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Abstract: The problem of anti-saturation control for a class of time-delay systems with actuator 

saturation is considered in this paper. By introducing appropriate variable substitution, a new 

delay time-delay systems model with actuator saturation systems is established. Based on the 

Lyapunov stability theory, the stability condition and the anti-saturation controller design method 

are obtained by using the linear matrix inequality approach. By introducing the matrix into the 

Lyapunov function, the proposed conditions are less conservative than the previous results. 

Finally, a simulation example shows the validity and rationality of the method. 

Keywords: actuator saturation; time-delay systems; linear matrix inequalities; anti-saturation 
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1. Introduction 

The saturation phenomenon exists widely in various power systems. If saturation limitation is 

not considered, the performance of the system will be degraded or even unstable in severe cases. In 

practical engineering control processes, control input often needs to satisfy certain conditions, and 

actuator saturation is the most common constraint phenomenon, so research on actuator saturation 

control has very important practical significance. Since Fuller first proposed a saturation system in 

the 1960s, actuator saturation control has attracted extensive attention from many scholars [1–3]. Hu 

et al. proposed a convex combination method for discrete linear systems with actuator saturation by 

utilizing saturation nonlinearity [4]. By introducing auxiliary matrices, the stability conditions are 

transformed into linear matrix inequalities (LMIs), and the stability conditions of the system and the 

design method of the controller are obtained. Then, Zhou et al. introduced the design method of a 

saturated system into a saturated networked control system. For example, the output feedback 

stabilization of a saturated networked system is studied in reference [5]. Some scholars have 

studied the time-delay systems with saturation constraints. Reference [6] considers the stabilization 

of networked control systems affected by actuator saturation and network-induced delays. In 

reference [7], a distributed model with predictive control is designed for a stochastic polyhedral 

uncertain system with limited actuator saturation. Recently, the auxiliary time-delay feedback 

technique has been used to deal with the stabilization of neutral time-delay systems with actuator 

saturation [8]. Using the saturation technique of nested actuators, Zhou et al. studied the stability 

analysis and the estimation of the attractive region of discrete linear systems [9]. In reference [10], an 

improved delay-dependent control method with low conservativeness was proposed for actuator 

saturated control systems with time-varying delays. In addition, the actuator saturation problem 

also appears in the networked control system, which is very meaningful and challenging. Based on 

the finite-time theory, Ma et al. considered the delay-dependent control stability conditions and 

anti-saturation control problems of discrete singular Markov jump systems. By using the linear 

matrix inequality method, sufficient conditions for the finite-time boundedness of singular systems 

have been obtained. By using the method of multiple Lyapunov functions, a new sufficient 
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condition for stochastic finite-time boundedness of the system is obtained [11,12]. In reference [13], 

by using suitable Lyapunov functions and new criteria of attraction domains, low conservative 

conditions for stochastic stability of the system were given. It overcomes the difficulty of estimating 

the attraction region in system analysis and synthesis. Subsequently, Song et al. studied the problem 

of quantized feedback stabilization for continuous time-delay systems with actuator saturation. By 

using two different methods, the delay-independent conditions for system stability have been 

obtained [14]. In reference [15], the influence of network bandwidth on the system performance has been 

considered. Then, a new network system model is established. A dynamic allocation strategy of bandwidth of 

networked control systems has been obtained.  

However, the above literature mainly focuses on deterministic systems, while the research on 

saturated time-delay systems with uncertainties is rare. For this reason, based on the previous 

studies, this paper presents the sufficient conditions for asymptotic stability of a class of uncertain 

time-delay systems with actuator saturation by using LMIs and Lyapunov stability theory. Then, the 

design scheme of anti-saturation controllers were obtained by introducing parameter matrices into 

Lyapunov functions. 

2. Preliminaries 

Consider the following uncertain time-delay systems with input saturation: 

( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ( ))

( ) ( )                  [ ,   0].

d dx t A A t x t A A t x t d B B t sat u t

x t t t d

         

  


 (1) 

where 
nR)( tx  are systems states, 

mR)( tu  are control input, 
n n, RdA A  , 

mB  nR  are 

a constant matrix, 
n

21 R)](     )(   )([)(  T
n tttt    is the given initial state, d  is the state 

delay of the systems. The saturation function 1 2( ( )) [ ( ( )), ( ( )), , ( ( ))]msat u t sat u t sat u t sat u t  , 

where 

            ( ) 0

( ( )) ( )        ( )

            0 ( ).

i i i

i i i i i

i i i

u u t u

sat u t u t u u t u

u u u t

 


  
  

  

( ), ( ), ( )dA t A t B t    is the system uncertainty with appropriate dimension, satisfying: 

1 1 2 2 3 3( ) ( ) ,  ( ) ( ) ,  ( ) ( ) ].dA t D F t E A t D F t E B t D F t E       (2) 

where the matrix function ( )F t  satisfying ( ) ( )TF t F t I . 

The state feedback controller of the systems (1) is designed: 

( ) 2 ( ).u t Kx t  (3) 

where Rm nK   is a undetermined constant matrix. Substitute (2) into the systems (1) to obtain a 

closed-loop system: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )                                     [   0].

dx t A t x t A t x t d B t t

x t t t d,





   

  


 (4) 

where 
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( ) ( ) ( )

( ) ( )

( ) ( )

( ) (2 ( )) ( ).

d d d

A t A BK A t B t K

A t A A t

B t B B t

t sat Kx t Kx t

     

  

  

 

 (5) 

and ( )t  satisfying: 

( ) ( ) ( ) ( ).T T Tt t x t K Kx t    (6) 

The purpose of the design is to determine the controller such as (3) so that the closed-loop 

system (4) is asymptotically stable. 

Lemma 1. For the given constant matrix ,Y D  and E  with appropriate dimension, where Y  is symmetric 

matrix, then 0T T TY DEF E F D    for matrix F  satisfying 
TF F I , if and only if there is a 

constant 0  , such that:  

1 0.T TY DD E E       

Lemma 2 ([8]). For a given n-order symmetric matrix 









2221

1211

SS

SS
S , where 11S  is r-order matrix, then 

the following three conditions are equivalent: 

(1) 0,S   

(2) 
1

11 22 12 11 120,   0,TS S S S S    

(3) 1
22 11 12 22 120,   0.TS S S S S    

3. Main Results 

Theorem 1. If there is a constant 0  , symmetrical positive matrix , R n nP Q   and matrix 
m nK R   

satisfying the matrix inequality: 

( ) ( ) ( ) ( )

0 0.

T T
dA t P PA t Q K K PA t PB t

Q

I





   
 

     
    

 
(7) 

Then the closed-loop system (4) is asymptotically stable. 

Proof. Using the positive definite matrix ,P Q  to construct the function: 

( ) ( ) ( ) ( ) ( ) ,
t

T T

t d
V t x t Px t x s Qx s ds


     

, R n nP Q   are undetermined symmetric positive matrices. 

With the solution of Equation (3), it is easy to obtain: 

( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

        ( )( ( ) ( ) ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )

           ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

        ( ) 0

0

T T T

T T T T
d

T T

T
d

T

V t x t Px t x t Qx t x t d Qx t d

x t PA t A t P x t x t PA t x t d x t PB t t

x t Qx t x t d Qx t d

PA t A t P PA t PB t

t Q



    

    

   

 
 

   
   

 

( ),t


 
(8) 
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where 

( )

( ) ( ) .

( )

x t

t x t h

t

 
    
  

  

From the formula (6), we can obtain: 

0 0

0 ( ) 0 0 ( ),

T

T

K K

t t

I





 
 

    
    

  

where   is an arbitrarily small positive number.  

Inserting the upper formula into (8) formula and get 

( ) ( ) ( ),TV t t t     

where 

( ) ( ) ( ) ( )

0 .

T T
dA t P PA t Q K K PA t PB t

Q

I





   
 

    
    

 
 

According to Lyapunov stability theory, when condition (7) holds, the closed-loop system (4) is 

asymptotically stable. 

Theorem 2. If there are constants 1 2 30, 0, 0, 0       , symmetrical positive matrices 

, R n nX Q   and matrix 
m nK R   satisfying the matrix inequality: 

1
1 3 2

1

3

2

0 0 0 0 0

0 0 0 0

0.0 0 0

0 0

0

T T T T
dA X B K XE XE XE

Q

I

I

I

I

I













 
 

  
   
 

    
     
 

      
        

 (9) 

where 1 1 1 2 2 2 3 3 3( )T T T TAX BK AX BK Q D D D D D D            

Then the closed-loop system (4) is asymptotically stable. Closed-loop systems (4) are 

asymptotically stable by selecting the controller 
1( ) 2 ( )u t KX x t . 

Proof. With the Lemma 1, the inequality (7) is equivalent to: 

( ) ( ) ( ) ( )

0 0
0.

0

T T
dA t P PA t Q PA t PB t K

Q

I

I







  
 

   
   
 

    

  

The matrix 
1 1 1 1{ , , , }diag P P I I    

 is multiplied at both sides of the upper formula, we 

obtain: 
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1 1 1 1 1 1 1

1 1

1

1

( ) ( ) ( ) ( )

0 0
0.

0

T T
dP A t A t P P QP A t P B t P K

P QP

I

I







      

 





  
 

   
   
 

    

  

Inserting formula (4) into the upper formula: 

1 1 1 1 1 1( ) ( ) ( ( ) ( ) ) ( ) ( ) 0

0 0 0
0.

0 0

0

T
dA t P B t KP A t P B t KP A t P B t              

 
   

  
 

   

 
 

where 

1 1 1 1 1 1 1 1 1

1 1

1

1

( )

0 0
.

0

T T
dAP BKP AP BKP P QP A P B P K

P QP

I

I







        

 





    
 

   
   
 

    

  

Inserting formula (2) into the upper formula: 

1 1

1 1
1 1

2 2

1 1
2 2

0 0
( ) 0 0 0 0 0 0 ( )

0 0

0 0

0 0
( ) 0 0 0 0 0 0 ( )

0 0

0 0

T

T T

T

T T

D D

F t E P E P F t

D D

F t E P E P F t

 

 

   
   
              
   
   

   
   
            
   
   

 
 

3 3

1 1
3 3

0 0
( ) 0 0 0 0 0 0 ( )

0 0

0 0

0.

T

T T

D D

F t E E F t  

   
   
            
   
   



  

With Lemma 2, if there are constants 1 2 30, 0, 0      such that the upper formula be 

equivalent to: 
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1 1

1 1 1
1 1 1 1

2 2

1 1 1
2 2 2 2

3 3

1 1 1
3 3 3 3

0 0
0 0 0 0 0 0

0 0

0 0

0 0
0 0 0 0 0 0

0 0

0 0

0 0
0 0 0 0 0

0 0

0 0

T

T

T

T

T

T

D D

E P E P

D D

E P E P

D D

E E

 

 

   

  

  

  

   
   
                
   
   

   
   
               
   
   

   
   
           
   
   

0 0.   

 

 

With Lemma 1, we know: 

1 1

1 1

1 1 1 1 1 1
1 3 21 1

1 1 1

2 2 2 3 3 3

1 1

1

1

1

3

2

( )

0 0 0 0 0 0.
0 0 0 0

0 0 0

0 0

0

T

T T T T
dT

T T

AP BKP

AP BKP
A P B P K P E P E P E

P QP D D

D D D D

P QP

I

I

I

I

I




 











 

 

     

 

 





 
 
  

  
 
  
 

   
   
 

    
     
 
      
 

       

 

 

And make some substitutions such as
1 1 1 1 1, , ,X P Q P QP K KP          , the upper 

formula is equivalent to (8). 

Remark 1. In this paper, the control systems with actuator saturation and uncertainties have been considered. 

The stable condition has been given in terms of linear matrix inequality. 

4. Simulation Examples 

Example 1. Consider the following saturated constrained time-delay systems (4), in order to compare with 

reference [3], some aspects have to be specified: 

0 1 0.1 0.2 0.2
, ,

0.3 0 0 0.3 1dA A B
     

       
     

, 1 2 3 0D D D   , 0.1d  .  

By using the Algorithm in reference [3], the controller can be obtained as: 

( ) [2.3306  1.8232] ( ).u t x t    

On the other hand, by using the proposed approach in this paper, we solve the linear matrix inequality (9), 

the state feedback controller can be obtained as: 

( ) 2 ( ) [1.4369  0.3481] ( ).u t Kx t x t     

(1) Comparison of systems states simulation results with two algorithms 

By selecting the initial value condition such as: 

7
(0) .

6
x

 
   

  

the state 1 2( ), ( )x t x t  response curves of the systems are as in Figures 1 and 2. 
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Figure 1. The state 1( )x t  response curves of the systems. 

 

Figure 2. The state 2 ( )x t  response curves of the systems. 

In the Figures 1 and 2, the solid line is the response for the systems states with algorithm in 

Theorem 2. The dot-dashed line presents the response with the algorithm in reference [3]. From the 

faster behavior of the systems states, the algorithm in Theorem 2 is better than the algorithm in 

reference [3], and the smoothness of solid line is also better than that of dashed line. Therefore, the 

algorithm in Theorem 2 presents better results than the algorithm in reference [3].  

(2) Verification of the systems performance 

In order to verify the system performance, the dispersed Integral of Absolute Error (IAE) 

function is used as performance indicators to evaluate the system performance, which is: 

0
| ( ) |IAE e t dt



    

The curves of IAE function that use algorithm in Theorem 2 and the algorithm in reference [3] 

are shown in the Figure 3. 
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Figure 3. The curves of Integral of Absolute Error (IAE) of the two algorithms. 

The solid line is the curve of the IAE function using the algorithm in Theorem 2, and the dotted 

line is the curve of the IAE function using the algorithm in reference [3]. As time goes on, the change 

using the algorithm in Theorem 2 is less than the change using the algorithm in reference [3], 

obviously. Therefore, the algorithm in Theorem 2 can improve the systems control performance 

effectively. 

Example 2. The 1/4 body active suspension system can be simplified to a 2 degree of freedom (2-DOF) 

vibration system with springs, dampers and actuators. According to Newton’s second law, the equation of 

motion for the active suspension model of 1/4 vehicle body is obtained as follows: 

1 1 1 2 1 2 1

2 2 1 2 1 2 1 2 0 2

( ) ( )

( ) ( ) ( )

m X K X X b X X u

m X K X X b X X K X X u

    

       

  

  
 (10) 

where 1 2,m m  are respectively the upper and lower mass of the spring, 1 2,K K  are the suspension spring 

stiffness and tire stiffness respectively, b  is the equivalent suspension damping coefficient, u  is the acting 

force produced by the actuator, 1 2,X X  are vertical displacement of body and suspension respectively, and 

0X  is the road input. 

Selecting Vertical Displacement 1X  of Car Body, Suspension vertical displacement 2X , Vehicle body 

vertical velocity 1X  and Vertical Speed with Suspension 2X  as the state 

variable x 1 2 1 2

T
x X X X X   

  . Selection of control input vector  0

T
u u X  . 

The output performance of suspension can be determined according to the vehicle ride comfort evaluation 

index. The ride comfort is usually evaluated by weighted acceleration root mean square value ( )wa , from which 

1 2

T
y X X   

   is selected as the control output. From this, the following state equation and output 

equation are established: 

x Ax Bu

y Cx Du

 

 


  

where 
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1 1

1 1 1 1

1 1 2

2 2 2 2

0 0 1 0

0 0 0 1
k k b b
m m m m

k k k b b
m m m m

A

 

 
 
 
  

 
  

,
1

2

2 2

1

1

0 0

0 0

0m

k

m m

B

 
 
 
 
 
  

  

1 1

1 1 1 1

1 1 2

2 2 2 2

k k b b
m m m m

k k k b b
m m m m

C
 

  
  

  

, 1

2

2 2

1

1

0m

k

m m

D
 

  
  

  

According to the theoretical analysis of the 1/4 body active suspension model and the saturated output 

characteristics of the actuator, an example is simulated by using MATLAB through the Proportion Integration 

Differentiation (PID) control method. The parameters of active suspension used for modeling and simulation 

are as follows: 1 2 1 2225kg, 30kg, 18,500N/m, 1600N/m, 1600N s/mm m k k b      , the step 

signal is used as the input for pavement. 

Figure 4 shows the relationship between mass output acceleration and time on the spring of a 

1/4 body active suspension model controlled by PID. Considering that proportional link (P) has the 

greatest impact on the whole system, this paper mainly analyzed the influence of PID control on 

active suspension by changing P values. When P = −100, −200 and −300, the relationship between 

simulation acceleration and time of suspension model is described in Figure 4. 

 

Figure 4. The Relation between Acceleration and Time at Different P Values. 

Figure 4 shows that the maximum amplitude range of suspension output decreases with the 

increase of P absolute value. By adjusting the P value, PID control can effectively absorb the 

vibration output of suspension in this system. However, as the absolute value of P increases 

gradually, the frequency of system vibration also tends to increase, which makes the convergence 

time of the system increase and the stability of the system worse. Therefore, the PID control can 

effectively absorb the vibration output of the suspension, but it cannot guarantee the convergence 

speed of the system. 

In order to compare the simulation results of systems states with PID controller, we used the 

proposed approach in this paper. Solving the linear matrix inequality (9), we get the state feedback 

controller: 

( ) 2 ( ) [ 4.3472  0.2592] ( ).u t Kx t x t     
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The Relation response curve between Acceleration and Time is as in Figure 5. 

 

Figure 5. The Relation between Acceleration and Time. 

From the Figure 5, one can see that the faster behavior and the smoothness of the curve of the 

Acceleration are better than that of PID controller. The results show that the proposed controller can 

improve the dynamic performance of the systems. The algorithm in Theorem 2 is better than the PID 

controller. 

In order to compare the systems performance, the curves of the IAE function of the two 

algorithms are drawn in Figure 6. 

 

Figure 6. The curves of IAE of the two algorithms. 

The solid line is the curve of the IAE function using the algorithm in Theorem 2, and the dotted 

line is the curve of the IAE function using PID controller. Obviously, the algorithm in Theorem 2 is 

better than the PID controller. 

5. Conclusions 

In this paper, the asymptotic stability condition and state feedback control design method for 

the class of time-delay systems with actuator saturation are presented. By introducing a parameter 

matrix into the Lyapunov function, the conservativeness of the stability condition of the system is 

reduced. 
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