Synthesis of Fuel Grade Molecules from Hydroprocessing of Biomass-Derived Compounds Catalyzed by Magnetic Fe(NiFe)O4-SiO2 Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Catalyst Preparation and Heat Treatments
2.2. Catalyst Characterization
2.3. Catalytic Activity Studies
3. Results and Discussion
3.1. Effect of Temperature on Textural Properties of Fe(NiFe)O4−SiO2 Catalyst
3.2. Effect of Calcination Temperature on Acid Properties of Fe(NiFe)O4-SiO2 Catalysts
3.3. Effect of Calcination Temperature on Magnetic Properties of Fe(NiFe)O4-SiO2 Catalyst
3.4. Activity Studies of Magnetic Fe(NiFe)O4-SiO2 Catalyst
3.4.1. Hydrodeoxygenation of Vanillin
3.4.2. Hydrodeoxygenation of Furfural
3.5. Possible Reaction Pathways
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halilu, A. Is there a realistic solution to upgrading bio-oil to fuel and chemicals? Inform 2017, 28, 22–24. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Zhong, R.; van den Bosch, S.; Coman, S.M.; Parvulescu, V.I.; Sels, B.F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 2018, 47, 8349–8402. [Google Scholar] [CrossRef]
- Ambursa, M.M.; Sudarsanam, P.; Voon, L.H.; Hamid, S.B.A.; Bhargava, S.K. Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels. Fuel Process. Technol. 2017, 162, 87–97. [Google Scholar] [CrossRef]
- Ambursa, M.M.; Ali, T.H.; Lee, H.V.; Sudarsanam, P.; Bhargava, S.K.; Hamid, S.B.A. Hydrodeoxygenation of dibenzofuran to bicyclic hydrocarbons using bimetallic Cu–Ni catalysts supported on metal oxides. Fuel 2016, 180, 767–776. [Google Scholar] [CrossRef]
- Halilu, A.; Ali, T.H.; Atta, A.Y.; Sudarsanam, P.; Bhargava, S.K.; Hamid, S.B.A. Highly Selective Hydrogenation of Biomass-Derived Furfural into Furfuryl Alcohol Using a Novel Magnetic Nanoparticles Catalyst. Energy Fuels 2016, 30, 2216–2226. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Peeters, E.; Makshina, E.V.; Parvulescu, V.I.; Sels, B.F. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem. Soc. Rev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.-M. Magnetically recoverable nanocatalysts. Chem. Rev. 2011, 111, 3036–3075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, P.; Li, H.; Wang, L. A recyclable magnetic nanoparticles supported palladium catalyst for the Hiyama reaction of aryltrialkoxysilanes with aryl halides. Catal. Sci. Tech. 2012, 2, 1859–1864. [Google Scholar] [CrossRef]
- Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Astruc, D. Fast-Growing Field of Magnetically Recyclable Nanocatalysts. Chem. Rev. 2014, 114, 6949–6985. [Google Scholar] [CrossRef]
- Sharma, R.K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R.S.; Gawande, M.B. Fe3O4 (iron oxide)-supported nanocatalysts: Synthesis, characterization and applications in coupling reactions. Green Chem. 2016, 18, 3184–3209. [Google Scholar] [CrossRef]
- Gawande, M.B.; Monga, Y.; Zboril, R.; Sharma, R.K. Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 2015, 288, 118–143. [Google Scholar] [CrossRef]
- Gawande, M.B.; Rathi, A.K.; Branco, P.S.; Nogueira, I.D.; Velhinho, A.; Shrikhande, J.J.; Indulkar, U.U.; Jayaram, R.V.; Ghumman, C.A.A.; Bundaleski, N.; et al. Regio- and Chemoselective Reduction of Nitroarenes and Carbonyl Compounds over Recyclable Magnetic Ferrite–Nickel Nanoparticles (Fe3O4–Ni) by Using Glycerol as a Hydrogen Source. Chem. Eur. J. 2012, 18, 12628–12632. [Google Scholar] [CrossRef] [PubMed]
- Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 2013, 49, 752–770. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, S.; Ramezani, Z. Synthesis of arylphosphonates catalyzed by Pd-imino-Py-[gamma]-Fe2O3 as a new magnetically recyclable heterogeneous catalyst in pure water without requiring any additive. RSC Adv. 2016, 6, 29237–29244. [Google Scholar] [CrossRef]
- Hamid, S.B.A.; Halilu, A.; Gbadamasi, S.; Hakim, L. Opportunities in Utilization of Lignocellulosic Biomass Oil to Bio-Esters. In Renewable Energy and Sustainable Developments; Al-Douri, Y., Ed.; Scientific & Academic Publishing: Rosemead, CA, USA, 2014. [Google Scholar]
- Amin, M.H.; Putla, S.; Hamid, S.B.A.; Bhargava, S.K. Understanding the role of lanthanide promoters on the structure–activity of nanosized Ni/γ-Al2O3 catalysts in carbon dioxide reforming of methane. Appl. Catal. A 2015, 492, 160–168. [Google Scholar] [CrossRef]
- Otake, K.-i.; Cui, Y.; Buru, C.T.; Li, Z.; Hupp, J.T.; Farha, O.K. Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal–Organic Frameworks: Selective Alcohol Oxidation and Structure–Activity Relationship. J. Am. Chem. Soc. 2018, 140, 8652–8656. [Google Scholar] [CrossRef] [PubMed]
- Sachs, M.; Sprick, R.S.; Pearce, D.; Hillman, S.A.; Monti, A.; Guilbert, A.A.; Brownbill, N.J.; Dimitrov, S.; Shi, X.; Blanc, F. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nat. Commun. 2018, 9, 4968. [Google Scholar] [CrossRef]
- Hillary, B.; Sudarsanam, P.; Amin, M.H.; Bhargava, S.K. Nanoscale Cobalt–Manganese Oxide Catalyst Supported on Shape-Controlled Cerium Oxide: Effect of Nanointerface Configuration on Structural. Redox, and Catalytic Properties. Langmuir 2017, 33, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Sudarsanam, P.; Hillary, B.; Mallesham, B.; Rao, B.G.; Amin, M.H.; Nafady, A.; Alsalme, A.M.; Reddy, B.M.; Bhargava, S.K. Designing CuOx Nanoparticle-Decorated CeO2 Nanocubes for Catalytic Soot Oxidation: Role of the Nanointerface in the Catalytic Performance of Heterostructured Nanomaterials. Langmuir 2016, 32, 2208–2215. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Hillary, B.; Amin, M.H.; Hamid, S.B.A.; Bhargava, S.K. Structure-activity relationships of nanoscale MnOx/CeO2 heterostructured catalysts for selective oxidation of amines under eco-friendly conditions. Appl. Catal. B Environ. 2016, 185, 213–224. [Google Scholar] [CrossRef]
- Tenzer, R. Influence of particle size on the coercive force of barium ferrite powders. J. Appl. Phys. 1963, 34, 1267–1268. [Google Scholar] [CrossRef]
- Sjögren, C.E.; Johansson, C.; Nævestad, A.; Sontum, P.C.; Briley-Sæbø, K.; Fahlvik, A.K. Crystal size and properties of superparamagnetic iron oxide (SPIO) particles. Magn. Reson. Imaging 1997, 15, 55–67. [Google Scholar] [CrossRef]
- Mistura, G.; Pozzato, A.; Grenci, G.; Bruschi, L.; Tormen, M. Continuous adsorption in highly ordered porous matrices made by nanolithography. Nat. Commun. 2013, 4, 2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farneth, W.; Gorte, R. Methods for characterizing zeolite acidity. Chem. Rev. 1995, 95, 615–635. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Lee, D.F. Control of product selectivity for the epoxidation of allyl alcohol by variation of the acidity of the catalyst TS-1. Chem. Commun. 1994, 9, 1095–1096. [Google Scholar] [CrossRef]
- Sumiya, S.; Oumi, Y.; Uozumi, T.; Sano, T. Characterization of AlSBA-15 prepared by post-synthesisalumination with trimethylaluminium. J. Mater. Chem. 2001, 11, 1111–1115. [Google Scholar] [CrossRef]
- Rana, M.S.; Srinivas, B.N.; Maity, S.K.; Dhar, G.M.; Rao, T.S.R.P. Origin of Cracking Functionality of Sulfided (Ni) CoMo/SiO2–ZrO2 Catalysts. J. Catal. 2000, 195, 31–37. [Google Scholar] [CrossRef]
- Xinghua, Z.; Tiejun, W.; Longlong, M.; Chuangzhi, W. Aqueous-phase catalytic process for production of pentane from furfural over nickel-based catalysts. Fuel 2010, 89, 2697–2702. [Google Scholar] [CrossRef]
- Mortensen, P.M.; Grunwaldt, J.-D.; Jensen, P.A.; Jensen, A.D. Screening of Catalysts for Hydrodeoxygenation of Phenol as a Model Compound for Bio-oil. ACS Catal. 2013, 3, 1774–1785. [Google Scholar] [CrossRef]
Catalyst | Vanillin Conversion (%) | Selectivity (%) | % HDO | |||||
---|---|---|---|---|---|---|---|---|
| | | | | | |||
Fe(NiFe)O4-SiO2 (400 °C) | 100 | 56 | 21 | 2 | 4 | - | 17 | 17.89 |
Fe(NiFe)O4-SiO2 (500 °C) | 100 | 14 | 63 | - | 5 | 10 | 8 | 20.20 |
Fe(NiFe)O4-SiO2 (600 °C) | 100 | 5 | 54 | - | 2 | 20 | 19 | 20.08 |
Fe(NiFe)O4-SiO2 (700 °C) | 100 | 4 | 53 | - | 1 | 33 | 9 | 19.51 |
Catalyst | Furfural Conversion (%) | Selectivity (%) | % HDO | ||
---|---|---|---|---|---|
| | | |||
Fe(NiFe)O4-SiO2 (400 °C) | 100 | 12 | 42 | 46 | 29.78 |
Fe(NiFe)O4-SiO2 (500 °C) | 100 | 8 | 33 | 59 | 29.78 |
Fe(NiFe)O4-SiO2 (600 °C) | 100 | 13 | 34 | 53 | 29.78 |
Fe(NiFe)O4-SiO2 (700 °C) | 100 | 8 | 58 | 34 | 29.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halilu, A.; Hussein Ali, T.; Sudarsanam, P.; Bhargava, S.K. Synthesis of Fuel Grade Molecules from Hydroprocessing of Biomass-Derived Compounds Catalyzed by Magnetic Fe(NiFe)O4-SiO2 Nanoparticles. Symmetry 2019, 11, 524. https://doi.org/10.3390/sym11040524
Halilu A, Hussein Ali T, Sudarsanam P, Bhargava SK. Synthesis of Fuel Grade Molecules from Hydroprocessing of Biomass-Derived Compounds Catalyzed by Magnetic Fe(NiFe)O4-SiO2 Nanoparticles. Symmetry. 2019; 11(4):524. https://doi.org/10.3390/sym11040524
Chicago/Turabian StyleHalilu, Ahmed, Tammar Hussein Ali, Putla Sudarsanam, and Suresh K. Bhargava. 2019. "Synthesis of Fuel Grade Molecules from Hydroprocessing of Biomass-Derived Compounds Catalyzed by Magnetic Fe(NiFe)O4-SiO2 Nanoparticles" Symmetry 11, no. 4: 524. https://doi.org/10.3390/sym11040524
APA StyleHalilu, A., Hussein Ali, T., Sudarsanam, P., & Bhargava, S. K. (2019). Synthesis of Fuel Grade Molecules from Hydroprocessing of Biomass-Derived Compounds Catalyzed by Magnetic Fe(NiFe)O4-SiO2 Nanoparticles. Symmetry, 11(4), 524. https://doi.org/10.3390/sym11040524