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Abstract: The usual thermodynamic formalism is uniform in all directions and, therefore, it is not
adapted to study multi-dimensional functions with various directional behaviors. It is based on a
scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of
the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional
scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed
the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra,
either directly or via some Legendre transforms on either directional scaling function or anisotropic
scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed
optimal results for two large classes of examples of deterministic and random anisotropic self-similar
tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade
functions and fractional Brownian sheets.

Keywords: directional hölder regularity; anisotropic hölder regularity; directional scaling function;
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1. Introduction

Multifractal models were originally proposed to describe the intermittent behavior of
fully-developed turbulence [1,2] and also chaotic features in dynamical systems [3,4]. If T is the
time and v(T) is a the stream-wise component of the velocity of a turbulent flow at a given point,
Kolmogorov [5] expected a power law behavior:∫

R
|v(T + t)− v(T)|p dT ∼ |t|ηL(p) for small |t|, (1)

with ηL(p) = p/3. Kolmogorov and Oboukhov and [6,7] have refined this prediction into a
quadratic behavior.

Various experimental results and other models have confirm the nonlinear behavior.
Mandelbrot [2,8,9] has introduced multiplicative cascades for the dissipation of energy in turbulent
flows and thus has associated fractals to measures (or functions). Frisch and Parisi [10] conjectured
that ηL(p) describes the statistical repartition of the pointwise Lipschitz regularities. The Lipschitz
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spectrum of v is the map which associates to each 0 < H < 1 the Hausdorff dimension d(H) of the set
of times T where v has a given pointwise Lipschitz regularity hv(T) = H in the sense that:

|v(T + t)− v(T)| ∼ |t|H for small |t| . (2)

By heuristic arguments, the thermodynamic formalism [10] states that d(H) is given by the following
Legendre transform of ηL(p):

d(H) = inf
p
(Hp− ηL(p) + 1) . (3)

A similar formalism for measures has been derived; if µ is a probability measure on Rd, the notion of
pointwise Lipschitz regularity is replaced by the local regularity of µ defined as:

hµ(x) = lim inf
r→0

log µ(B(x, r))
log r

, (4)

(see [3,4,11–20]....). Note that if d = 1 and hµ(T) ∈ [0, 1), then h f (T) = hµ(T) for f (x) = µ((−∞, x]).
In [21], Daubechies and Lagarias proved the validity of the thermodynamic formalism (3) for

some refinement functions used in the construction of orthonormal wavelet bases in one dimension.
An alternative formulation of the Lipschitz scaling function ηL(p) in terms of continuous wavelet

transform Ca,b =
1
ad

∫
Rd

f (x)ψ(
x− b

a
) dx (a > 0 and b ∈ Rd) was proposed by Arneodo, Bacry and

Muzy in Rd with d = 1 (see [22–24]). The corresponding thermodynamic formalism was proved in [22]
for the primitive of a multinomial measure or a C1 perturbation of such a measure.

Jaffard [25] extended these formulae in Rd and showed the link between them via the function
space interpretation of the scaling function in terms of (isotropic) Sobolev or Besov-type norms.
Such spaces for smoothness index higher than 1 are also characterized by finite order differences.
The corresponding scaling function η(p) (given in (14)) is expected to give information for the
Hölder spectrum d(H) for any value of H. The scaling function η(p) is also characterized by either
isotropic wavelet bases (i.e., decompositions on tensor products of one-dimensional wavelets with
the same dilation factor 2j at scale j in all coordinate axes) or continuous wavelet transform (in fact,

η(p) = lim inf
a→0

log
∫
|Ca,b|p db

log a
).

The scope of the mathematical validity of the thermodynamic formalism,

d(H) = inf
p
(Hp− η(p) + d), (5)

has become an important issue. The general rule for a good multifractal formalism is to get optimal
upper bounds for the spectra. Optimality is obtained for examples that saturate the upper bound,
i.e., the upper bound becomes equality.

If the range P of p’s over which one computes the Legendre transform is chosen appropriately:

P = {p : η(p) > d} , (6)

then (5) yields an upper bound for all functions [25].
The optimality has been either studied or proved under self-similarity assumptions [21,22,25–31],

or for a class of particular random processes [32], or for specific functions [33,34], or even generically
in either Baire’s categories [35] or prevalence sense [36,37].

Alternatively, Kestener and Arneodo (see [38] and references therein) proposed, also for d = 2
and d = 3, different vectoriel wavelet transform formulas. They applied them to turbulent velocity
and vorticity 3D numerical data.
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Unfortunately, for d ≥ 2, the scaling functions ηL(p) and η(p) are uniform in all directions,
and, therefore, are not adapted to study images and multi-dimensional signals with various directional
behaviors. These behaviors are important for detection of edges, efficient image compression, texture
classification, etc., (see, for instance, [39–51] and the references therein). They also appear in partial
differential equations, pseudo-differential operators theory, approximation theory, etc. (for example, see [52]
or [53] and references therein). In that case, signals present anisotropies quantified through regularity
characteristics and features that strongly differ when measured in different directions [17,19,46,47,49,54–56].
Classes of functions that satisfy different scaling properties according the coordinate axes have been studied
in [29,42,44,46,49–51,53–55,57–72]. For an a priori prescribed anisotropy α = (α1, · · · , αd) with

0 < α1, · · · , αd and
d

∑
i=1

αi = d, such signals can be expanded in Triebel bases (i.e., tensor products of

one-dimensional wavelets that allow dilations factors about 2jα1, · · · , 2jαd in coordinate axes [69,70]). Alternatively,

we can also use anisotropic continuous wavelet transform
1
ad

∫
Rd

f(x)ψ(
x1− b1

aα1
, · · · ,

xd− bd
aαd

) dx (see [45,48]).

Signals where no a priori anisotropy is prescribed, can be expanded in DeVore, Konyagin, and Temlyakov
hyperbolic wavelet bases [73], i.e., tensor products of one-dimensional wavelets that allow different dilations factors
2j1, · · · , 2jd in coordinate axes (see also [39,74–76]. Hyperbolic wavelet bases contain all possible anisotropies.

Both Triebel and hyperbolic bases characterize anisotropic Besov spaces [39,70].
Let d ≥ 2 be a positive integer. Let e be a fixed vector in the unit sphere Sd−1. We will focus on

the following global and local directional behaviors:

• A natural directional Lipschitz scaling function ηL(p, e) of v in direction e can be given by:∫
Rd
|v(y + te)− v(y)|p dy ∼ |t|ηL(p,e) for small |t| . (7)

It can be extended to a directional scaling function η(p, e) that involves any finite order differences
in direction e (see Definition 1). It can be also restricted to a bounded domain (see Definition 3).

• A natural directional pointwise Lipschitz regularity hL(y, e) of v at y in direction e can be given by:

|v(y + te)− v(y)| ∼ |t|hL(y,e) for small |t| . (8)

It can be extended to a directional pointwise Hölder regularity h(y, e) (see Definition 5).

In this paper, we want to understand how singularities given by directional pointwise Hölder
regularities fluctuate from point to point for a fixed direction e. These singularities may share a
given value on a fractal set. One wishes to compute the Hausdorff dimension of this set. One also
wishes to derive this size from global quantities extracted from the signal, given by either a directional
scaling function or anisotropic scaling functions. Firstly, we prove wavelet criteria for the directional
scaling function η(p, e) (see Section 1–3). Secondly, we perform directional multifractal formalism
(see Section 4–6), i.e., we compute or estimate directional Hölder spectra either directly or via some
Legendre transforms on either directional scaling function or anisotropies scaling functions.
Two types of results will be performed:

• We will obtain general upper bounds for the directional Hölder spectra.
• We will show optimal results for two large classes of examples of deterministic and random

anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in
images (see [50]): Sierpinski cascade functions introduced by the first author in [29] and fractional
Brownian sheets introduced by both Kamont in [67] and Pesquet-Popesu and Lévy-Véhel in [77],
and revisited by Ayache, Léger, and Pontier [78] for extra properties.

Note that the heuristic classical arguments from which the thermodynamic formalism for
pointwise Lipschitz regularity was derived (see, for example, [25], pp. 947–948) cannot be applied
to the directional pointwise Lipschitz regularity; near a point y such that h(y) = H, we have
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|v(y + t) − v(y)| ∼ |t|H in a cube of radius |t|. There are about |t|−d(H) such cubes, so that the

total contribution to
∫
Rd
|v(y + t)− v(y)|p dy is |t|Hp+d−d(H). It follows that ηL(p) = inf

H
(Hp− d(H) + d).

If d(H) is concave, it is recovered by an inverse Legendre transform formula which yields
d(H) = inf

p
(Hp− ηL(p) + d). In the context of directional pointwise Lipschitz regularity, we want to

calculate the contribution of critical directional pointwise Lipschitz regularity of order H in

direction e to the integral
∫
Rd
|v(y + te)− v(y)|p dy: near a point y such that h(y, e) = H, we have

|v(y + te) − v(y)| ∼ |t|H in a small segment of length |t|. So, we cannot pursue the above
heuristic arguments.

To overcome this inconvenience, we will use a criterion of directional pointwise Hölder regularity
h(y, e) in terms of rapid decay of highly oriented multi-scaled wavelet coefficients. Actually, h(y, e)
is related to anisotropic pointwise Hölder regularities hα(y), for all anisotropies α (see [43,44]).
The anisotropic pointwise regularity hα(y) was already introduced in [29] and characterized with
either anisotropic continuous wavelets or in Triebel bases [43,44].

Alternatively, we will use a characterization of directional pointwise Lipschitz regularity obtained
in [58] directly (i.e., without passing through anisotropies) in terms of decay conditions for the
coefficients of the expansion in the hyperbolic Schauder basis.

Note that partial characterizations for the directional pointwise Hölder regularity have been
obtained by Sampo and Sumetkijakan [51,79,80] (respective to Jaffard [48]), when using parabolic basis,
i.e., curvelets and Hart-Smith transform (respective to the anisotropic Gabor-wavelet transform).

Note that other directional behaviors have been studied. Donoho [81], Guo, and Labate [82]
have used wedgelets and shearlets for the detection of discontinuities along smooth edges. Candes,
Donoho [83], and Mallat [84] have used wavelet bases elongated in particular directions (ridgelets
and bandelets) to deal with singularities along lines, along hyperplanes, etc. Fell, Führ, and
Voigtlaender [85] characterized the wavefront set in terms of rapid continuous wavelet decay, for a
large variety of dilation groups. For the shearlet groups single wavelets suffice, whereas similitude
and diagonal groups need suitable families of wavelets. Recently, by using the harmonic wavelet,
Sun, Leng, and Cattani [86] constructed a new multilevel system in the Fourier domain, which has
the circular shape. This new system is more suitable for the distribution of general images in the
Fourier domain.

In the next section, we first give the definition of the directional scaling function η(p, e) in terms of
directional Sobolev or Besov spaces (expressed by finite order differences) to which v belongs. We then
make the connection between directional scaling function and anisotropic scaling functions analyzed
in anisotropic function spaces (see Theorem 1).

In Section 3, using the characterization of the anisotropic scaling function in Triebel wavelet
bases [69,70], we deduce a criterion of directional scaling function in these bases (see Theorem 2).
Then, using the characterization of the anisotropic scaling function in hyperbolic wavelet bases [39],
we deduce a criterion of directional scaling function in these bases (see Theorem 3). Finally, using a
result of Kamont [87], we deduce a criterion of directional Lipschitz scaling function in hyperbolic
Schauder bases without passing through anisotropies (see Theorem 4).

In Section 4, we recall the connection between both directional and anisotropic Hölder regularities
(see Proposition 9). We first deduce a general upper bound for the directional Hölder spectrum by
anisotropic Hölder spectra (i.e., Hausdorff dimension of anisotropic Hölder sets) (see Theorem 5).
Note that in [58], we characterized directional pointwise Lipschitz regularity in terms of decay
conditions for the coefficients of the expansion of f in the hyperbolic basis of tensor products of
Schauder functions, but we do not yet succeed to deduce a general upper bound for the directional
Lipschitz spectrum. We will instead recall a result of [59] in which we adapted the notion of Hausdorff
dimension to the anisotropy, we used a criterion of [43] for anisotropic pointwise regularity in terms
of conditions on Triebel wavelet coefficients and deduced a general upper bound for the adapted
anisotropic Hölder spectrum by means a Legendre transform of the anisotropic scaling function.
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Both this upper bound and Theorem 5 yield a general upper bound for the directional spectrum
(see Theorem 6).

In Section 5, we apply Theorem 4 for fractional Brownian sheets to show that unlike the
Lipschitz scaling function ηL(p) and the Lipschitz spectum d(H) which are uniform in all directions,
the directional scaling function ηL(p, e) and the directional spectrum d(H, e) are tools that detect
directional behaviors (see Theorems 7 and 8). We also prove that if the corresponding appropriate
range P of p’s over which one will computes the Legendre transform is:

P = {p ≥ 1 : ηL(p) > 1} = {p ≥ 1 : ηL(p, ei) > 1 ∀ i ∈ {1, · · · , d}} (9)

then inf
p∈P

(Hp − ηL(p, e) + 1) provides a common directional Lipschitz scaling based directional

thermodynamic formalism for these examples (see Theorem 8).
In Section 6, we apply Theorem 4 for Sierpinski cascade functions to show that the directional

scaling function ηL(p, e) and the directional spectrum d(H, e) are tools that detect directional
behaviors. We also show that contrary to ηL(p, e), the directional spectrum d(H, e) depends on
the geometric disposition of the chosen contractions for each cascade function. We also provide non
common directional Lipschitz scaling based directional thermodynamic formalisms for these examples
(see Theorems 9 and 11). These formalisms depend on the geometric disposition of contractions for each
cascade function. Nevertheless, all obtained formalisms share the same corresponding appropriate
range P of p’s over which one will compute the Legendre transform given in (9). Moreover, we show
the optimality of Theorem 6 for Sierpinski cascade functions corresponding to a large class of geometric
disposition of contractions (see Theorem 12). Finally, we modify the notion of the Hausdorff dimension
to provide a new common directional Lipschitz scaling based directional thermodynamic formalism
for all Sierpinski cascade functions (see Theorem 13).

Finally Section 7 motivates the anisotropic cascade model on the physics side.

2. Directional Scaling Function and Its Connection with Anisotropic Scaling Functions

2.1. Directional Scaling Function

For the definitions of Besov spaces stated in this section, we refer the reader to [69]. Let d ≥ 2
be a positive integer. Let e be a fixed vector in the unit sphere Sd−1. For t ∈ R and y ∈ Rd, define the
difference ∆t,e f in direction e by the standard formula:

∆t,e f (y) = f (y + te)− f (y) . (10)

Define the iterated differences in direction e inductively by

∆1
t,e f = ∆t,e f and ∆n+1

t,e f = ∆1
t,e(∆

n
t,e f ) .

Definition 1. Let 0 < s < M and M ∈ N, 1 ≤ p < ∞ and f ∈ Lp(Rd).
We say that f ∈ Bs

p(Rd, e) if there exists C > 0 such that:

∀ 0 < t ≤ 1
∫
Rd
|∆M

t,e f (y)|p dy ≤ C|t|sp . (11)

Define the directional scaling function η(p, e) of f in direction e by:

η(p, e) = sup{sp : f ∈ Bs
p(Rd, e)} . (12)
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We say that f belongs to the usual isotropic Besov space Bs
p,∞(Rd) (we will ignore ∞ and write Bs

p(Rd)) if there
exists C > 0 such that:

∀ e ∈ Sd−1 ∀ 0 < t ≤ 1
∫
Rd
|∆M

t,e f (y)|p dy ≤ C|t|sp . (13)

Define the scaling function η(p) of f by:

η(p) = sup{sp : f ∈ Bs
p(Rd)} . (14)

Anisotropic Besov spaces were introduced for the study of semi-elliptic pseudo-differential
operators whose symbols have different degrees of smoothness along different directions (see [52];
see also [53] and references therein, for a recent use of such spaces for optimal regularity results for the
heat equation).

Definition 2. Let 1 ≤ p < ∞. Denote by D the set {1, · · · , d}. For i ∈ D, let Mi ∈ N, 0 < si < Mi and
ei = (δ1,i, · · · , δd,i) denotes the i-th coordinate vector in Rd. The so-called classical anisotropic Besov space

B(s1,··· ,sd)
p (Rd) is defined as

B(s1,··· ,sd)
p (Rd) =

⋂
i∈D

Bsi
p (Rd, ei) .

Remark 1. When s1, · · · , sd = s, the space B(s1,··· ,sd)
p (Rd) coincides with Bs

p(Rd).

We will be interested in the characterization of η(p, e) in terms of decay conditions for a structure
function of the coefficients of the expansion of f in either Triebel anisotropic wavelet bases [69,70]
(see Section 3), or hyperbolic wavelet bases [68,73–76] (see Section 4). Without any loss of generality,
we can assume that e = e1, because we can take coordinates on an orthonormal basis B of Rd that
starts with e. Using the partial ordering property,

B(s1,··· ,sd)
p (Rd) ⊂ B

(s′1,··· ,s′d)
p (Rd) ∀ s′i ≤ si ∀ i ∈ D , (15)

we introduce the following substitute for η(p, e),

η̆(p, e) = sup
{

s1 p : ∃0 < ε ≤ s1 f ∈ B(s1,ε,··· ,ε)
p (Rd)

}
. (16)

We obtain the following result.

Proposition 1. 1. If η(p, e) = 0 then η̆(p, e) = 0.
2. We have always:

η̆(p, e) ≤ η(p, e) . (17)

3. If η(p) > 0 then η̆(p, e) = η(p, e).

Proof. Both first and second points follow directly from Definition 2.

Assume that η(p) > 0, then f ∈ B(δ,··· ,δ)
p (Rd) for 0 < pδ < η(p). Clearly, f ∈ Bδ

p(Rd, ei) for all

i ∈ D. Let pβ1 < η(p, e). Since f ∈ Bβ1
p (Rd, e), then Definition 2 and the partial ordering property (15)

yield the third point. �
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2.2. Connection Between the Directional Scaling Function and Anisotropic Scaling Functions

Space B(s1,··· ,sd)
p (Rd) is related to the anisotropic Besov space Bŝ,(α1,...,αd)

p,∞ (Rd) introduced in [60,61]
using an anisotropic Littlewood Paley analysis. We will drop ∞. Let α = (α1, . . . , αd) ∈ Rd be an
anisotropy, i.e.,

α1 > 0, · · · , αd > 0 and ∑
i∈D

αi = d . (18)

For r > 0 and x = (x1, . . . , xd) ∈ Rd, we define the anisotropic map:

rαx = (rα1 x1, . . . , rαd xd) . (19)

Define the mean smoothness ŝ of (s1, · · · , sd) and the anisotropic indices by:

1
ŝ
=

1
d ∑

i∈D

1
si

and αi =
ŝ
si

. (20)

Then,
B(s1,··· ,sd)

p (Rd) = Bŝ,α
p (Rd) . (21)

If s1, · · · , sd = s then ŝ = s and α is the isotropy (1, . . . , 1). Thus,

B(s,··· ,s)
p (Rd) = Bs

p(Rd) = Bs,(1,...,1)
p (Rd) . (22)

For a fixed anisotropy α, define the anisotropic scaling function by:

ηα(p) = sup
{

τp : f ∈ Bτ,α
p (Rd)

}
. (23)

Clearly, using relation (21), the substitute η̆(p, e) for η(p, e) given in (16) satisfies the following result.

Theorem 1. Let B denotes any orthonormal basis of Rd starting with e. Let Ω be the set of all anisotropies α

satisfying (18) and α2 = · · · = αd. Then:

η̆(p, e) = sup
α∈Ω

(
ηα(p)

α1

)
. (24)

If η(p) > 0 then:

η(p, e) = sup
α∈Ω

(
ηα(p)

α1

)
. (25)

3. Criteria of Directional Scaling Function

3.1. Criterion of Directional Scaling Function in Triebel Wavelet Bases

We will use Theorem 1 to characterize the directional scaling function η(p, e) in Triebel anisotropic
wavelet bases [69,70].

Triebel anisotropic wavelets characterize anisotropic Besov spaces; if ψ−1 and ψ1 are the
Lemarié-Meyer [88,89] (respective to Daubechies [90]) father and mother wavelets in the Schwartz class
(respective to compactly supported and finitely smooth with a large enough smoothness), such that all

moments (respective to a large enough finite number of moments) of ψ1 vanish,
∫
R

ψ−1(x)dx = 1 and

the collection
(

ψ−1(x− k)
)

k∈Z
and

(
2j/2ψ1(2jx− k)

)
j∈N0,k∈Z

is an orthonormal basis of L2(R). Let α
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an anisotropy as in (18). For j ∈ N0, let Ij,α be the set of pairs (G, l) where G = (G1, . . . , Gd) ∈ {−1, 1}d

such that at least one component Gi is −1 and l = (l1, . . . , ld) ∈ Nd
0 where:

li = [jαi] if Gi = −1, (26)

[jαi] ≤ li < [(j + 1)αi] if Gi = 1 and [(j + 1)αi] > [jαi], (27)

and

li = [jαi] if Gi = 1 and [(j + 1)αi] = [jαi]. (28)

(Clearly, in the isotropic setting α = (1, . . . , 1) and l = (j, . . . , j)).
The cardinality of Ij,α is bounded independently of j, more precisely:

1 ≤ ]Ij,α ≤ (2d − 1) ∏
i∈D

(2 + αi). (29)

The following proposition is given in [69,70].

Proposition 2. For all x = (x1, . . . , xd) ∈ Rd and all k = (k1, . . . , kd) ∈ Zd, we put:

Ψ−1,··· ,−1,k(x) := ∏
i∈D

ψ−1(xi − ki), (30)

and:
Ψ(G,l)

j,k,α (x) = ∏
i∈D

ψGi (2
li xi − ki) . (31)

Set |l| := ∑
i∈D

li. The collection of the union of (Ψ−1,··· ,−1,k) for k ∈ Zd and (2|l|/2 Ψ(G,l)
j,k,α ) for j ∈ N0,

(G, l) ∈ Ij,α and k ∈ Zd, is then an orthonormal basis of L2(Rd). Thus any function f ∈ L2(Rd) can be
written as:

f (x) = ∑
k∈Zd

c−1,··· ,−1,k Ψ−1,··· ,−1,k(x), (32)

+ ∑
j∈N0

∑
k∈Zd

∑
(G,l)∈Ij,α

c(G,l)
j,k,α Ψ(G,l)

j,k,α (x), (33)

with:
c−1,··· ,−1,k =

∫
Rd

f (x)Ψ−1,··· ,−1,k(x) dx , (34)

and:
c(G,l)

j,k,α = 2|l|
∫
Rd

f (x)Ψ(G,l)
j,k,α (x) dx . (35)

The following result was obtained in [69,70].

Proposition 3. Let p > 0 and s ∈ R. Then, f ∈ Bs,α
p (Rd) if and only if:

sup
j∈N0

2(sp−d)j ∑
k∈Zd

∑
(G,l)∈Ij,α

∣∣∣c(G,l)
j,k,α

∣∣∣p < ∞ . (36)

Using (25), we deduce the following theorem.
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Theorem 2. The anisotropic Besov exponent is given by:

ηα(p) = lim inf
j→∞

log

2−dj ∑
k∈Zd

∑
(G,l)∈Ij,α

|c(G,l)
j,k,α |

p


log(2−j)

. (37)

Let B and Ω be as in Theorem 1. If η(p) > 0 then:

η(p, e) = sup
α∈Ω

lim inf
j→∞

log

2−dj ∑
k∈Zd

∑
(G,l)∈Ij,α

|c(G,l)
j,k,α |

p


log(2−jα1)

 . (38)

3.2. Criterion of Directional Scaling Function in Hyperbolic Wavelet Bases

We will use Theorem 1 to characterize the directional scaling function η(p, e) in hyperbolic wavelet
bases [68,73–76]. As in [39], without any loss of generality take d = 2. For x = (x1, x2) ∈ R2 and
k = (k1, k2) ∈ Z2, we put Ψ−1,−1,k(x) as in (30) for d = 2,

Ψj1,j2,k(x) = ψ1(2j1 x1 − k1)ψ1(2j2 x2 − k2),

Ψj1,−1,k(x) = ψ1(2j1 x1 − k1)ψ−1(x2 − k2),

Ψ−1,j2,k(x) = ψ−1(x1 − k1)ψ1(2j2 x2 − k2).

The collection of the union of {Ψ−1,−1,k : k ∈ Z2}, {2(j1+j2)/2 Ψj1,j2,k : (j1, j2) ∈ N2
0, k ∈ Z2},

{2j1/2 Ψj1,−1,k : j1 ∈ N0, k ∈ Z2}, and {2j2/2 Ψ−1,j2,k : j2 ∈ N0, k ∈ Z2}, is then an orthonormal basis
of L2(R2). Thus any function f ∈ L2(R2) can be written as:

f (x) = ∑
k∈Z2

c−1,−1,k Ψ−1,−1,k(x) + ∑
(j1,j2)∈N2

0

∑
k∈Z2

cj1,j2,kΨj1,j2,k(x), (39)

+ ∑
j1∈N0

∑
k∈Z2

cj1,−1,kΨj1,−1,k(x) + ∑
j2∈N0

∑
k∈Z2

c−1,j2,kΨ−1,j2,k(x), (40)

with c−1,−1,k as in (34) for d = 2,

cj1,j2,k = 2(j1+j2)
∫
R2

f (x)Ψj1,j2,k(x) dx , (41)

cj1,−1,k = 2j1
∫
R2

f (x)Ψj1,−1,k(x) dx, (42)

and:
c−1,j2,k = 2j2

∫
R2

f (x)Ψ−1,j2,k(x) dx . (43)

Let (α1, α2) an anisotropy as in (18) (with d = 2). For j ∈ N0, set:

Γj(α1, α2) = Γh,l
j (α1, α2) ∪ Γl,h

j (α1, α2) ∪ Γh,h
j (α1, α2), (44)

with

Γh,h
j (α1, α2) =

2

∏
i=1
{[(j− 1)αi]− 1, · · · , [jαi] + 1}, (45)

Γh,l
j (α1, α2) = {[(j− 1)α1]− 1, · · · , [jα1] + 1} × {0, · · · , [(j− 1)α2]− 1}, (46)
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and
Γl,h

j (α1, α2) = {0, · · · , [(j− 1)α1]− 1} × {[(j− 1)α2]− 1, · · · , [jα2] + 1} . (47)

The following result was obtained in [39].

Proposition 4. Let p > 0 and s ∈ R. Then, f ∈ Bs,(α1,α2)
p (R2) if and only if:

sup
j∈N0

sup
(j1,j2)∈Γj(α1,α2)

2spj−(j1+j2) ∑
k∈Z2

∣∣∣cj1,j2,k

∣∣∣p < ∞ . (48)

Using (25), we deduce the following theorem.

Theorem 3. The anisotropic Besov exponent is given by:

η(α1,α2)
(p) = lim inf

j→∞ , (j1,j2)∈Γj(α1,α2)

log

(
2−(j1+j2) ∑

k∈Z2

∣∣∣cj1,j2,k

∣∣∣p)
log(2−j)

. (49)

Let B and Ω be as in Theorem 1. If η(p) > 0 then:

η(p, e) = sup
(α1,α2)∈Ω

 lim inf
j→∞ , (j1,j2)∈Γj(α1,α2)

log

(
2−(j1+j2) ∑

k∈Z2

∣∣∣cj1,j2,k

∣∣∣p)
log(2−α1 j)

 . (50)

3.3. Criterion of Directional Lipschitz Scaling Function of f on Hyperbolic Schauder Bases

We will characterize the directional Lipschitz scaling function restricted to a bounded domain on
hyperbolic Schauder functions without passing through anisotropies as done previously. Without any
loss of generality, we will work on the unit cube Id. For this purpose we have to adapt the difference
∆t,e f in direction e by the standard formula

∆t,e f (y) =
{

f (y + te)− f (y) if y + te ∈ Id

0 if y + te /∈ Id .
(51)

Definition 3. Let 0 < s < 1, 1 ≤ p < ∞ and f ∈ Lp(Id). We say that f ∈ Lips
p(Id, e) if there exists C > 0

such that:
∀ 0 < t ≤ 1

∫
Id
|∆t,e f (y)|p dy ≤ C|t|sp . (52)

Define the directional Lipschitz scaling function of f in direction e by:

ηL(p, e) = p sup{0 < s < 1 : f ∈ Lips
p(Id, e)} . (53)

We say that f ∈ Lips
p(Id) if there exists C > 0 such that:

∀ e ∈ Sd−1 ∀ 0 < t ≤ 1
∫

Id
|∆t,e f (y)|p dy ≤ C|t|sp . (54)

Define the Lipschitz scaling function of f by:

ηL(p) = p sup{0 < s < 1 : f ∈ Lips
p(Id)} . (55)
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Remark 2. Fix 1 ≤ p < ∞. As in Bonami and Estrade [55], using triangular inequality, we can prove that
if there exists e0 such that 0 < ηL(p, e0) < p then the map e 7→ ηL(p, e) takes at most d different values.
Moreover, it is constant except, perhaps, on the intersection of unit sphere Sd−1 with a subspace of dimension at
most d− 1 where it may take larger values. Therefore,

ηL(p) = min
e∈Sd−1

ηL(p, e) = min
i∈D

ηL(p, ei) . (56)

Since we will use a Kamont result [67], we follow the same notations. Let ei and D be
as in Definition 2. Write ∆t,i f instead of ∆t,ei f . Denote by 0 and 1, respectively, the vectors
(0, · · · , 0) and (1, · · · , 1) in Rd. Let a = (a1, · · · , ad) and b = (b1, · · · , bd) be two vectors of Rd.
Put |a| = |a1|+ · · ·+ |ad|. If A ⊂ D, put a(A) = (ã1, · · · , ãd) where ãi = ai if i ∈ A, and ãi = 0 if
i /∈ A. Write a ≤ b if ai ≤ bi for all i ∈ D, and a < b if ai < bi for all i ∈ D. Finally, write ab = ∏

i∈D
abi

i .

For h = (h1, · · · , hd) ∈ Rd and A = {i1, · · · , ik} ⊂ D, set:

∆h,A f = ∆hi1
,i1 ◦ · · · ◦ ∆hik

,ik f . (57)

Clearly,
∆hi ,i ◦ ∆hj ,j f = ∆hj ,j ◦ ∆hi ,i f . (58)

For f ∈ Lp(Id), define:

ωp,A( f , t) = sup
0<h≤t

||∆h,A f ||p for t ∈ Rd, 0 < t ≤ 1 . (59)

Remark 3. Clearly, f ∈ Lipsi
p (Id, ei) is equivalent to ωp,{i}( f , t) = O(tsi

i ).

Let 0 < (s1, · · · , sd) < 1. For t = (t1, · · · , td), define:

ω(s1,··· ,sd)(t) = ∏
i∈D

tsi
i (60)

and
ω(s1,··· ,sd),

1
2 (t) = (∏

i∈D
tsi
i ) (1− ∑

i∈D
log(ti))

1/2 . (61)

For a function g given on Id, A ⊂ D, and t ∈ Id, put:

g(t; A) = g(t(A) + 1(D \ A)) . (62)

Set:
D∗ = {A ⊂ D : A 6= ∅} . (63)

In [67], Kamont considered the following spaces described in terms of moduli of smoothness in
the Lp-norm:

Lip(s1,··· ,sd)
p (Id) = { f ∈ Lp(Id) : ∀A ∈ D∗ ωp,A( f , t) = O(ω(s1,··· ,sd)(t; A))} , (64)

Lip(s1,··· ,sd),
1
2

p (Id) = { f ∈ Lp(Id) : ∀A ∈ D∗ ωp,A( f , t) = O(ω(s1,··· ,sd),
1
2 (t; A))}, (65)

and

lip(s1,··· ,sd),
1
2

p (Id) = { f ∈ Lip(s1,··· ,sd),
1
2

p (Id) : ∀A ∈ D∗ ωp,A( f , t) = o(ω(s1,··· ,sd),
1
2 (t; A))}, (66)

where O(t(A)) and o(t(A)) refer to min(ti : i ∈ A)→ 0.
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The following embeddings hold.

Proposition 5. 1.
Lip(s1,··· ,sd)

p (Id) ⊂
⋂

i∈D
Lipsi

p (Id, ei) . (67)

2. ⋂
i∈D

Lipsi
p (Id, ei) ⊂ Lip(θ1s1,··· ,θdsd)

p (Id) ∀ 0 < ` = (θ1, · · · , θd) with |`| ≤ 1 . (68)

Proof of Proposition 5:

1. If f ∈ Lip(s1,··· ,sd)
p (Id), then ωp,{i}( f , t) = O(tsi

i ) for all i ∈ D. The result follows from Remark 3.
2. Conversely, assume that f ∈ Lipsi

p (Id, ei) for all i ∈ D. Let A ⊂ D be non-empty. Write
A = {i1, · · · , ik}, we have ∆h,A f = ∆hi1

,i1 g where g = ∆hi2 ,i2 ◦ · · · ◦ ∆hik
,ik f . Since f ∈ Lipsi

p (Id, ei)

and g is a linear combination of translated copies of f , then ωp,A( f , t) = O(t
si1
i1
). Similarly, using

property (58), we have ωp,A( f , t) = O(t
sil
il
) for all 2 ≤ l ≤ k. On the other hand, since f ∈ Lp(Id)

then ωA( f , t) = O(1) for all k + 1 ≤ l ≤ d. Therefore, (68) holds. �

The following embeddings hold too.

Proposition 6. 1. We have Lip(s1,··· ,sd)
p (Id) ⊂ Lip(s1,··· ,sd),

1
2

p (Id) and lip(s1,··· ,sd)
p (Id) ⊂ lip(s1,··· ,sd),

1
2

p (Id).

2. If (s′1, · · · , s′d) < (s1, · · · , sd) then Lip(s1,··· ,sd)
p (Id) ⊂ lip

(s′1,··· ,s′d)
p (Id).

3. If (s′1, · · · , s′d) < (s1, · · · , sd) then Lip(s1,··· ,sd),
1
2

p (Id) ⊂ Lip
(s′1,··· ,s′d)
p (Id).

Proof of Proposition 6:

1. The first point is a consequence of ω(s1,··· ,sd)(t) ≤ ω(s1,··· ,sd),
1
2 (t).

2. Let f ∈ Lip(s1,··· ,sd)
p (Id) and (s′1, · · · , s′d) < (s1, · · · , sd). We know from (69) that

f ∈ Lip
(s′1,··· ,s′d)
p (Id). Let A ∈ D∗. Since (s′1, · · · , s′d) < (s1, · · · , sd) then

ωA( f , t)

ω(s′1,··· ,s′d)(t; A)
≤ Cω(s1,··· ,sd)−(s′1,··· ,s′d)(t; A) = o(t(A)) .

Hence f ∈ lip
(s′1,··· ,s′d)
p (Id).

3. Let f ∈ Lip(s1,··· ,sd),
1
2

p (Id) and (s′1, · · · , s′d) < (s1, · · · , sd). Let A ∈ D∗. Since (s′1, · · · , s′d) <

(s1, · · · , sd) and t log t = o(1) when t goes to 0 then

ωA( f , t)

ω(s′1,··· ,s′d)(t; A)
≤ Cω(s1,··· ,sd)−(s′1,··· ,s′d)(t; A)(1− ∑

i∈A
log(ti))

1/2 = o(t(A)) .

It follows that f ∈ Lip
(s′1,··· ,s′d)
p (Id). �

We will characterize ηL(p, e) in terms of decay conditions for the coefficients of the expansion of f
in the basis of tensor products of Schauder functions. Without any loss of generality, the orthonormal
basis B (on which coordinates are considered) can start with e.
Using the partial ordering property

Lip(s1,··· ,sd)
p (Id) ⊂ Lip

(s′1,··· ,s′d)
p (Id) ∀ (s′1, · · · , s′d) ≤ (s1, · · · , sd) , (69)

we introduce the following definition as a substitute for ηL(p, e)

η̃L(p, e) = p sup
{

s1 ∈ (0, 1) : ∃0 < ε < 1 f ∈ Lip(s1,ε,··· ,ε)
p (Id)

}
. (70)
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We will show the following proposition.

Proposition 7. 1. If ηL(p, e) = 0 then η̃L(p, e) = 0.
2. We have always

η̃L(p, e) ≤ ηL(p, e) . (71)

3. If ηL(p) > 0 then η̃L(p, e) = ηL(p, e).

Proof of Proposition 7:
Both first and second results are consequences of the first part of Proposition 5.
Assume that ηL(p) > 0, then f ∈ Lipδ

p(Id) for 0 < pδ < ηL(p). Clearly, f ∈ Lipδ
p(Id, ei) for

all i ∈ D and ηL(p, e) ≥ pδ. Let ps1 < ηL(p, e). Since f ∈ Lips1
p (Id, e), then the second result in

Proposition 5 implies that f ∈ Lip((1−(d−1)θ)s1,θδ,··· ,θδ)
p (Id) for all 0 < θ ≤ 1

d− 1
. Letting θ tends to 0,

we obtain η̃L(p, e) ≥ ηL(p, e). �

In [67,87], Kamont characterized the space Lip(s1,··· ,sd)
p (Id) in terms of decay conditions for the

coefficients of the expansion of f in the basis of tensor products of Schauder functions.
Let {φk, k ≥ 0} be the family of Schauder functions on I, normed in L∞, i.e., φ0 = 1, φ1(t) = t,

and for k ≥ 2, k = 2j + n with j ≥ 0 and 1 ≤ n ≤ 2j, φk(t) = φ(2j+1t − 2n + 1) (with support
[(n− 1)2−j, n2−j]), where φ(t) = max(0, 1− |t|) (the so-called Schauder function).

In several dimensions, we consider the family {Φk, k ≥ 0} of tensor products of Schauder
functions, i.e., Φk(x) = φk1(x1) · · · φkd

(xd) for k = (k1, · · · , kd).
For j ∈ M = {−2,−1, 0, 1, 2, · · · }, let

Ñ−2 = {0}, Ñ−1 = {1}, and Ñj = {2j + n : n = 1, · · · , 2j} for j ≥ 0, (72)

and for a vector j = (j1, · · · , jd) we put

Ñj = Ñj1 × · · · Ñjd . (73)

Let for f ∈ C(Id), i ∈ D, x ∈ Id and k ≥ 0

ci,0( f )(x) = f (x− xiei) , ci,1( f )(x) = f (x + (1− xi)ei)− f (x− xiei) , (74)

and for k = 2j + n ∈ Ñj with j ≥ 0

ci,k( f )(x) = f (x + (
2n− 1
2j+1 − xi)ei)−

1
2
( f (x + (

n− 1
2j − xi)ei) + f (x + (

n
2j − xi)ei)). (75)

For k = (k1, · · · , kd) we put
Ck( f ) = c1,k1 ◦ · · · ◦ cd,kd

( f ) . (76)

Then for any f ∈ C(Id) we have
f = ∑

j∈Md
∑

k∈Ñj

Ck( f )Φk . (77)

In ∑
j∈Md

we assume the following order: for j = (jl , ..., jd) and j′ = (j′l , ..., j′d), if max(j1, ..., jd) <

max(j′1, ..., j′d), then j precedes j′.
For f given by (77) we put

τj,p( f ) = 2−|j|/p

 ∑
k∈Ñj

|Ck( f )|p
1/p

. (78)
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The following wavelet characterization of spaces Lip(s1,··· ,sd)
p (Id) is due to Kamont [67].

Proposition 8. Let:
tj = (2−max(j1,0), · · · , 2−max(jd ,0)) . (79)

Then, for (1/p, · · · , 1/p) < (s1, · · · , sd) < 1,

f ∈ Lip(s1,··· ,sd)
p (Id) ⇔ τj,p( f ) = O(ω(s1,··· ,sd)(tj)) as |j| → ∞ . (80)

Thanks to Proposition 7, the last result leads to the following characterization.

Theorem 4. Assume that ηL(p) > 0. If:

∀ i ∈ D lim inf
|j|→∞

log τj,p( f )

log(2−max(ji ,0))
> 1/p, (81)

then:

η̃L(p, ei) = ηL(p, ei) = p min

(
1, lim inf
|j|→∞

log τj,p( f )

log(2−max(ji ,0))

)
.

Remark 4. We will see that assumption (81) yields the appropriate range P given in (9) (thanks to (56)) for
the directional thermodynamic formalisms that we will find in Section 7 (respective to Section 8) for fractional
Brownian sheets (respective to Sierpinski cascade functions).

4. General Upper Bound for the Directional Hölder Spectrum

Let us first recall the notions of Hölder regularity, directional Hölder regularity and anisotropic
Hölder regularity.

Definition 4. Let h > 0 be non integer, y ∈ Rd and f : Rd → C. We say that f ∈ Ch(y) if there exists C > 0
and a polynomial Py of degree at most the integer part [h] of h such that in a neighborhood of y we have

| f (x)− Py(x)| ≤ C|x− y|h . (82)

The Hölder exponent (or regularity) of f at y is

h(y) = sup
{

h : f ∈ Ch(y)
}

.

We say that f ∈ Ch(Rd) if f ∈ L∞(Rd) and if (82) holds for any x and y in Rd with uniform constant C.

The Hölder (upper-Hölder) spectrum of f is the map which associates to each H the Hausdorff
dimension d(H) (respective to D(H)) of the set of points y where h(y) = H (respective to h(y) ≤ H).

Definition 5. Let h > 0 be non integer, y ∈ Rd and f : Rd → C. Let e ∈ Sd−1. We say that f ∈ Ch(y, e)
if there exists δ > 0, C > 0 and a polynomial Py of degree at most the integer part [h] of h such that for all
t ∈ (−δ, δ)

| f (y + te)− Py(y + te)| ≤ C|t|h . (83)

The directional Hölder exponent (or regularity) of f at y in direction e is

h(y, e) = sup
{

h : f ∈ Ch(y, e)
}

.
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We say that f ∈ Ch(Rd, e) if f ∈ L∞(Rd) and if (83) holds for any y ∈ Rd and t ∈ R with uniform constant C.

The directional Hölder (upper-Hölder) spectrum of f in direction e is the map which associates to
each H the Hausdorff dimension d(H, e) (respective to D(H, e)) of the set of points y where h(y, e) = H
(respective to. h(y, e) ≤ H).

In [44], we found a connection between both the notion of directional Hölder regularity and the
anisotropic version of Definition 4 (see [29,43]).

Let α ∈ Rd be an anisotropy as in (18). For x = (x1, . . . , xd) ∈ Rd, we set

|x|α = max(|x1|1/α1 , . . . , |xd|1/αd). (84)

The corresponding α-ball Rα(x, r) :=
{

y ∈ Rd : |x− y|α < r
}

of α-radius r centered on x is a rectangle
with sides parallel to the axes of coordinates, centered at x and with side-length 2rαi in the xi-direction.
If P = ∑

(i1,...,id)∈Nd
0

a(i1,...,id)x
i1
1 · · · x

id
d is a polynomial, define its α-homogeneous degree by

do
αP = max

{
∑
l∈D

αl il : a(i1,...,id) 6= 0

}
.

Definition 6. Let h > 0 and y ∈ Rd. A function f : Rd → C belongs to Ch
α(y) if there exist C > 0 and a

polynomial P of α-homogeneous degree smaller than h such that in a neighborhood of y

| f (x)− Py(x)| ≤ C|x− y|hα . (85)

The α-Hölder exponent of f at y is defined by:

hα(y) = sup
{

h : f ∈ Ch
α(y)

}
. (86)

In [44], we found a connection between both directional and anisotropic pointwise Hölder
exponents of f .

Proposition 9. Let B and Ω be as in Theorem 1. Then

h(x, e) = sup
α∈Ω

(
hα(x)

α1

)
. (87)

Proposition 9 yields the following general upper bound for the directional Hölder spectrum.

Theorem 5. Let B and Ω be as in Theorem 1. Then

D(H, e) ≤ inf
α∈Ω

dim
{

x ∈ Rd : hα(x) ≤ α1H
}

. (88)

Remark 5. In [58], we characterized directional pointwise Lipschitz regularity in terms of decay conditions
for the coefficients of the expansion of f in the hyperbolic basis of tensor products of Schauder functions (see
Section 8.2). Nevertheless, we do not yet deduce a general upper bound for the directional Lipschitz spectrum.

Let us now show how to use Theorem 5 in order to obtain a general upper bound for the directional
spectrum. In [29,43], we adapted the notion of Hausdorff dimension to the anisotropy α; if E ⊂ Rd, we
define its α-diameter to be |E|α := sup

x,y∈E
|x− y|α. By replacing in the definition of Hausdorff measure,

the usual notion of diameter by the α-diameter, we easily check (see [91]) that we get the following
notion of anisotropic dimension.
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Definition 7. Let E ⊂ Rd, ε > 0 and Rε the set of all coverings R = (En)n∈N of E by sets En of α-diameter
|En|α at most ε. Let

Mδ
ε,α(E) = inf

R∈Rε
∑

n∈N
|En|δα .

The δ-dimensional α-Hausdorff measure of E is

Mδ
α(E) = lim sup

ε→0
Mδ

ε,α(E).

The α-Hausdorff dimension of E is

dimα(E) = inf
{

δ : Mδ
α(E) = 0

}
= sup

{
δ : Mδ

α(E) = ∞
}

.

Note that we get the same value of dimα(E) if we use coverings R = (En)n∈N of E by rectangles
En with sides parallel to the axes of coordinates and with side-length 2εαi in the xi-direction.

In the isotropic case, |.|(1,...,1) is equivalent to the Euclidean norm on Rd and dim(1,...,1)(E) coincides
with dimE. But if α 6= (1, . . . , 1), then dimα(E) doesn’t necessarily coincide with dimE. Actually, if

αmin = min
i∈D

αi and αmax = max
i∈D

αi , (89)

then there exists C ≥ 1 such that

∀x ∈ Rd 1
C

min
{
|x|1/αmin , |x|1/αmax

}
≤ |x|α ≤ C max

{
|x|1/αmin , |x|1/αmax

}
. (90)

and
αmin dim(E) ≤ dimα(E) ≤ αmax dim(E) . (91)

Definition 8. The α-spectrum is:

dα(H) = dimα

{
x ∈ Rd : hα(x) = H

}
. (92)

The α-upper-spectrum is:
Dα(H) = dimα

{
x ∈ Rd : hα(x) ≤ H

}
. (93)

The following upper bound was proved in [59].

Proposition 10. If f is uniform Hölder on Rd in the sense that f ∈ Cε(Rd) for ε > 0, then:

Dα(H) ≤ inf
p≥pα

(Hp− ηα(p) + d), (94)

where ηα is the anisotropic scaling function of f given in (23) and pα satisfies

ηα(pα) = d . (95)

Consequently, we obtain the following result.

Theorem 6. Let B and Ω be as in Theorem 1. If f is uniform Hölder on Rd, then

D(H, e) ≤ inf
α∈Ω

1
αmin

inf
p≥pα

(α1Hp− ηα(p) + d) . (96)
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Proof. By (91)

D(H, e) ≤ inf
α∈Ω

1
αmin

Dα(α1H) .

Thus (94) yields (96). �

Remark 6. Let us come back to the optimality of (91). For that, we will consider a general anisotropic Sierpinski
carpet; let s and t be two integers with s ≤ t. We divide the unit square R = [0, 1]2 into a uniform grid of
rectangles of height 1/t and width 1/s. Choose A ⊂ {0, 1, . . . , s− 1}× {0, 1, . . . , t− 1}. For ω = (u, v) ∈ A,
the contraction Sω(x1, x2) =

( x1

s
+

u
s

,
x2

t
+

v
t

)
maps the unit square R into the rectangle:

Rω = [
u
s

,
u + 1

s
]× [

v
t

,
v + 1

t
]. (97)

The (general) Sierpinski carpet K (see [17,19,29]) and references therein) is the unique non-empty compact set
(see [16]) satisfying

K =
⋃

ω∈A
Sω(K). (98)

It is given by:

K = {x ∈ R : (Sω1 ◦ · · · ◦ Sωn)
−1(x) ∈

⋃
ω∈A

Rω ∀ω = (ω1, . . . , ωn) ∈ An}

=
⋂

n∈N
(
⋃

ω∈An

Rω)

where
Rω = (Sω1 ◦ · · · ◦ Sωn)(R) for ω = (ω1, . . . , ωn) .

Let σ =
log s
log t

and

(α1, α2) = (
2σ

1 + σ
,

2
1 + σ

) = (
2 log s
log(st)

,
2 log t
log s

) . (99)

By arguments similar to those of [15] pages 118–119, we can prove that dim(α1,α2)
(K) = 2

log a
log(st)

where a is

the cardinality of A, whereas dim(K) =

log(
s

∑
i=1

Nσ
i )

log s
where Ni is the number of selected rectangles in A from

the i-th column of the grid (see [15] page 129).
If s ≤ t then (αmin, αmax) = (α1, α2). By restricting ourselves to the two cases below, we will show that

the optimality of (91) may depend on the geometric arrangement of the chosen ω’s in A. Actually, the left-right
side of (91) is optimal in case1 and non optimal in case2 if s < t.

1. Case1: assume that each column of the grid contains at most one Rω, ω ∈ A. Then dimK =
log a
log s

.

Therefore, α1dimK = dim(α1,α2)
K.

2. Case2: assume that there is only one column containing all the Rω, ω ∈ A. Then dimK =
σ log a
log s

.

Therefore,
α2

2
dimK = dim(α1,α2)

K.

5. Fractional Brownian Sheets

We will apply Theorem 4 for fractional Brownian sheets to show that unlike the Lipschitz scaling
function ηL(p) and the Lipschitz spectum d(H) which are uniform in all directions, the directional
scaling function ηL(p, e) and the directional spectrum d(H, e) are tools that detect directional behaviors.
We also provide a directional thermodynamic formalism valid for all fractional Brownian sheets.
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Actually, we will prove that if the corresponding appropriate range P of p’s over which one will
computes the Legendre transform is given by (9), then inf

p∈P
(Hp− ηL(p, e) + 1) provides a common

directional Lipschitz scaling based directional thermodynamic formalism.

5.1. Computation of the Directional Scaling Function

The fractional Brownian sheet {B(H1,··· ,Hd)(y) : y = (y1, · · · , yd) ∈ Rd} was introduced by
Kamont in [67], then redefined by Ayache, Léger, and Pontier in [78] through its harmonizable
representation, for any (H1, · · · , Hd) ∈ (0, 1)d

B(H1,··· ,Hd)(y) =
∫
Rd ∏

i∈D
(eiyiξi − 1)|ξi|−Hi− 1

2 dŴ(ξ1,··· ,ξd)
, (100)

where Ŵ(ξ1,··· ,ξd)
is the Fourier transform of a Brownian measure W(ξ1,··· ,ξd)

on Rd.
Fractional Brownian Sheet has stationary rectangular increments and satisfies the following

anisotropic scaling relation

{B(H1,··· ,Hd)(a1y1, · · · , adyd)}y∈Rd = {(∏
i∈D

aHi
i ) B(H1,··· ,Hd)(y)}y∈Rd (same law) . (101)

In [67], Kamont proved that, if
1
p
< Hi < 1 for all i ∈ D, then with Probability 1, the restrictions

B(H1,··· ,Hd)

Id of realizations of B(H1,··· ,Hd) to Id satisfy

B(H1,··· ,Hd)

Id ∈ Lip(H1,··· ,Hd),
1
2

p (Id), (102)

and
B(H1,··· ,Hd)

Id /∈ lip(H1,··· ,Hd),
1
2

p (Id) . (103)

Put
Hmin = min(H1, · · · , Hd) . (104)

We will prove the following result.

Theorem 7. If
1
p
< Hi < 1 for all i ∈ D, then with Probability 1, B(H1,··· ,Hd)

Id satisfy

∀ i ∈ D ηL(p, ei) = pHi, (105)

and
ηL(p) = pHmin . (106)

Proof. Using the third point in Proposition 6, relation (102) implies that, with Probability 1

B(H1,··· ,Hd)

Id ∈ Lip(s1,··· ,sd)
p (Id) ∀(s1, · · · , sd) < (H1, · · · , Hd) . (107)

Using the second point in Proposition 6, relation (103) implies that, with Probability 1

B(H1,··· ,Hd)

Id /∈ Lip(s1,··· ,sd)
p (Id) ∀(s1, · · · , sd) > (H1, · · · , Hd) . (108)

Thanks to the first point in Proposition 5, relation (107) yields the lower bound in (106).
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The optimality of this lower bound cannot be deduced from (108). Nevertheless, the coefficients
of B(H1,··· ,Hd)

Id in the tensor product Schauder basis were obtained in [67]; in fact

B(H1,··· ,Hd)

Id = ∑
j∈Md

∑
k∈Ñj

CkΦk, (109)

where (Ck)k≥0 is a Gaussian sequence, with ECk = 0, and the variance given by the formula

E|Ck|2 = ∏
i∈D

aki
(110)

where
a0 = 0, a1 = 1 and aki

= (2−2Hi − 2−2)2−2ji Hi for ki ∈ Ñji ji ≥ 0 . (111)

The above optimality follows immediately from Theorem 4 and arguments similar to those
in [92] (p. 236), since both (102), the third result in Proposition 6 and the first result in Proposition 5
imply that ηL(p) ≥ pHmin > 0. The latest lower bound for ηL(p) turned out to be equality
thanks to (56). �

Remark 7. If the unit cube Id is replaced by any arbitrary cube Q ⊂ Rd then the same arguments applied to
the dilated and shifted field {ρ|(H1,··· ,Hd)|B(H1,··· ,Hd)(ρ−1t− c) : t ∈ Id}, (ρ > 0, c ∈ Rd) give the same result
as in Theorem 7.

5.2. Lipschitz and Directional Spectra and Thermodynamic Formalisms

We will now compute both Lipschitz spectrum d(H) and directional Lipschitz spectra d(H, e) for
B(H1,··· ,Hd)

Id . Let us first recall these notions.

Definition 9. Let f be a continuous function on Id (we write f ∈ C(Id)). Let y ∈ Id. Let 0 < H < 1. We say
that f ∈ CH(y) if there exists C > 0, such that:

| f (y + t)− f (y)| ≤ C|t|H ∀ y + t ∈ Id . (112)

The pointwise Lipschitz regularity of f at y is:

h(y) = sup{0 < H < 1 : f ∈ CH(y)} . (113)

Define the Lipschitz spectrum (respective to upper Lipschitz spectrum) of f as the function d(H) (respective to
D(H)) given by the Hausdorff dimension of the set of points y where h(y) = H (respective to h(y) ≤ H).
We say that f ∈ CH(Id), if there exists C > 0 such that

| f (y + t)− f (y)| ≤ C|t|H ∀ (y, y + t) ∈ (Id)2 . (114)

Definition 10. Let 0 < H < 1 and f ∈ C(Id). Let e ∈ Sd−1. Let y ∈ Id.
We say that f ∈ CH(y, e) if there exists C > 0 such that

| f (y + te)− f (y)| ≤ C|t|H ∀ y + te ∈ Id . (115)

The directional pointwise Lipschitz regularity of f at y in direction e is

h(y, e) = sup{0 < H < 1 : f ∈ CH(y, e)} . (116)
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Define the directional Lipschitz spectrum (respective to directional upper Lipschitz spectrum) of f in direction e
as the function d(H, e) (respective to D(H, e)) given by the Hausdorff dimension of the set of points y where
h(y, e) = H (respective to h(y, e) ≤ H).

The following theorem provides a common directional thermodynamic formalism for all fractional
Brownian sheets.

Theorem 8. With probability 1, both Lipschitz and upper Lipschitz spectra of the restrictions B(H1,··· ,Hd)

Id of
realizations of B(H1,··· ,Hd) are trivial and satisfy the following thermodynamic formalism

d(H) =

{
−∞ if H 6= Hmin
d if H = Hmin

= inf
p>1/Hmin

(Hp− ηL(p) + d) ∀ H ≤ Hmin , (117)

D(H) =

{
−∞ if H < Hmin
d if H ≥ Hmin

= inf
p>1/Hmin

(Hp− ηL(p) + d) ∀ H ≤ 1 . (118)

With probability 1, both directional Lipschitz and directional upper Lipschitz spectra of the
restrictions B(H1,··· ,Hd)

Id of realizations of B(H1,··· ,Hd) are trivial and satisfy the following directional
thermodynamic formalism

d(H, ei) =

{
−∞ if H 6= Hi
d if H = Hi

= inf
p>1/Hmin

(Hp− ηL(p, ei) + d) ∀ H ≤ Hi, (119)

and

D(H, ei) =

{
−∞ if H < Hi
d if H ≥ Hi

= inf
p>1/Hmin

(Hp− ηL(p, ei) + d) ∀ H ≤ 1 . (120)

Moreover, Remark 4 holds.

Proof. In [67], we have
B(H1,··· ,Hd)

Id ∈ CHmin(Id) . (121)

Let y = (y1, · · · , yd) ∈ Id. The unidimensional process X(x1) = B(H1,··· ,Hd)

Id (x1, y2, · · · , yd) is Gaussian,
self-similar, with stationary increments and has H1 as Hurst index. From the uniqueness of the
fractional Brownian motion with Hurst index H1, we deduce that h(y, e1) = H1. Similarly, we get
h(y, ei) = Hi for all i ∈ D. Using (121), we deduce that h(y) = Hmin. The rest of the proof is
straightforward. �

6. Sierpinski Cascade Functions

We will apply Theorem 4 for Sierpinski cascade functions to show that unlike the Lipschitz scaling
function ηL(p) and the Lipschitz spectum d(H) which are uniform in all directions, the directional
scaling function ηL(p, e) and the directional spectrum d(H, e) are tools that detect directional
behaviors. We also show that contrary to ηL(p, e), the directional spectrum d(H, e) depends on
the geometric disposition of the chosen contractions for each cascade function. We also provide non
common directional Lipschitz scaling based directional thermodynamic formalisms for these examples.
These formalisms depend on the geometric disposition of contractions for each cascade function.
Nevertheless, all obtained formalisms share the same corresponding appropriate range P of p’s over
which one will compute the Legendre transform given in (9). Moreover, we show the optimality of
Theorem 6 for Sierpinski cascade functions corresponding to a large class of geometric disposition
of contractions corresponding to case 1 described in Remark 6. Finally, we modify the notion of
the Hausdorff dimension to provide a new common directional Lipschitz scaling based directional
thermodynamic formalism for all Sierpinski cascade functions.
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Without any loss of generality, we take d = 2. A Sierpinski cascade function is a self-similar
function adapted to the subdivision A used for the construction of Sierpinski carpet K given in (98).
It is written as the superposition of similar anisotropic structures at different scales, reminiscent of
some possible modelization of turbulence or cascade models. In [29], we proved that some Sierpinski
cascade functions do not satisfy the thermodynamic formalism (5). Put g(x) = Λ(x1)Λ(x2) with

Λ(t) = min(t, 1− t) if t ∈ [0, 1] and 0 else. Clearly, Λ(t) =
1
2

Φ2(t).
The Sierpinski cascade function adapted to the subdivision A satisfies

∀ x ∈ R F(x) = ∑
ω∈A

λω F(S−1
ω (x)) + g(x). (122)

Define

|λ|max = max
ω∈A
|λω | , |λ|min = min

ω∈A
|λω | , Hmin = − log |λ|max

log t
and Hmax = − log |λ|min

log t
.

The following result was obtained in [29].

Proposition 11. Suppose that ∑
ω∈A
|λω | < st, then the series:

F(x) = g(x) +
∞

∑
n=1

∑
(ω1,...,ωn)∈An

λω1 · · · λωn g
(

S−1
ωn · · · S

−1
ω1

(x)
)

. (123)

is a unique solution in L1(R) for Equation (122).

If, furthermore,
1
t
< |λ|max < 1, then F ∈ CHmin(R) with 0 < Hmin < 1 .

Clearly, if ωl = (ul , vl) then

g
(

S−1
ωn · · · S

−1
ω1

(x)
)
= Λ(snx1 − sn−1u1 − · · · − sun−1 − un) Λ(tnx2 − tn−1v1 − · · · − tvn−1 − vn) .

In [29], we proved that unlike the spectrum d(H), the Lipschitz scaling function ηL(p) (given in (55))
does not depend on the geometrical arrangement of the chosen Rω , ω ∈ A, and, so, the multifractal
formalism d(H) = infp(Hp− ηL(p) + 2) may fail.

6.1. Computation of the Directional Lipschitz Scaling Function

Using Theorem 4 and Remark 2, we obtain the following result which shows that, unlike the
Lipschitz scaling function ηL(p) which is uniform in all directions, the directional scaling function
ηL(p, e) is a tool to detect directional behaviors.

Theorem 9. Let S and T be two positive integers. Assume that s = 2S and t = 2T and s ≤ t. Assume that
1
t
< |λ|max < 1.

Let 1 ≤ p < ∞. Set σ = S/T and τ(p) = −
log2( ∑

ω∈A
|λω |p)

S
. Let F be the Sierpinski cascade function

that corresponds to A.

• Suppose that s < t (i.e., σ < 1).
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– We have
t

sp−1 < ∑
ω∈A
|λω |p < s is equivalent to (1 < σ + 1 + στ(p) < p and 1 < 1 +

1
σ
+

τ(p) < p). In that case,

ηL(p, e1) = 1 +
1
σ
+ τ(p) , ηL(p, e2) = σ + 1 + στ(p) .

and
∀ e 6= ±e1 ηL(p, e) = σ + 1 + στ(p) = ηL(p) .

– We have
s

tp−1 < ∑
ω∈A
|λω |p < s and ∑

ω∈A
|λω |p ≤

t
sp−1 is equivalent to (1 < σ + 1 + στ(p) < p

and 1 +
1
σ
+ τ(p) ≥ p). In that case

ηL(p, e1) = p , ηL(p, e2) = σ + 1 + στ(p)

and
∀ e 6= ±e1 ηL(p, e) = σ + 1 + στ(p) = ηL(p) .

– In the case ∑
ω∈A
|λω |p ≤

s
tp−1 , we have ηL(p, e1) = ηL(p, e2) = p.

• Suppose that s = t (i.e., σ = 1).

– We have s
sp−1 < ∑

ω∈A
|λω |p < s is equivalent to 1 < 2 + τ(p) < p. In that case,

ηL(p, e1) = 2 + τ(p) and ηL(p, e2) = 2 + τ(p) .

– In the case where ∑
ω∈A
|λω |p ≤

s
sp−1 , we have 2 + τ(p) ≥ p, therefore,

ηL(p, e1) = ηL(p, e2) = p .

Proof. Of course, if
1
t
< |λ|max < 1, then by Proposition 11 F ∈ CHmin(R) with 0 < Hmin < 1 and, so,

ηL(p) > 0.
For j = (j1, j2) = (nS, nT), we have

τj,p( f ) = 2−n(S+T)/p

(
∑

ω∈A
|λω |p

)n/p

.

It follows that

log τj,p( f )
log(2−j1)

=
1
p

(
1 +

T
S
− 1

S
log2( ∑

ω∈A
|λω |p)

)
=

1
p

(
1 +

1
σ
+ τ(p)

)
.

and
log τj,p( f )
log(2−j2)

= σ
log τj,p( f )
log(2−j1)

=
1
p
(σ + 1 + στ(p)) .

In order to apply Theorem 4, we need that lim inf
|j|→∞

log τj,p( f )
log(2−ji )

> 1/p for every i = 1, 2. Clearly,

lim inf
|j|→∞

log τj,p( f )
log(2−j2)

> 1/p⇔ σ + 1 + στ(p) > 1⇔ τ(p) > −1⇔ ∑
ω∈A
|λω |p < s ,
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lim inf
|j|→∞

log τj,p( f )
log(2−j2)

< 1⇔ σ + 1 + στ(p) < p⇔ s
tp−1 < ∑

ω∈A
|λω |p ,

lim inf
|j|→∞

log τj,p( f )
log(2−j1)

> 1/p⇔ 1 +
1
σ
+ τ(p) > 1⇔ τ(p) > −1/σ⇔ ∑

ω∈A
|λω |p < t

and

lim inf
|j|→∞

log τj,p( f )
log(2−j1)

< 1⇔ 1 +
1
σ
+ τ(p) < p⇔ t

sp−1 < ∑
ω∈A
|λω |p .

Clearly, since s ≤ t then
s

tp−1 ≤
t

sp−1 .

• Suppose that s < t (i.e., σ < 1).

– If
t

sp−1 < ∑
ω∈A
|λω |p < s then p > 1/σ, ηL(p, e1) = 1 +

1
σ
+ τ(p) and ηL(p, e2) = σ + 1 +

στ(p). So, using Remark 2, we deduce that ηL(p, e) = σ + 1 + στ(p) = ηL(p) for all e 6= ±e1.
– If

s
tp−1 < ∑

ω∈A
|λω |p < s and ∑

ω∈A
|λω |p ≤

t
sp−1 then ηL(p, e1) = p and ηL(p, e2) = σ + 1 +

στ(p). So, using Remark 2, we deduce that ηL(p, e) = σ + 1 + στ(p) = ηL(p) for all e 6= ±e1.

Note that s ≤ t
sp−1 iff p ≤ 1/σ.

– If ∑
ω∈A
|λω |p ≤

s
tp−1 then ηL(p, e1) = ηL(p, e2) = p.

• Suppose that s = t.

– We have s
sp−1 < ∑

ω∈A
|λω |p < s is equivalent to 1 < 2 + τ(p) < p. In that case

ηL(p, e1) = 2 + τ(p) and ηL(p, e2) = 2 + τ(p) .

– In the case where ∑
ω∈A
|λω |p ≤

s
sp−1 , we have 2 + τ(p) ≥ p, therefore,

ηL(p, e1) = ηL(p, e2) = p .

�

Remark 8. Theorem 9 improves previous results in [29] without any assumptions on the choice of ω ∈ A and
the positivity of the corresponding λω. Recall that in [29], we were interested in the computation of ηL(p) by
the increments method.

6.2. Directional Pointwise Lipschitz Regularity

We will now compute the pointwise directional Lipschitz regularity of the Sierpinski function.
In [29], we were interested in the computation of the pointwise Lipschitz regularity. Let us recall the
obtained results. Consider the “separated open set condition”:

∀ (ω, ω′) ∈ A2 ω 6= ω′ ⇒ Rω ∩Rω′ = ∅ . (124)

Recall that K is the Sierpinski carpet (98).

∀ x /∈ K h(x) = 1 . (125)

Define for x ∈ K, ω = ω(x) = (ω1, ω2, . . . , ωn, · · · ) ∈ AN by ωl = (ul , vl) ∈ A with

x =

(
∞

∑
l=1

ul

sl ,
∞

∑
l=1

vl

tl

)
.
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Denote by
ω(n, x) = (ω1, . . . , ωn) , λω(n,x) = λω1 · · · λωn

at(x) = lim inf
n 7→∞

log |λω(n,x)|
log t−n and as(x) = lim inf

n 7→∞

log |λω(n,x)|
log s−n .

In Proposition 3 in [29], using increments method for the Sierpinski cascade function, we proved that
h(x) ≥ at(x) under assumptions (124), at(x) < 1 and

∀ω ∈ A , Rω ⊂ [1/s, 1− 1/s]× [1/t, 1− 1/t] . (126)

This yields
h(x, e2) ≥ at(x) . (127)

Similar arguments allow us to obtain

h(x, e1) ≥ as(x) if as(x) < 1 . (128)

In Proposition 4 in [29], using increments method, we proved that h(x) ≤ at(x) under
assumptions (124), at(x) ≤ 1

0 < λω < 1 ∀ ω ∈ A , (129)

and either:
∀ω ∈ A , Rω ⊂ [1/s, 1− 1/s]× [1/t, 1/2], (130)

or
∀ω ∈ A , Rω ⊂ [1/s, 1− 1/s]× [1/2, 1− 1/t] . (131)

Actually, we proved that h(x, e2) ≤ at(x). We deduce that:

h(x) = h(x, e2) = at(x) . (132)

We will improve result (132) and obtain a similar result for h(x, e1) without adding assumption (130)
nor (131). For that we will use Theorem 4 obtained in [58], in which we characterized directional
pointwise Lipschitz regularity in terms of decay conditions for the coefficients Ck( f ) (given in (76)) of
the expansion of f in the basis of tensor products of Schauder functions. Let us recall this result for
d = 2; if ki ∈ Ñji , with ki ≥ 2 then φki

has support [(ni − 1)2−ji , ni2−ji ]. It follows that for ji ∈ M with
ji ≥ 0 and x ∈ I2, there exists a unique value of ki(xi) for which xi ∈ [(ni − 1)2−ji , ni2−ji ). We keep the
notation ki(x)) even if ji ∈ {−2,−1}.

Proposition 12. Let x ∈ I2 and f ∈ C(I2). Set

ρ(x, e1) = lim inf
j1→∞

inf
k1∈Ñj1

inf
j2∈M

log
(
|C(k1,k2(x2))

( f )|φk2(x2)
(x2)

)
log
(
2−j1 + |n12−j1 − x1|

)
and

ρ(x, e2) = lim inf
j2→∞

inf
k2∈Ñj2

inf
j1∈M

log
(
|C(k1(x1),k2)

( f )|φk1(x1)
(x1)

)
log
(
2−j2 + |n22−j2 − x2|

)
Assume that f is uniformly Lipschitz regular on I2 in direction e1 in the sense that there exists δ > 0 and C > 0,
such that | f (x + te1)− f (x)| ≤ C|t|δ for all x and x + te1 ∈ I2.

If:
∀ k C(k1,k2(x2))

( f ) ≥ 0, (133)
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then:
h(x, e1) = min (1, ρ(x, e1)) . (134)

Assume that f is uniformly Lipschitz regular on I2 in direction e2.
If:

∀ k C(k1(x1),k2)
( f ) ≥ 0, (135)

then:
h(x, e2) = min (1, ρ(x, e2)) . (136)

Theorem 10. Assume λmax > 1/t, (124), (126), (129) and (142). Then, for the Sierpinski cascade function:

h(x, e1) =

{
1 if x /∈ K
as(x) if x ∈ K

(137)

and

h(x, e2) = h(x) =

{
1 if x /∈ K
at(x) if x ∈ K .

(138)

Proof. Results for x /∈ K follow from (125).
Assumption (129) yields both (133) and (135). On the other hand, by assumption λmax > 1/t,

Proposition 11 implies that F ∈ CHmin(R) with 0 < Hmin < 1. This implies that F is uniformly Lipschitz
regular on I2 in any direction. By Proposition 12, for x ∈ K and i = 1, 2 :

h(x, ei) = min (1, ρ(x, ei)) . (139)

Of course,

ρ(x, e1) ≤ lim inf
j1→∞

inf
k1(x1)∈Ñj1

inf
j2∈M

log
(

C(k1(x1),k2(x2))
( f )φk2(x2)

(x2)
)

log
(
2−j1 + |n12−j1 − x1|

) .

Assumption (126) yields:
ρ(x, e1) ≤ as(x) (140)

because from the definition of (k1(x1), k2(x2)), we have |n12−j1 − x1| ≤ 2−j1 and if x2 =
∞

∑
l=1

vl

tl then

thanks to assumption (126):

φk2(x2)
(x2) = 2Λ(tnx2 − tn−1v1 − · · · − tvn−1 − vn) = 2Λ(

∞

∑
l=1

vn+l

tl ) ≥ 1
t

.

Similarly, assumption (126) yields:
ρ(x, e2) ≤ at(x) . (141)

Properties (139), (140), and (141) make equalities in results (127) and (128) (under assumptions (124)
and (126)). �

6.3. Directional Pointwise Lipschitz Spectrum and Directional Thermodynamic Formalisms

We will now compute the directional Lipschitz spectrum of the Sierpinski function and provide
directional thermodynamic formalisms. We will see that, unlike the directional Lipschitz scaling
function ηL(p, e), the directional spectrum d(H, e) (and, so, the directional thermodynamic formalisms)
may depend on the geometric arrangement of the chosen Rω. Actually, in [29], we proved a similar
property for the Lipschitz scaling function ηL(p) and the Lipschitz spectrum d(H). Nevertheless, we
will show that unlike the Lipschitz spectrum d(H) which is uniform in all directions, the directional
Lipschitz spectrum d(H, e) may depend on e and consequently is a tool to detect directional behaviors.
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Assume that if column u of the grid contains points of K, then the two adjacent columns do not, i.e.,

if ω = (u, v) ∈ A then (u± 1, v) /∈ A . (142)

The following theorem holds. It provides directional thermodynamic formalisms valid for the
Sierpinski function.

Theorem 11. Assume λmax > 1/t, (124), (126), (129), and (142). Let F be the corresponding Sierpinski
cascade function.

The set P given in (9) is:

P = {p ≥ 1 :
t

sp−1 < ∑
ω∈A
|λω |p < s} . (143)

Put:
τ′(P) = {τ′(p) : p ∈ P} and στ′(P) = {στ′(p) : p ∈ P} . (144)

1. Case 1: Assume that each column of the grid contains at most one Rω, ω ∈ A. Then:

d(H, e2) = d(H) =

{
−∞ if H < Hmin
inf

q
(qσ−1H − τ(q)) if H ∈ [Hmin, min(1, Hmax)]

(145)

and

d(H, e1) = d(Hσ, e2) =

{
−∞ if Hσ < Hmin
inf

q
(qH − τ(q)) if Hσ ∈ [Hmin, min(1, Hmax)] . (146)

The following directional thermodynamic formalisms hold:

∀H ∈ τ′(P) ∩ (−∞,
1
σ

min(1, Hmax)] d(H, e1) = inf
p∈P

(pH − ηL(p, e1) + 1 +
1
σ
) (147)

and

∀H ∈ στ′(P) ∩ (−∞, min(1, Hmax)] d(H, e2) =
1
σ

inf
p∈P

(pH − ηL(p, e2) + 1 + σ) . (148)

2. Case 2: Assume that there is only one column containing all the Rω, ω ∈ A. Then:

d(H, e2) = d(H) =

{
−∞ if H < Hmin
inf

q
(qH − στ(q)) if H ∈ [Hmin, min(1, Hmax)]

(149)

and

d(H, e1) = d(Hσ, e2) =

{
−∞ if Hσ < Hmin
σ inf

q
(qH − τ(q)) if Hσ ∈ [Hmin, min(1, Hmax)] . (150)

The following directional thermodynamic formalisms hold:

∀H ∈ τ′(P) ∩ (−∞,
1
σ

min(1, Hmax)] d(H, e1) = σ inf
p∈P

(pH − ηL(p, e1) + 1 +
1
σ
) (151)

and

∀H ∈ στ′(P) ∩ (−∞, min(1, Hmax)] d(H, e2) = inf
p∈P

(pH − ηL(p, e2) + 1 + σ) . (152)
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Proof. Relation (143) is direct consequence of Theorem 9.
Since s ≤ t then (132) yields d(H) = d(H, e2), therefore, results of Proposition 5 in [29] (respective

to Proposition 6 in [29]) remain valid for d(H) replaced by d(H, e2) with the same conditions except
for (130) or (131) which can be replaced by the weaker condition (126) (see the previous section).

Moreover, results (146) and (150) follow from the fact that as(t) =
1
σ

at(x). The above thermodynamic
formalisms follow directly from Theorem 9. �

Remark 9. When s = t, the above thermodynamic formalisms coincide with the classical formalism.

6.4. Optimality of Theorem 6 in Case 1

We will prove that Theorem 6 is optimal in case1, in the sense that the upper bound (96)
becomes equality.

Theorem 12. Let B and Ω be as in Theorem 1. Assume λmax > 1/t, (124), (126), (129) and (142). Let F be
the corresponding Sierpinski cascade function.

Assume that each column of the grid contains at most one Rω. Then:

∀H ≤ 1 D(H, e) = inf
α∈Ω

1
αmin

inf
p≥pα

(α1Hp− ηα(p) + d) . (153)

Proof. If (α1, α2) is given by (99), then αmin = α1, p(α1,α2)
given in (95) satisfies τ(p(α1,α2)

) = 0, and

∀ i ∈ {1, 2} ηL(p, ei) =
η(α1,α2)

(p)
αi

.

Relations (147) and (148) (in case 1), respectively, can be rewritten as:

∀H ∈ τ′(P) ∩ (−∞,
1
σ

min(1, Hmax)] d(H, e1) =
1

αmin
inf
p∈P

(α1Hp− η(α1,α2)
(p) + 2)

and
∀H ∈ στ′(P) ∩ (−∞, min(1, Hmax)] d(H, e2) =

1
αmin

inf
p∈P

(α2Hp− η(α1,α2)
(p) + 2) .

Since:
{p ≥ p(α1,α2)

} ⊂ P,

then the previous upper bounds become equalities and (153) holds.

6.5. Directional Thermodynamic Formalisms Independent on the Choice of A

We will modify the notion of the Hausdorff dimension to provide a new directional
thermodynamic formalism independent on the choice of A. For any n ≥ 1, Tn := {Rω ; ω ∈ An} is
a partition of K. Let T =

⋃
n≥1

Tn. Define dimT in a similar way to the Hausdorff dimension but by

considering only coverings by elements of T . Note that such ‘restriction’ to the elements of dynamics
was done by many authors (see [11–14,20,30]). Of course, the diameter |Rω | for ω ∈ An can be
replaced by s−n (because it is equivalent to s−n). Define the modified directional Lipschitz T spectrum
(respective to directional upper Lipschitz T spectrum) of f in direction e as the function dT (H, e)
(respective to DT (H, e)) given by the dimT of the set of points y where h(y, e) = H (respective to
h(y, e) ≤ H).
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Theorem 13. Assume λmax > 1/t, (124), (126), (129) and (142). Let F be the corresponding Sierpinski
cascade function. Let P as in (143). Then the following directional thermodynamic formalisms hold:

∀ H ∈ τ′(P) ∩ (−∞, min(1, Hmax)] dT (H, e1) = inf
p∈P

(pH − ηL(p, e1) + 1 +
1
σ
) (154)

and

∀ H ∈ στ′(P) ∩ (−∞, min(1, Hmax)] dT (H, e2) =
1
σ

inf
p∈P

(pH − ηL(p, e2) + 1 + σ) . (155)

Proof. Set Pω(q) = λ
q
ωsτ(q) and let µq be a probability measure on K such that:

∀(ω1, . . . , ωn) ∈ An µq(Rω1,...,ωn) = Pω1(q) . . . Pωn(q).

Since:
µq(Rω1,...,ωn ,ω′1,...,ω′m) = µq(Rω1,...,ωn)µq(Rω′1,...,ω′m) ,

then, as in [25,30], we can concentrate a Gibbs measure νp on Eϕ′(p)
F , i.e.,

∀ ω νp(Rω) ' (µ(Rω))
p|Rω |−ϕ(p)

where ϕ is defined as in [13], and, thus, we obtain:

dT (H, e1) = inf
q
(Hq− τ(q))

and
dT (H, e2) = inf

q
(

H
σ

q− τ(q)) =
1
σ

inf
q
(Hq− στ(q)) .

Therefore, (154) and (155) hold. �

Remark 10. The new formalism shows also that if D(H, e) in Theorem 6 is replaced by DT (H, e) then we get
optimality independently on the choice of A.

7. Motivation of the Anisotropic Cascade Model on the Physics Side

In all realistic flows in turbulence, there always exists some anisotropy at all scales (for example,
see [93] and references therein); the statistical properties of the velocity field are effected by the
geometry of the boundaries or the driving mechanism, which are never rotationally invariant [94].
For example, all geophysical flows are subject to the rotation of the globe, which introduces anisotropy
via the Coriolis forces [95]. There is also a whole literature on anisotropy in turbulence created by
vortex stretching (for example, see [96] and references therein). It has been a grand challenge in
the mathematical fluid mechanics community to try to explain/quantify the process of anisotropic
dissipation in turbulent flows directly from the mathematical model the 3D Navier–Stokes equations
NSE. In [97], Constantin derived a singular integral representation of the stretching factor in the
evolution of the vorticity magnitude featuring a geometric kernel that is depleted by local coherence of
the vorticity direction. In [98], Ran showed that there are dynamical systems that are much simpler
than the NSE but that can still have turbulent states and for which many concepts developed in the
theory of dynamical systems can be successfully applied.

Clearly, cascade models introduced to model turbulence (the cascade picture of turbulent flows
takes its origin from Richardson in 1922) should be able to take into account anisotropy. If we want
to be able to make model selection with, we must use an anisotropic multifractal formalism as the
equality in (94).
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