions. The novelty
we propose is in a distributed feedback control which affects the antibody concentration. We use
this control in the form of an integral term and come to the analysis of nonlinear integro-differential
systems. New methods for the study of stability of linearized integro—differential systems describing
the model of infection diseases are proposed. Explicit conditions of the exponential stability of the
stationary points characterizing the state of the healthy body are obtained. The method of the paper
is based on the symmetry properties of the Cauchy matrices which allow us their construction.

Keywords: integro—differential systems; Cauchy matrix; exponential stability; distributed control

1. Introduction

In this paper we consider the Marchuk model of infection diseases

&V = BV (t)—yF (1) V (£)
4€ = Z(m(t)) aF (t) V (t) — pe (C (t) — C*)
4 = pC (t) =y F (1) V (t) — usF (1)
W — gV (£) — pmm (1)

)

proposed in the book [1].

Here t is time, V (t) is antigen concentration rate, C () is the plasma cell concentration rate, F ()
is the antibody concentration rate, m (t) is relative features of the body, m = 0 for the healthy body,
¢ (m) takes into account the destruction of the normal functioning of the immune system, ¢ (0) = 1.
&, B,Y, 0,1, W, hm, he, C* are corresponding coefficients obtained as results of laboratory experiments.
Let us note their biological sense of the coefficients: p—coefficient describing the antigen activity, y
—the antigen neutralizing factor, x—stimulation factor of the immune system, p—rate of production of
antibodies by one plasma cell, y ;—coefficient inversely proportional to the decay time of the antibodies,
um—coefficient inversely proportional to the organ recovery time, i.e., the coefficient y, characterizes
the rate of regeneration of the target organ, y.—coefficient of reduction of plasma cells due to ageing
(inversely proportional to the lifetime), c—constant related with a particular disease, C*—the plasma
cell concentration of the healthy body. Let us describe now the structure of the model (1). The first
equation presents the block of the virus dynamics. It describes the changes in the antigen concentration
rate and includes the amount of the antigen in the blood. The antigen concentration decreases as a
result of the interaction with the antibodies. The immune process is characterized by the antibodies,
whose concentration changes with time (destruction rate) and is described by the third equation.
The amount of the antibody cells decreases as a result of interaction with antigen and also as a result of
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the natural destruction. However, the plasma restores the antibodies and therefore the plasma state
plays an important role in the immune process. Thus, the change in the concentration rate of the
plasma cell is included in several differential equations describing this model. Taking into account
the healthy body level of plasma cells and their natural ageing, the term . (C(t) — C*) is included
in the second equation of system (1). The second and third equations present the immune response
dynamics. Concerning the last equation of system (1), the following can be noted: (1) the value of m
increases with the antigen’s concentration rate V(t); (2) the maximum value of m is one, in the case of
100% organ damage or zero for a fully healthy organ.

This model was studied in many works, note, for example, the recent papers [2-6] and the
bibliography therein. The adding control to stabilize the system in the neighborhood of a stationary
point was proposed, for example, in [5-8]. In the works [4,9,10], the basic mathematical model that
takes into account the concentrated control of the immune response is proposed.

Let us discuss a motivation and novelty of our approach. In constructing every model,
the influences of various additional factors that have seemed to be nonessential were neglected.
The influence effect of choosing nonlinear terms by their linearization in neighborhood of stationary
solution is also neglected. Even in the frame of linearized model, only approximate values of
coefficients instead of exact ones are used. Changes of these coefficients with respect to time are
not usually taken into account. It looks important to estimate an influence of all these factors.

In order to make this we have to obtain estimates of the elements of the Cauchy matrix of
corresponding linearized (in a neighborhood of a stationary point) system. Consider the system

x'(t) = P(t)x(t) + G(t),

where P(t) is a (n x n)-matrix, G(t) is an n-vector. Its general solution x(t) = col{xy(t),...x,(t)} can
be represented in the form (see, for example, [11])

x(t) = /OtC(t,s)G(s)ds + C(t,0)x(0),

where n x n-matrix C(t,s) is called the Cauchy matrix. Its j-th column (j = 1, ..., n) for every fixed s as
a function of ¢, is a solution of the corresponding homogeneous system

satisfying the initial conditions x;(s) = ¢;;, where

1, i=j, .
(Sij:{ 0, 1755, i=1,..n,
(see, for example, [12]). This Cauchy matrix C(t,s) satisfies the following symmetric properties
C(t,s) = X(s)X~(s), where X(t) is a fundamental matrix, C(t,0) = C(t,s)C(s,0), and in the case of
constant matrix P(t) = P, X(t —s) = C(t,s) is a fundamental matrix for every s > 0. These definition
and properties allow us to construct and estimate C(,s).

It can be noted that the use of information about behaviour of a disease and the immune system
for a long time (defined by distributed control, for example, in the form of an integral term) looks
very natural in choosing a strategy of a possible treatment. We add a distributed control in the third
equation, describing the antibody concentration rate to achieve stabilization of the process in the
neighborhood of stationary solution in the form

t
u(t) = / (F(s) — F*) e *(=) s, )
0
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Here F* is the antibody concentration that we wish to achieve after the treatment. It can be noted
that the influence of a correspondin average value instead of F () — F* at the point  looks reasonable.
The kernel in (2) increases the influence of the previous moments which are closer to the current
moment ¢. Note that this control is a reasonable one from the medical point of view. We consider a
corresponding integro—differential system and construct its Cauchy matrix. This allows us to estimate
the influence of all notes above factors on behavior of solutions.

Note the use of distributed control in stabilization in the papers [13,14]. The goal of this paper is to
demonstrate new possibilities of distributed control in the model of infection diseases through analysis
of integro-differential systems. From the medical point of view, our results could be interpreted as
follows: supporting the immune system we transform infection disease to a stable state of “almost
healthy” body. After getting this stable state we do not stop the use of corresponding medicine
allowing to hold antibody concentration rate on the higher level than in the normal conditions of a
healthy body. In all these stages it is important to estimate influence of many additional factors in
order to hold the process in a corresponding zone. Going solution out of this zone can be dangerous
for a patient. To give an instrument for these estimations is the main goal of this paper. We propose
here a simple method of analysis and estimation based on a reduction of integro—differential systems
to ones of ordinary differential equations.

Our paper consists of the following parts. In Section 2 we introduce the distributed control in
the Marchuk model of infection diseases and explain how the analysis of this model of the fourth
order can be reduced to the analysis of a system of ordinary differential equations of the fifth order. In
Section 3 the Cauchy matrix of integro—differential system is constructed and the exponential stability
of a stationary point is obtained. The case of uncertain coefficient in the control is studied in Section 4
where results on the exponential stability are proposed. The influence of changes in the right-hand
side on behaviour of solutions is discussed in Section 5.

2. Modified Model of Infection Deceases

Adding the control (2) in the right-hand side of the third equation of system (1) we come to the
system of four equations

&V = BV (t) —yF () V (t)
9C = 7 (m(t) aF (t) V(1) — pe (C <> c*>

4 — pC — nyF (£) V(1) — ueE (t) —bf yek(t=s)gs 7 3)
dn — oV (t)— ﬂmm(t)

Let us consider the following system of five equations

=pV(t)—7F () V (t)
5( ()) F(t)V(t) = pe (C(t) —C7)
= pC—nyF (£) V (t) — psF () —bu(t) . (4)
G = oV () — pmm (1)
du — F(t)— F* —ku(t)

*“\ﬁ:'ff\m

Lemma 1. The solution-vector col (v (t),s (t),f (), m (t)) of system (3) and four first components of
the solution-vector col (v (t),s (t),f (t),m(t),u (t)) of system (4) considered with the condition u (0) =
0 coincide.

The proof of Lemma 1. follows from the formula of presentation of the general solution of the
scalar linear equation % d” +ku (t) = F () — F*.

Note that a snmlar trick was used, for example, in papers [15,16].

Following [9] we can pass to the dimensionless case.
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f(t) F*, u(t) =u(t) F* into (3) we obtain

Substituting V (t) = v (t) Vi, C (t) =s(t)C*, F (t) =
% = po(t) —yF'f (o (t)
Zt m%é( ) fB)o(t) —pe(s(t) 1)
=G () =y Vinf ()0 () = ugf (1) — b (1) - (5)
dd— = 0Vuv (£) — pmm (t)
W= f()—1—ku(t)
Substituting a1 = B, ap = yF*, a3 = “Vm%/ ag = iy pPC;*, as = Ye, g = Vi, 47 = U,
ag = 17y Vy, into (6) we come to the system
% =mo (1) —arf (o (1)
d@ = a3l (m(t)) f () v (t) —as (s (t) — 1)
= (s() = f() —asf (0 (1) bl (1) (6)
= agv (t) — aym (t)

dm _
d
du

”\«*

ar = f () =1 —ku(t)
Remark 1. It was obtained by M. Chirkov and S. Rusakov (see their method of identification of parameters
for example in [5,9]) on the basis of the laboratory data of pneumonia, that a; = 0.25; a = 8.5000332
a3 = 1.792175675 x 10%; a4 = 1.95992344 x 10~7; a5 = 0.5; a5 = 10; ay = 0.4; ag = 1.7 x 1073,

Itis clear thatv = m =% = 0,s = f = 1 is a stationary point of system (6)
Linearizing system in a neighborhood of this stationary point, we obtain the corresponding

linear system
9 = (a1 — )0
48 = a30(0)o — a5 (s — 1)
d—f:—agv—a4(f—1)+a4(s—1)—bu() ,
" — gev — aym

dat
d—f1—ku
where {(0) = 1, as it was noted above. Denoting x; = v, xp =s—1,x3=f—1, x4 =m, x5 =1
we obtain
xj = (ag —az) x;
@)

xh = a3xy — asxy
—ag x1 + agxy — agxz — bxs
X) = dgX1] — A7Xy4
xt = x3 —kxs

I
x3—

3. Constructing the Cauchy Matrix of the System (7)
x5 and the speed of their tending to the stationary solutions

In order to estimate the values of x1,
we propose below a corresponding technique. Its basis is the Cauchy matrix

The matrix of the coefficients of system (7) is following

ap —ap 0 0 0 0
as —as 0 0 0
A= —ag ag —ag 0 =D 8)
ag 0 0 —ay; O
0 —k
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Its eigenvalues are

—ag—k++/ (aa—k)?>—4b —ag—k—/(a,—k)*—4b
Ay = 2(4 ) P P 2(4 )

' ©)
A3 = —az, Ay=—as5, As=a;—ay
Their negativity (negativity of the real parts in the case of complex A; and Ay) leads us to the
assertion on stability of the stationary pointv =m =u = 0,s = f = 1 of system (6).

Theorem 1. Ifk > 0,b > 0and a;, 1 < i < 8, are real positive and different and ay < ay, then system (7) is
exponentially stable.

Remark 2. All steps can be done for the integro—differential system (3) and system of ordinary differential
equations (4) also directly without needing to pass to the dimensionless case (6). The linearization will lead
us to a corresponding analog of the linear system of ordinary differential Equation (7) with the matrix of the
coefficients B. Let us discuss the medicine sense of our result. Let Fy be the value of antibody concentration rate
of the healthy body. The case of Fy > g is considered by G.I. Marchuk in his book. In this case the stationary
point V.= 0,C = C*, F = Fy,m = 0, is stable even without control. We can try to consider the “bad” case,
where Fy < % 1t is clear that system (1.1) could not be stable in this case in the neighborhood of this stationary
point since V (t) increases. It means that the immune system with the antibody concentration on the level
of the healthy body cannot prevent increasing antigen concentration. Our control (2) in the third equation
of system (1.1) cannot help us and makes this stationary point stable. We consider another stationary point
V =0,C = C* F = F*,m = 0. Repeating the analysis of the eigenvalues of the matrix of the coefficients
B, we come to the same conclusions. Let all coefficients in system (1) be positive (this is absolutely natural
assumption) and b > 0,k > 0, then adding the control in the form (2), where F* > Fy + LJFO, we can achieve
the exponential stability of this new stationary point of systems (3) and (4). Actually, positivity of k, b and
all coefficients a;(i =1, ...,8) is preserved, to achieve the inequality ay — ay < 0 we have to require the noted
inequality connecting F* and Fy. One can make a conclusion that supporting for a long time the immune system,
describing by antibody concentration F(t) and holding it on the level F* can be a possible way of a treatment.

There are three possible cases:

(1) If (ag — k)2 > 4b, then we have two different real eigenvalues A and A,.
(2) If (a4 — k)* = 4b, then we have two real and multiple eigenvalues A; and A,.
(3) If (ag — k)* < 4b, we have two complex eigenvalues A; and Aj.

3.1. Constructing the Cauchy Matrix in the Case 1

Using Maple, we obtain the eigenvectors of the matrix (8):

0 0 0
0 0 0
- _ 2b - _ 2b -
1= a—k+ (k74 |7 Y27 t—k—(aky—a |7 Y3T 0 |,
0 0 1
0
: ' (10)
0 —c(as+a —ap)
. a4a57a4k7a§+a5k7b —cas
a4
74: 7a5+k , 75: ﬂl_a2+k P
(a5+a1—ap)agc
0 ~aata
1

a% —2a1a2+a1a4+a1k+a§ —apay—ark+agk+b

where ¢ = a1ag—a2ag—Aaza4+asag
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Let us denote a3 = — 2b —, 32 = — 2b ——, &4 =
ag—k++/(as—k)>—4b as—k—/(as—k)?>—4b
ag05—ask—a2+ask—b
—e e = w3 = —as+ ka5 = —c(as+a1 —ap), a5 = —caz,azs = a3 —a + ka5 =
(a5+a1—ap)aec . :
— Tt and define the matrix

containing eigenvectors and its inverse matrix

0 0 0 0 X115
0 0 0 Noq4 K25
e T g
[V, U2, U3, Uy, Us|=| az1 azp 0 az ass
0 0 1 0 45
1 1 0 1 1
o4 (W32 —&35) — 5 (w30 —A34) X3 — 34 1 __amp
5004 (31 —32) g (31 —032) a3 —az) a31—032
_ opg (@31 —ag5) —ans5 (w31 — 3 a31—34 1 a3
15004 (31 —32) g (31 —2032) 03—z a31—a3)
— 5 0 0 1 0
315 1
_ 425 1
M504 Aoy 0 0 0
L 0 0 0 0
15

Let us write now the Cauchy matrix C(t, s) of the the system (7). The Cauchy matrix can be written
as C(t,s) = eA=5) In our case A is diagonalized: A = BDB~!, we have eA(!=%) = BeP(!=5)B~1 where
the matrix D is diagonal, containing the eigenvalues of the matrix A. The columns 8,» (t,5)1<j<5 Of
the Cauchy matrix C(t,s) of system (7) are the following ones: o

o4 (w32 — t35) — o5 (032 — (34)

Cits) =

X15

w4 (431 — 32)

g (w31 — (035) — (s (w31 — (3a)

15
X15

15

&15

O = O O O

—C

oy (@31 — a32)

X35
X15K24

e 7(t=s) _

(a5 + a1 —az)
—cas

ay —dx + k

(as+ay —az)asc
ay—ax+ay

1

0

2
OZb <7a4 —k+ 2(11471() —4b> (tfs>

_ﬂ4—k+\/(ﬂ4—k)2—4b ¢
0

2

0 (—a4—k—\/(n4—k)2—4b> (t=s)
e —

. a4a5—a4k—a§+a5k—b
ay
—as+k
0
1

e—u5(t—s) +

ela1—az)(t=s)
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82 (t,s) —

85 (t, S)

1

+

0
a3 — K34 02b (M) (t=s)
m ﬂ47k+\/(ll4fk)2—4b e
0
1
0
w1 — ° (L) o
31 — 034 B
X24 (0‘31 - 0632) ﬂ4—k—\/(a4—k)2—4b e +
0
1
0
_ ag05—ask—a2+ask—b
! o —a5(t—s)
Aoy —as +k e
0
1
0
1 _ 2 2 (t—s)
31 — K32 ag—k++/(ag—k)?—4b e
0
1
0
1 B Ozb <*4*k+(4*k)274b> (=)
m ag—k—/(as—k)>—4b e
0
1
0
0
Cats)=| 0 [t
1
0
0
¥32 _ OZb (M) (t=s)
B m as—k++/(as—k)*—4b e
0
1
0
L) S 2 2 (t-5)
a31 — a3 as—k—/(as—k—4 | €
0

7 of 22
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3.2. Constructing the Cauchy Matrix in the Case 2

We have the eigenvalues

aq +k

, )\3 = —day, )L4 = —das, /\5 = a1 —dy, (11)

Consider the following set of vectors

0 0 0
0 0 0
T = —affk , Ta= 0 , Ts=| 0|,
0 0 1
2
1 —=— 0
ag k (12)
0 —C (a5—|—a1 —112)
_ u4a57u4k7a§+a5k7b —cas
a4
Ty = —as+k , 75: a; —ap +k i
_ (as+ay—ap)aec
0 a1 —ax+ay
1 1
here 71, 73, 74, 75 are the eigenvectors of matrix (8) and 72 is a root vector for 71.
2 2 a4a57a4k7a§+a5k7b
Let us denote f31 = —=3, P52 = 755 Pu = — 7 ,Bas = —as + kP15 =
—c(as+ay—ap),Bos = —caz, Bss = a1 —ax +k, Bas = —%, and define the matrix
0 0 0 0 B
T e L S 0 00 P Pos
B = [U1, 0 U3 Uy Us]=| Ba1 0 0 B PBss
0 1 0 PBss
1 B 0 1 1
and its inverse matrix
_ BoaP3s—PBasPaa _ B3 1 0 0
B31B15P24 B24B31 Ba1
_ Boa(Bs1—Pas)—Pos(Bsi—Pas) _ Pai—Paa 1 0 L
B31Bs2B24B15 B31B2aPBs2 B31Bs2 Bs2
B! = _% 0 0 1 0
_ B 1
B15P24 Boa 0 0 0
ﬁi 0 0 0 0
15

Let us denote: 1 (t) = T1eM!, Wy (t) = (Ta+tT1)eMt, W;(t) = Telt, 3 <i<5,
W(ts)=1d;(t—s), 1<j<5.
Let us build the Cauchy matrix C(t,s) = {?1 (t,s)}

5

Lcics’ where 31' (t,s) = ]El bji Wj (t,s),
1<i<5s.

We have to find bj;, 1 <1i,j < 5 in this representation. Taking into account that C (s,s) = I, where

5
I is the identity (5 x 5)-matrix, we can write: ?i (s,8) = ¥ bji 7]-, 1<i<5.
j=1
Setting i = 1,2, 3,4,5, we obtain
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5
?1 (S,S) = Ebﬂ 3)] =B
=1

]

b1y
by
b3
by
bsy

bio
by
b3
by
bsy

b1z
bas
b33
by
bss

o O O O

b1y
by
by
byy
bsy

bis
bs
bss
bys
bss

O O O = O

S O = O O

O R O O O

_ o O O O

b1y
by
b3y
by
bsy

b1
by
b3y
by
bsy

b1z
b3
bz
by
bss

_ BoaPB3s—BosPas

B31P15P24

9 of 22

_ Boa(B31—B35)—B25(B31—Ba4)

b1y
by
b3y
by
bsy

bis
bs
bss
bys
bss

B31B52B24PB15
i
15
B
B15B24
1
B1s

_ B

f24ﬁ31

31— P34

B31B24PBs2
0

1
B4
0

1
Ba1
1
B31Bs2
0
0
0

I
cor oo

oo ofFro
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10 of 22

5
Substituting the coefficients bj;, 1 < i, j < 5into the equality 81- (t,s) = ¥ bj W]' (t,s), 1<i<5
=1

]

we obtain
0
0 ag+k
Cis) = _Pubn—PosPu | x| ()0
B31B15P24 ”S_k
1
0 0
0 0
Boa (B31 — P3s) — Pos (Bs1 — Psa) 0 f_ _ 2
+ ( S) 1147](
B31B52B24B15 0 0
2
12471( 1
0 0
0 _ﬂ4ﬂs*ﬂ4k*ﬂ§+ﬂ5k*b
a
Bss 0 |ew(t=s) _ _Pos —as _4|_k es(t=s) 4
B1s 1 B15B24
0
0 1
—c(as+a; —ap)
—cas
L al _ az —|— k e(al_az)(t_s)
.315 _ (as+a;—az)asc
Tai—aytay
0 0 0
0 0 0
_ B4 2 B31 — a4 2%
32 (ts) = S BuBan | B F | BaBubs 0 R e
0 0 0
1 a42—k 1
0
_ Wass—agk—aitask—b
1 a4 —as(t—s)
o —as + k e
Boa 0
1
0 0 0
0 0 0
Gt = 5 |~ |5 0 |+t-9| -
31 0 31P52 0 0
2
1 71—k 1
e7a7(tfs)

o
—~
N
V2]
~—
I
o = O O O

() ()
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0

1 0

?5 (t,S) - % 0
0

2

3.3. Constructing the Cauchy Matrix in the Case 3

We have the eigenvalues

11 0f 22

2 (-%%)t-9)

—a4—k+i\/4b—(a4—k)2 —(Il4—k—i\/4b—(€l4—k)2
> ’ /\2: 2 ’

1
A3 =—ay, Ay=—as, As=a1—ay,
0 0 0
0 0 0
- _ 2b - _ 2b -
1= a—ktiva—(a—k? |7 Y27 a—k—i/a—(ag—k? |7 Y37 0|,
0 0 1
1 1 0
0 —c(as+a —ap)
. a4a57a4k7a§+a5k7b —cas
— 4 —
V4= k — as , Us= ay —ay +k ,
_ (as+a —ag)agc
0 ay—az+ay
1 1

We can write first two vector-solutions as follows:

0

0 —ag—k+in/ab—(ay—k)> ;
() = 2 2 _
ui (t) = ta—ktiv/ab—(ag k2 | € =

0

1

0

0

ag—k+ir/ab—(as—k)> | "€ " | cos

0

1

0

02b < —a4—k—i\/24h—<u4—k)2 ) ;

= | -2 |
u () = ag—k—i/4b—(ag k) €

0
_ 2b ,”42“‘,
ag—k—i/a—(as—k? | € " | cos

4b — (ag — k)2 4b — (ag — k)?
—( * ) t) + isin ((24 ) t

4b—(a4—k)2) , <4b—(a4—k)2
-t —isin ft

)

(13)

(14)
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Passing to real solutions:

0
N i (H) + 3 () 0 ag+k 4b — (a4 — k)?
wi (t) = ————"—+ = Fu [ em77t cos t]+
2 (2) 2
1
0
0 2
4b*(ﬂ4*k)2 efm%k sin ( 4b— (a4 _ k) )
2 2
0
0

0
0 2
ag+k 4b — (ag — k
“42_k et sm( (2 ) t
0
1
0
0
w ()= 0 |-
1
0
0
_a4u5—a4k—a§+a5k—h
ay
Z74> (t) = k —as -t
0
1
—c(as+a; —ap)
—Cas
ZF% (t) — al —ay —|— k . e(ﬂl_uz)t
(a5+a1—ap)agc
T ai—aytay
1

_>
G (t,s) } s of the system. Let us define

i=1,...,

Let us construct now the Cauchy matrix C (¢,s) = {

W, (t,5) = w, (t —s), then
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%
C; (t,5) = by} (1) + boiws (£,5) + baii (£, 5) + baiiwy (t,5) + b5 (t,5) =

0
0 +k / 2
k_% '€74T(t75) . COS (4b_(2a4_k) (t—S)) +
0
1
bli ' 0 +
0
B 4b—ga4—k)2 e—ﬂ“;k(f—s) .sin < ‘111—(2114—@2 (t— s))
0
L 0 |
- 0 _
0
 rayEE—— a, 2
74%%”47")2 e (79) . cos < A (1 s)) +
0
by; - 0 +
0
0 . .
a42—k e~ a42+ (t=5) . gin ( Y% 4’7*&”4*7() (t _ S))
0
L 1 -
0 0
0 _a4a5—a4k—a§+a5k—b
ay
byi- | 0 |-emo7(t=5) 1 p,; . k—as e 05(t=s)
1 0
0 1
—c(as+a; —ap)
—cas
bs; - a1 —ap +k . pla1—az) (t=s)
_ (as+ay—ap)aec
a1 —ap+ay
1

We have to find by;, by, b3;, by, bs; in this representation. Taking into account that C (s,s) = I,

where I is the identity (5 x 5) matrix, we can write:

0 0 0
. 0 0 0
Ci(s;s) = by-| 54 | 4by- | Va-(u kS 41”&"4”‘)2 +b3i-| 0O [+
0 0 1
1 0 0
0 —c(as+a; —ap)
_ H4ﬂ57ﬂ4k7ﬂ§+ﬂ5k7b _Cﬂ3
a
by k—25 + bs; - ap —ax+k
_ (as+a;—as)asc
0 a1 —ax+ay
1 1
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4b—(a,—k)? agas—agk—a2-+ask—b
Let us denote 3 = 7(2 4—k) ;Y24 = — 4 4 a45 ;Y15 = —¢C (ﬂ5 +ay — le),')/zg, =
—casz, y3s = a1 — ap +k, ya5 = 7%, and define the matrix
0 0 0 0 Y15
0 0 0 724 725
k7
B = 7 12 0 k—as 73
0 0 1 0 Y45
1 0 O 1 1
and its inverse matrix
24— _ 1
V15724 Y24 0 0 1
1724 (27357ﬂ4+k§+’)’25(a4 —2a5+3k) 1 a4 —3k+2as 1 0 1a4—k
2 V32715724 2 yuvn 732 2 v
B! = — s 0 0 1 0
025 L
V15724 Y24 0 0 0
. 0 0 0 0
Y15

5
Let us build the Cauchy matrix C(t,s) = {8, (t,s)}1<4<5 , where 3,' (t;s) = ¥ bji wj (t,s),
<i< j=1
1<i<5

We have to find b]-l-, 1 <i,j < 5in this representation. Taking into account that C (s, s) = I, where

5
I is the identity (5 x 5)-matrix, we can write: ?i (s,5)= Y% bji 7]-, 1<i<5.
=1

Setting i = 1,2,3,4,5, we obtain

b 1 b _ 24—725
. 1 1 ’Y24(2735*04111<312§25(ﬂ4*2ﬂ5+3k)
5 e d bzl 0 b21 2 Y32715724
?1 (s,s)= Y by vj=B| by [=]0 = by | = —ae
= by 0 by 4
V15724
bs1 0 bs1 1
Y15
1
b1z 0 bin T
5 b2 1 by e ;ik;gzz L
%
[ (s,8)=) bp 0j=B| bn | =] 0 = by | = 0
j=1 1
by 0 bay i
bsy 0 bsy 0
b13 0 b13 0
5 bas 0 b3 %
83 (Srs) = Z b]'3 71' =B b33 = 1 = b33 = 0
=1 b43 0 b43 0
bss 0 bss 0
b14 0 b14 0
5 by 0 by 0
?4 (S,S) = Zb]4 7] =B b34 = 0 = b34 = 1
=1 byy 1 by 0
bsy 0 bsy 0
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5
85 (S,S) = Zb]5 ?] =B
j=1

Substituting the coefficients bj;,

we obtain !
_ 0 -
0 k 2
a |09 o (W (t— s)> +
0
1
Co(tys) = —2os. .
0
B \/4b—§u4—k)2 e~ U (t-s) sin < 4b—(ag—k)* (t— s)>
0
L 0 |
i 0
0
W e (59) . cos ( (o —K)° (t— S)) +
0
1 Y24(2735—a4+k) +725 (a4 —2a5+3k) 0
2 32715724 0
0 k 2
a4;k e—“42+ (t—s) -sin( 4b—(as—k) (t—s)>
0
i 1
0 0
0 . a4a5—a4k—a§+a5k—b
Jas .| o | .emwrlt=s) _ Y25 . 4 i4k cea5(t=s)
115 V15724 5
1 0
0 1
—c(as+a, —ap)
—cas
% a —ay+k . pla1—a2)(t=s)

bis 0 bis 1
bas 0 bos 3 ué;zk
b35 = 0 = b3 5 = 0
bys 0 bys 0
bss 1 bss 0

15 of 22

5
1 <i,j < 5into equality ﬁi (t,s)= Y bji Wj(t,s), 1<i<5
i—=1

_ (as+a;—ap)asc
a1—az+ay
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Caltys) = —L
1 a4—3k+2as
2 yuvm
? 1
3 t,S =
(£:5) Y32

0
0 ag+k 2
k3u4 Ce— 2 (t-5) . cos < 4b—(2114—k) (t— s)) +

0

1
0
0

_7%_(2”4_7{)2 e (9 sin ( 4b7§u47k7)2 (t— s)>

0
0
0
0
W 'e,a42+k(tfs) . Cos (W (t — S)> +
0
0 +
0
0 ag+k 2
a4;k e 47 (t—s) . sin < 4b—(as—k) (t _ S))
0
1 .
0
. aya5—agk—a3+ask—b
% ) as i4k . e~ a5(t=s)
0
1
0
0
0
0
0
0 ay+k 2
a4£k —4 (1) -sin< 4b—(ay—k) (t s))
0
1

. eiﬂ7(tis)

D
—~
Nl
¥2)
~—
I
o = O O O

16 of 22
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0
0 ag+k 2
cs (ts)=| 51 [.e77 (o). cos( 4b—{as k) (t—s)) +
0
1
0
0

0
0
- 0 -
0
ag+k 2
VvV 4b—ga4—k)2 e 4+ (t S) CcOS (W (t — S)) +
0
1as—k 0
2 3 0
0 ag+k 2
u4;k e 4 (t-s) . sin < 4b—§‘14—k) (t _ S)>
0
- 1 -

4. System with Uncertain Coefficient in the Distributed Control

Consider the following system of equations

4V = BV (t) — yF (t) V (t)
4e =7 (m(t))aF (1) V (t) — pe (C (t) — C*)
4E — pC— nyF () V (1) — ugF (£) — (b+ Ab(E) u (t) . (15)
b — gV (£) — pmm (1)
di — F () — F* — ku (t)

Appearing Ab(t) in the third equation can be explained by the individual reaction of the human
body on the drug. Of course sensitivity of different patients’ reactions can be different and it can be
variable in time. We assume below that Ab(t) is essentially a bounded function.

This system can be rewritten in the form

Xy = (a1 —az) x1 + g1 (x1(t), x3(t))
x’2 =azx1 —asxy + (X] (t), X3(t))
xh = —ag x1 + agxy — agx3 — (b+ Ab(t)) x5 + g3 (x1(£), x3(t)) (16)
Xy = AgX1 — a7Xy
x5 = x3 — kx5

where g;(x1(t),x3(t)) (t), 1 <i <3 results of “mistakes” we made in the process of the linearization.

It is clear that the model described by systems (15) and (16) were obtained under the assumption
that various factors Ag;(t) acting on the antigen, plasma cell and antibody concentrations, were
neglected. In reality these factors act although they are “small”. Denote the so-called right-hand
sides G;(t) = gi(x1(¢), x3(t)) + Ag;(t) fori = 1,2,3 and G;(t) = Ag;i(t) for i = 4,5. Denote F(t) =
col{Gy(t), ..., Gs(t)}, assume that F(t) € L2,.

Consider the system

X' =AX+AB(t) X +F(t), (17)
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where

x1(t) 0000 0
(1) 0000 0
X(t) = | x(t) |, AB()=| 0 0 0 0 —Ab()
xu(t) 0000 0
x5(t) 0000 0

18 of 22

The natural problem is to estimate an influence of the right-hand side F(t) on the solution X(t).

The general solution of the system

—AX=Z

can be represented in the following form (see, for example, [11,12])

t
/c s)ds + C (1,0) X (0).
0
Without loss of generality, X (0) = c0l{0,0,0,0,0}. Substituting (19) into (17) we obtain
t
f) /c (t,5) Z (s)ds = E(t),
0

which can be written in the operator form as

Z(t) = (Qz)(t) +F (1),

(18)

(19)

(20)

(21)

where the operator ) : L2, — L3, (L3, is the space of five vector-functions with essentially bounded

components) is defined by the equality
t
(QZ) (1) = AB (1) /C(t,s) 7 (s) ds.
0

Denote ||Q)|| the norm of the operator ().
Estimating ||Q)| for (a4 — k) — 4b > 0, we obtain

L5
1Q) < max (esssup/Z%’(AB (t) C(t,5)); ) .
0=

t>0

t 5
Denoting Q; = esssup,~ I ‘(AB (t) C(tfs))ij
-0 i=1

= esssupy |Ab(t)], we obtain
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g (a3p—a35) —aos (a3 —azg) | 1 +
ay5004 (031 —32) [Aq]
Q; = Ab* 15024 (31 —32 1
o4 (@31 —&35) — 5 (31 —34) A | _ms ’
5004 (31 —32) [Az] a5015004
:Ab*[ azp—azy | 1 a3 —o3q | 1 1 }
Q o4 (w31 —a32) | [A1] aog(a31—az2) | [Az] T lasans] | 7

Qs = Ab* [l i+ L L *
3 lazi—aza| [A1] 7 agr—aza| [A2] | 7

Qs=0,
_ * a3 1 a3 1
Qs = Ab [ a31—a32 | [Aq] T a31— a3 \/\2\] ’

Theorem 2. Let the assumption of Theorem 1 be fulfilled, (a4—k)2 > 4b and the inequality
maxj <j<s {|Q]]} < 1 be true. Then system (16) is exponential stable.

Proof. The inequality in the condition of Theorem 2 implies that the norm ||Q}|| of the operator
Q) is less than one. In this case there exists the inverse operator (I — Q)™ : L3, — L3, and Z =
(I-Q)'F = (I+Q+ Q>+ ..)F. Itis clear that || Z|| 5 < ﬁ\QHHF‘ |15, It means that all components
of the solution-vector Z of system (21) are bounded. The Cauchy matrix of system (16) satisfies the
exponential estimate i.e., there exist such positive N, M that

]C,-j(t,s)‘ < Ne M=) 0 <5<t < 0.

Then all components of the solution-vector X(t) of system (17) are bounded, according to
representation (19). The exponential stability of the homogeneous system

X'(t) = AX(t) + AB(t)X(t)
follows now from Bohl-Perron theorem (see, for example, [11] p. 500, [12] p. 93). O
Example 1. Substituting the values from Remark 1 and setting k = 4,b = 1 we obtain
Q1 < 327.0253788, (r < 0.000001437277837, Q3 < 1.154699764, Q4 =0, Qs < 0.5773500802.

The inequality 327.0253788 - Ab* < 1 implies the inequality max;<j<s {|Q;|} < 1.
Thus if, according to Theorem 2 Ab* < 0.003057866651, then the system (16) is exponentially stable.

t 5
Let us estimate ||Q)|| for (a; —k)* = 4b. Denoting Pj = esssup,5o [ ¥ ‘(AB (t)C(t,s))
- 0 i=1

ij ds,

we obtain
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PoaPss—PosPaa | 2 | Boa(Bo1—Pss)—Pos(Ba1—Pza) 44 2
P, = Ab* B31P1sPoa | lagtk| B31B52P24P15 |[a2—k2| © las+k]
4B |1y 11
P1sPas | [as|  |Bis| lar—az]
_ * Baa 2 B31—Ba4 4 2 11
Py = Ab { BoaBai | |as+k| T | B1PasPs2 {|aﬁk2| T aﬁ-k} + [Boal |a5|] 4
(23)
— * |1 2 1 4 2
Py = Ab {ﬁ31| [as K T TBarpea] {|aﬁ—k2| + |ﬂ4+k|H !
Py=0,
— # 1 | _4 4 2
Ps = Ab o {|ﬂgkz| + ﬂ4+k]'
Theorem 3. Let the assumption of Theorem 1 be fulfilled, (a4—k)2 = 4b and the inequality

maxi<j<s {|Pj|} < 1be true. Then system (16) is exponential stable.

The proof of Theorem 3 repeats the proof of Theorem 2.

Example 2. Substituting the values from Remark 1 and setting k = 1,b = 0.249999902, we obtain
the inequalities

P, < 4.735918812 - 1013, P, < 2.047987177 -10°, P; < 9.999999608, P, =0, P5 < 2.999999216.

The inequality 4.735918812 - 10'3 - Ab* < 1 implies the inequality max;<j<s {|P;|} < 1.
Thus if Ab* < 2.111522684 - 1014, then the system (16) is exponentially stable, according to
Theorem 3.

t 5
Let us estimate || Q)| for (a4 — k)* — 4b < 0. Denoting R;j = esssup;~ of '21 ’(AB (t) C(t,s));;| ds
l:
we obtain
Ta-Yos | _2 4 Y24(2y35—a4+k)+5(aa—2a5+3k) | 1
R: = Ab* 15724 | [aa+k]| V32715724 lag+k|
! YT S U B W
715724 | |as] 715 | |a1—az]
_ «[ 1 2 ay—3k+2as| 1 1 L]
Ry =24b {\724| |ag+k| 724732 |ag+k| + [724] las| | 7
L (24)
— *77
Ry = Ab [732] [ag+k[”
Ry =0,
_ * 2 as—k 1
Rs = Ab [|ﬂ4+k| + 732 \a4+k\} :

Theorem 4. Let the assumption of Theorem 1 be fulfilled, (a4—k)2 < 4b and the inequality
max; <j<s { |[Rj|} < 1be true. Then system (16) is exponential stable.

The proof of Theorem 3 repeats the proof of Theorem 2.
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Example 3. Substituting the values from Remark 1 and setting k = 1,b = 2 we obtain
Ry < 133.8894553, R, < 6.173038374-1077, Rs < 1.511857554, Ry =0, Rs5 < 0.7559286288.

The inequality 133.8894553 - Ab* < 1 implies the inequality max;<j<s {|R;j|} < 1.
Thus if Ab* < 0.7468848071, then the system (16) is exponentially stable, according to Theorem 4.

5. Influence of Changes in the Right-Hand Side on Behavior of Solutions

Constructing system we neglect the influence of different factors that seem us nonessential.
The Cauchy matrix C (,s) allows us to estimate the influences of all these factors on the solution.
Consider the system
Y (t) =AY (t) = G (t) + AG (1), (25)

where the matrix A is defined by (8) is the matrix of the coefficients of system (7) and AG (t) € L3,
describes a change of the right-hand side. In the following assertion we estimate the difference
between the solution-vector Y (t) = col{yi(t), ..., y5(t)} of the system (25) and the solution X (t) =
col{x1(t), ..., x5(t)} of the system (7).

Theorem 5. Under the assumption of Theorem 1 the system (7) is exponentially stable and the
following inequality
Y (8) =X O < [ICIIAG®),

is true, where

t 5
cll = / 9 | ds, 1AG ()] = AG; ()],
|C|| = max (SUIOD 0};\@]( S)\) 5 [|AG ()] = maxesssup |AG (1)

1<i<5 > t>0

1Y (t) — X(t)|| = maxi<j<ssups>olyi(t) — x;(t)].

The proof follows from the representation of solution of system (7).
The estimates of ||C|| can be obtained through the estimates of the elements of the Cauchy matrix
obtained in Section 3.
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