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Abstract: The presence of imbalance in data significantly complicates the classification task,
including fuzzy systems. Due to a large number of instances of bigger classes, instances of smaller
classes are not recognized correctly. Therefore, additional tools for improving the quality of
classification are required. The most common methods for handling imbalanced data have several
disadvantages. For example, methods for generating additional instances of minority classes can
worsen classification if there is a strong overlap of instances from different classes. Methods that
directly modify the fuzzy classification algorithm lead to a decline in the interpretability of the
model. In this paper, we study the efficiency of the gravitational search algorithm in the tasks of
selecting the features and tuning the term parameters for fuzzy classifiers of imbalanced data. We
consider only data with two classes and apply the algorithm based on extreme values of classes to
construct models with a minimum number of rules. In addition, we propose a new quality metric
based on the sum of the overall accuracy and the geometric mean with the presence of a priority
coefficient between them.

Keywords: fuzzy classifiers; gravitational search algorithm; imbalanced data; geometric mean;
feature selection

1. Introduction

The classification task is to divide objects in the feature space into classes or categories based on
retrospective observations with the given class label values. Real data are characterized by an
imbalanced distribution of classes when the number of instances in some classes exceeds the number
of instances in other classes. This situation is mainly explained by the limited occurrence of minority
class instances [1]. For example, the normal web browsing traffic is dominant when classifying
traffic on the Internet. However, detection of rare malicious connections is very important for
training [1]. Similar examples can be given from the field of medical diagnosis, detection of bank
fraud, and diagnosis of equipment malfunctions.

The search for regularities in imbalanced data is a difficult task for specialists in data mining,
machine learning, pattern recognition, and statistics [2]. The main problem of constructing classifiers
of imbalanced data is poor adaption of standard training algorithms, which leads to a significant
reduction in the effectiveness of classification. Due to the imbalance between classes, the standard
classifier usually defines instances of minority classes incorrectly, since the model is retrained on
instances of bigger classes [1].

It is not enough to evaluate the constructed classifier of imbalanced data using the overall
accuracy [3]. Positive classes (with the smallest number of instances) are usually more important
than negative classes (with the biggest number of instances). Reducing misclassification of minority
class instances is crucial in many real-world challenges [4,5]. However, improving the classification
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quality of positive classes often leads to poor recognition of instances of negative classes, as
instances of different classes often intersect. Thus, in each data classification task, the developer of
the data analysis system needs to prioritize; either to focus on improving the overall accuracy or try
to correctly identify positive instances with some worsening in the definition of negative ones, or to
look for some compromise. Finally, it all depends on the purpose of creating the model and the
requirements for it.

There is a large list of classification methods, for example, naive Bayes classifiers, support
vector machines, artificial neural networks, and others. Unlike other methods, fuzzy classification
does not imply the existence of rigid boundaries between neighboring classes. A classifying object
may belong to several classes with various degrees of confidence. The advantage of a fuzzy classifier
is understandability and interpretability of the rules, which makes fuzzy classifiers a practically
useful data analysis tool.

In many real-world applications, an accurate, but also a computationally simple system, is
required. Therefore, we propose to use two procedures for constructing a fuzzy classifier. The first is
to shrink the input feature space to reduce complexity. The second is to tune the fuzzy classifier
parameters, which increases the definition quality of the output class label. Since these two
procedures are formulated as optimization problems, a single optimization algorithm is applied to
solve both of them. We use the gravitational search algorithm (GSA), which has previously proven
itself well when working with a fuzzy classifier [6].

Since the goal of our work is to improve the efficiency of the fuzzy classifier of imbalanced data,
it is necessary to choose an appropriate metric to use as a fitness function for the GSA. We explore
the possibilities of applying the following metrics: the overall accuracy, the geometric mean, and a
new function that combines the two previous estimates to find a compromise version of the
classifier.

The main contributions of this paper are as follows.

1. We propose a new metric based on the sum of the overall accuracy and the geometric mean of
each class accuracy. The presence of the coefficient controls the priority of the estimates used.

2. We demonstrated the use of the feature selection method based on the binary gravitational
search algorithm in order to reduce the effect of imbalance on classification. The application of
the new metric as the fitness function assisted to find subsets of relevant features for both
classes.

3. We presented the combination of binary and continuous algorithms for constructing fuzzy
classifiers of imbalanced data. The continuous gravitational search algorithm helped to increase
the quality of classification on selected features.

This article is organized as follows. Section 2 discusses the levels of problems when working
with imbalanced data and provides basic methods for solving them. The procedure for constructing
a fuzzy classifier and objective functions under consideration are described in Section 3. Section 4
gives a short description of the gravitational search algorithm. Sections 5 and 6 present the
experimental results and their analysis, respectively. Finally, we present the conclusions of our work
in Section 7.

2. Related Works

Here, we represent the main approaches to improving the quality of imbalanced data
classification. There are three levels of training problems on such data which include: (1) Problems
associated with the definition of classification performance indexes, (2) problems related to the
learning algorithm, and (3) problems related to the training data [7].

The first level is determined by the lack of an objective method for evaluating (quantitative
measures) existing knowledge to select the optimal classifier. The understanding that the overall
accuracy is an insufficient measure for classifying imbalanced data has led to the application of new
metrics such as the AUC (the area under the ROC curve) [8], the geometric mean, the balanced
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accuracy, the F3-measure, and others [9]. To assess the effectiveness of the classifiers, the authors in
[9] have proposed 18 indicators, which are classified into the following three categories:

1.  Threshold metrics geared towards minimizing the number of errors, i.e., the overall accuracy,
the averaged accuracy (arithmetic and geometric), the F3-measure, and the Kappa-statistics;

2. Metrics based on the probabilistic understanding of an error and used to assess the reliability of
classifiers, such as the mean absolute error, the mean square error, and the cross-entropy;

3. Metrics based on estimating instance separability, for example, the AUC, which is equivalent to
Mann-Whitney-Wilcoxon statistics [9] for two classes.

After analyzing the above 18 indicators, the authors of [7] conclude that the choice of metrics for
imbalanced data is of paramount importance. Fernandez et al. [10] have described the use of a
multiobjective evolutionary algorithm with a pair of metrics, which are the overall accuracy and the
F1 measure. They concluded that the algorithm with simultaneous optimization of this pair of
metrics can lead to a balanced accuracy for both classes.

Classification algorithms make some changes to their construction and training processes in
order to reduce the influence of imbalance in classes on the classification quality [7].

Cost-sensitive learning methods are based on modifying the classification algorithm so that the
costs of misclassifying the instances of minority classes are greater as compared with the instances of
majority classes. A typical solution, here, is to use a weight matrix that takes into account the costs of
each incorrectly classified instance [11]. This solution is not suitable for a fuzzy classifier since it does
not estimate the probability of assigning an object to a particular class.

There is a small list of methods for creating fuzzy classifiers in the presence of imbalance.
Weights were added to fuzzy rules in [12-14]. Adding a weight function allows setting the priority
of some rules over others when determining the output of the classifier. The weight values are most
often configured by optimization algorithms. Another method of changing the fuzzy classification
tool is to introduce a bipolar model using the principle of labeling the class, called maximum rule.
The adjusted degree of belonging to each class is calculated based on the positive and negative
degrees of membership in the bipolar fuzzy classifier [15]. The disadvantage of this model is the
need to additionally introduce and adjust the matrix of dissimilarity coefficients and the difficulty to
apply this method with another principle of assigning labels. Furthermore, the addition of
supplementary modifications to fuzzy systems complicates the interpretation of the resulting
models. Consequently, methods for improving the quality of the classifier without interfering
directly with the classification algorithm are relevant.

Data play an integral role in machine learning and data mining research. A number of data
preprocessing methods have been developed in order to correct the imbalance in the data.
Over-sampling methods based on increasing instances of a positive class try to produce a balanced
dataset by creating additional instances of the minority class, while undersampling methods reduce
the number of majority class instances to achieve a quantitative balance. The most famous
representative of oversampling is the SMOTE and its modifications [5,16-18], in which the
generation of new instances from a positive class depends on the measure of proximity to existing
instances. Among undersampling methods, random undersampling (RUS) is often used. This
non-heuristic method aims to eliminate class imbalance by randomly excluding instances of the
negative class. Obviously, the disadvantage of RUS is the loss of information about data of a
negative class [7,16,19].

Hybrid methods that combine two previous strategies of adding and removing data instances
are described in [20,21]. In order to preserve useful information about majority classes, clustering
methods have recently been applied [7,22,23].

Preprocessing methods are universal and easy to apply but have low efficiency and cannot be
used as the only tool for solving the imbalance problem in classes. In addition, creating new
instances of data is not acceptable for some classification tasks. For example, the artificial creation of
patient’s records can lead to errors in diagnosing diseases.

Another way to change data to improving the quality of recognizing minority classes is by carry
out a procedure for selecting informative features. Feature selection consists of selecting, from the
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input feature space, such a subset that would have fewer attributes but provide comparable
classification accuracy relative to the full set. The formed subset should be sufficient to adequately
represent all classes in the training samples. Selection methods are usually divided into four types,
namely, integrated methods, filters, wrappers, and hybrid methods.

A peculiarity of the integrated (built-in) methods is the principle of feature selection, which is
part of the general mechanism of training a model on specific data [24]. An example of applying
such methods is the selection of features during training a decision tree [25]. However, not every
classification algorithm embeds the selection process into the learning process.

Filtering methods, on the contrary, are universal, as they are used independently of the
classifier at the stage of data preparation. Four groups of filters are distinguished in [26]. The
methods which make up the first group are based on the distance. They select features that provide
the greatest distance between classes. The second group of filters uses the calculation of the amount
of information. Such methods select features which, when attached to an existing set, reduce its
entropy [27]. The third group determines the relationship between features and classes using the
correlation coefficient or mutual information [28]. The fourth group is represented by filters that
minimize the number of inconsistent features. A case of inconsistency is the presence of two
instances belonging to different classes but having the same values of the same features. Filter
algorithms are easy to use but have low efficiency.

Wrappers are methods that evaluate each subset of features based on the effectiveness of the
constructed classifier. As a search algorithm, they usually use metaheuristic algorithms. Since such
algorithms are iterative, the classifier needs to be reconstructed after each iteration. Wrapper
methods can require considerable time and resources for large datasets [24]. The advantage of
wrappers is the ability to choose a set of features that will be optimal for a particular classification
algorithm.

The method of applying a genetic algorithm for feature selection in the wrapper mode based on
the SVM classifier is described in [29]. The fitness function of this algorithm is a measure consisting
of a compromise between the geometric mean and the share of selected features. The results showed
that the proposed method selects features that improve the recognition of minority classes.

Hybrid feature selection methods consist of a combination of filters and wrappers. First, a filter
is used for preliminary selection, then a classifier is built on the resulting subset and a wrapper
algorithm is launched [30]. This approach is described in [31], which uses symmetric uncertainty for
filtering in order to weigh features relative to their dependence on class labels, and the harmonic
search as the wrapper algorithm. Hybrid selection methods can be a good solution for data with a
large number of features.

3. Materials and Methods
3.1. The Fuzzy Classifier

3.1.1. The Fuzzy Classifier Structure

Classification algorithms determine the most suitable class from the set of all classes C = {c1, c2,
..., ci} to each object xp = {xp1, xp2, ..., xpm} from the set of n objects (p € [1, n]), where Xy is the value of
the kth feature of the pth object, k € [1, m], m is the number of features. The fuzzy classifier is
constructed on the basis of production rules, each of which has its own set of fuzzy terms. A fuzzy
term is a structure on the feature definition domain, reflecting the degree of object membership to a
rule. The terms can be described by membership functions of various kinds such as triangles,
trapezoids, bells, or Gaussian-type functions. In this work, we used the membership functions of the
Gaussian type, which differ from others by the property of symmetry. Figure 1 shows an example of
partitioning some attribute x1 by Gaussian terms.
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Figure 1. Example of a fuzzy partition of feature x1 by two symmetric fuzzy terms.

A Gaussian fuzzy term characterizing the kth feature in the ith rule is given by the following
expression:

,(Lbkf 2
T,(x)=e * ’

where i is the rule number to which the term (i € [1, 7]) belongs, r is the number of fuzzy rules, b is
the coordinate of the term vertex, and c is the function dispersion. The term parameters listed
sequentially for each feature compose the antecedent vector 0 = (b, cu1, b1z, c12, bis, ¢13, bay, c21, ..., b,
Cmr).

The standard fuzzy rule consists of the antecedent part, which lists the variables and their
terms, and the consequent part, which specifies the output class label as:

Ri: If x1is Ta and x2is Tz and ... and xu is Tin then classis cj,

where ¢ is the label of the jth class from the set of classes C, class is an output variable.

To use the possibility of feature selection in the wrapper mode, the binary feature vector S = (s,
sz, ..., sm) must be introduced into the antecedent part. If sk = 1, then the kth feature is taken into
account in the classification; otherwise the feature is ignored. Given the vector S, the fuzzy rule will
change as follows:

Ri: If (s1Ax1)is Tin and (s2Ax2)is Tiz and ... and (smAxm) is Tim then classis ¢j,

where the record (spAxp) indicates the use (sp = 1) or ignorance (sp = 0) of the feature and its terms in
the classifier. The binary vector S = (s, sz, ..., su) is formed by the feature selection algorithm.

3.1.2. Generation of the Fuzzy Rule Base

There are various methods for generating fuzzy terms and forming a fuzzy classifier rule base
such as uniform partitioning, random generation, clustering [32], and others. In this paper, we apply
an algorithm based on the extreme values of classes of the training data. This algorithm constructs
compact classifiers by using the minimum possible number of rules. In this case, the number of rules
is equal to the number of classes, that is, there is one rule for each class.

The algorithm based on extreme values of classes is presented in [6]. The first step is to
determine the minimum and maximum values of the features for each class. In the second step, the
terms are generated in such a way that the entire definition area is covered in the interval between
the two extremes, and the top of the term is located in the middle of this segment. In the third step,
the rule base is formed. Each feature is represented in the rule by only one term. The terms belonging
to each separate class are combined in the antecedent part of the rule by the conjunction operation.
The consequent part of the rule contains the label of this class.

The presented algorithm is very simple, but its efficiency is not high. Therefore, it is necessary
to use parameter tuning as an additional training step. The description of the procedure for term
parameter tuning with the gravitational search algorithm is given in Section 3.2.
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3.1.3. Output of Fuzzy Classifier

The output of the classifier for the input string x, is formed by sequentially performing three
steps. In the first step, the value of the membership function of the object to each term is calculated:

Hy (xpk) =T (xpk) .

The degree of the object membership to each rule is evaluated in the second step:
B =] TH. (o).
=1

The third step is to define the output class by the maximum rule. The output of the classifier
will be the class that corresponds to the rule with the highest degree of membership:

class(x,) = c,., j*=argmaxp,(x,),

1<i<sm

After the procedure of forming the output has finished, the constructed model can be evaluated
using various performance indexes.

3.1.4. Classification Quality Evaluation

The most common classification quality criterion is the overall accuracy, which is the
percentage of correct classification. In the observation table {(xy; ¢y), p € [1, z]}, where z is the number
of instances, the measure of accuracy can be given as follows:

1, ifc, = arglrggiﬁ (Xp;(‘),S)
r=1 | 0, otherwise

Acc(0,S) = ’
z

where f(xp; 0, S) is the output of the fuzzy classifier with the parameter vector © and the binary
feature vector S at the point xp. As noted earlier, the overall accuracy is not an objective assessment
of classification quality when there is an imbalance in the class distribution.

The geometric mean is a sensitive estimate for the accuracy of each class:

! !
GM(0,8) = ([ Acc,0.5)),
i=1

where Acci(0, S) is the classification accuracy of ith class:

5 |1, ifcp =argmaxf/.(xp;9,S)

1<j<m

»=1 |0, otherwise
Acc (0,8) = ,
z

where zi is the number of instances with the ith class label. Thus, the fewer instances represent a
class, the geometric mean increases more significantly with an increment in the number of correctly
classified instances of that class. In the case when one of the classes is classified absolutely
incorrectly, the geometric mean is zero.

While using general accuracy as the objective function, on the one hand, the classifier prefers to
focus on recognizing negative classes. The geometric mean, on the other hand, can lead to a large
loss in the quality of classification of negative classes, even if the accuracy of positive classes is low.
We propose to use a compromise option that combines both of these metrics and allows varying
their importance degree using the coefficient y € [0; 1]:

Fit(0,8) = v-GM(0,S) + (1-7)- 4cc(®,S) .

The problem of constructing a fuzzy classifier reduces to searching for the maximum of the
selected function.
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3.2. Training a Classifier with the Gravitational Search Algorithm

For selecting feature and tuning term parameters we suggest using the gravitational search
algorithm in two versions, i.e., binary for optimizing the binary feature vector S and continuous for
optimizing the continuous vector of term parameters 0. The GSA was first proposed by Rashedi,
Nezamabadi-pour, and Saryazdi in 2009 [33], and in the same year, its binary version was described
[34]. This algorithm is widely used to solve various problems. For example, the GSA was applied to
optimize parameters in a geothermal power generation system in the study of Ozkaraca and
Kecgebas [35], to determine the location of a microseismic source in order to warn about explosions in
tunnels in [36]. Mahanipour and Nezamabadi-pour described the use of GSA for the automatic
creation of computer programs in [37] and the feature construction in [38].

The application of the binary and the continuous versions of the GSA for the fuzzy classifier has
been described in detail earlier in [6]. In the binary GSA, a population of particles corresponding to
binary feature vectors S is generated randomly. At each iteration, the algorithm calculates particle
masses, gravity, acceleration, and velocity. Transformation functions are applied to transform the
obtained speed value into a binary equivalent in order to update the feature vector. In this paper, we
use the V-type transformation function:

IF (rand(0;1) < 2 arctan(g v (¢+1))),then s/ (t+1) = E(t), else s’ (t+1) =57 (?)
T

7

where rand(0;1) is a random number in the range from 0 to 1, ' is the speed of the dth element of

the ith particle, S,.d is the value of the dth element of the ith feature vector, and t is the iteration
number.

The continuous GSA optimizes the numerical vector 0, consisting of the term parameters. In
this version of the algorithm, the population is formed as follows: The first vector is input to the
algorithm after the stage of creating the classifier structure and the remaining vectors are generated
based on the first one with some deviation. Unlike the binary version, in GSA. the vector value is
updated by the simple addition of the current value and the calculated speed:

0/ (t+1) =0+ (t+1),

where ¢/ is the value of the dth element of the ith vector.

Five parameters are used in both versions of the GSA: the number of iterations ¢, the number of
particles P, the value of the gravitational constant Go, the coefficient of the gravitational constant
decrease a, and the variable for calculating the attractive force . The computational complexity of
the GSA with n agents is O( x d) where d is the search space dimension [39]. We did not modify the
original GSA, therefore, both algorithms have the complexity O(P x d), where P is the number of
particles and d is the size of the dataset.

The classifier training procedure is as follows: After the algorithm based on extremes values of
classes has created the initial vector 0, the binary GSA searches for the optimal vector S; then, the
classifier is rebuilt on the obtained set of features Seest and the algorithm for optimizing the term
parameters is launched; the continuous GSA runs for a given number of iterations and provides the
best parameter vector Ovest; and the resulting Svest and Ovest are used to construct and validate the
classifier on test data.

4. Experimental Results

The experiment was performed on imbalanced binary datasets from the KEEL repository [40].
The sets are described in Table 1. Here, Fan is the number of features in a dataset, Stran is the number
of lines, Str+is the number of rows of the smallest class, Str-is the number of rows of the largest class,
and IR is the imbalance ratio. The imbalance ratio is the ratio of the number of rows of a negative
class to the number of rows of a positive class.
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Table 1. Description of the datasets used in the experiment.

No Data Set Fan  Stran Str+  Str- IR

1 vehicle0 18 846 199 647 3.25
2 newthyroid2 5 215 35 180 5.14
3 segment0 19 2308 329 1979 6.02
4  page-blocksO 10 5472 559 4913 8.79
5 vowel0 13 988 90 898 9.98
6 cleveland-Ovs4 13 177 13 164 12.62
7 ecoli4 7 336 20 316 158
8 yeast4 8 1484 51 1433 28.1

Five-fold cross-validation was applied in all stages of the experiment. The data were divided
into five pairs of training and test samples. The structure of the fuzzy classifier was formed by the
algorithm based on the extreme values of classes with symmetric Gaussian terms. Since only two
classes are represented in all data, the number of rules in all cases was two.

In the first stage of the experiment, the efficiency of the continuous gravitational algorithm was
tested when the priority coefficient y in the fitness function was changed. The tuning of the fuzzy
classifier parameters was carried out on full sets of features. The following parameters were set for
the GSA.: 750 iterations, 15 particles, Go=10, a =10, and ¢ = 0.01. The particle population was cleared
after each 150th iteration, except for the best particle on the basis of which the population was
generated anew. The parameters were chosen empirically as the most universal for the selected
datasets.

Table 2 contains the results of the first experimental stage, used to assess the quality of the
constructed model based on the following: the classification accuracy, the geometric mean, as well as
the percentage of correctly classified instances of the positive class relative to the total number of
instances of the positive class (true positive rate) and the percentage of correctly classified instances
of the negative class relative to the total number of instances of the negative class (true negative
rate). The table shows the results obtained on the test data as an average of three runs (Avr.), and the
best one (Best).

Table 2. Classification results obtained while using the continuous gravitational search algorithm for
tuning fuzzy classifier parameters.

Y 0 1 0.25 0.5 0.75
Avr. Best Avr. Best Avr. Best Avr. Best Avr. Best
vehicle0
Acc. 81.64 8250 8152 82.03 8475 85.11 82.62 86.28 82.82 84.28
GM 5747 5956 69.28 7036 74.85 8145 7428 81.63 74.12 80.40
TPrte 34.84 3769 5410 55.78 6256 7723 63.65 7487 6293 74.82
TNrate 96.03 9629 89.95 90.11 9155 8748 8846 89.80 8891 87.16
newthyroid2
Acc. 9876 99.07 98.76 99.07 98.60 99.07 9891 99.53 98.45 99.07
GM  98.05 9824 98.85 99.44 9835 9944 9854 99.72 9746 98.24
TPrte 97.14 97.14 99.05 100.00 98.10 100.00 98.10 100.00 96.19 97.14
TNrate  99.07 99.44 9870 98.89 98.70 98.89 99.07 99.44 98.89 99.44
segment0
Acc. 9129 9142 90.83 9090 9141 9146 91.13 91.16 90.87 90.90
GM 9236 9282 9415 9431 9353 9357 93.85 9399 94.05 94.07
TPrate 9392 9483 99.09 9939 96.65 96.65 97.87 98.18 98.78 98.78
TNrate 90.85 90.85 89.46 89.49 90.53 90.60 90.01 89.99 89.56 89.59
page-blocks0

Acc. 9324 9393 8896 91.03 9337 9419 9285 9359 90.99 91.01
GM 6530 7239 7679 8059 7464 7705 74.01 79.42 7418 7828
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TPrate 44.07 5331 6452 6959 5736 60.64 5695 6530 58.64 65.86
TNrate 98.83 9855 91.74 9347 9747 98.01 9693 96.80 94.67 93.87
vowel0
Acc. 9211 9271 8859 89.67 96.86 97.67 96.19 96.86 95.75 96.46
GM 4799 54.09 90.22 9215 9394 96.69 95.01 96.75 94.75 97.04
TPrate  36.67 46.67 9259 9556 90.74 9556 93.70 97.78 93.70 97.78
TNrate 97.66 9588 88.20 89.09 9748 9789 9644 94.77 9596 96.33
cleveland-Ovs4
Acc. 9286 9551 87.03 9037 91.76 9549 90.79 9325 88.92 9041
GM 5443 7317 7450 8036 7147 73.00 6610 7220 70.73 76.32
TPrate 38.46 53.85 6154 6923 56.67 56.67 46.15 53.85 57.78 66.67
TNrate 97.15 98.78 89.02 92.07 9473 98.77 9431 96.34 91.67 92.69
ecoli4
Acc. 9691 9732 9425 97.02 96.92 97.62 9578 95.84 94.84 9553
GM 7617 79.06 91.06 9590 7871 81.74 7825 85.83 82.07 85.73
TPrate  61.00 65.00 88.33 95.00 65.00 70.00 66.00 80.00 73.33 80.00
TNrate 99.18 9937 94.62 9715 9894 9937 97.66 96.84 9620 96.52
yeast4
Acc.  96.52 96.63 81.81 86.66 92,57 92.05 89.31 88.54 85.47 88.88
GM 211 6.32 7828 80.18 69.12 7476 76,55 83.22 7441 78.20
TPrate  0.65 196 75.16 7451 5145 60.55 66.01 7843 64.61 68.55
TNrate 100.00 100.00 82.04 87.09 94.03 93.17 90.14 8890 86.21 89.60

The purpose of the second experimental stage consisted of verifying the effectiveness of GSA on
the task of selecting features in the wrapper mode for the fuzzy classifier of imbalanced data. The
binary gravitational algorithm with the same coefficient y was run three times on each sample. Due
to the stochasticity of the algorithm, one to three different feature sets could be obtained on the same
sample. Next, a set of features with the highest fitness function value was selected. A classifier was
built on this set; the parameters of the created model were tuned by the continuous algorithm. The
obtained values of quality indicators were averaged over three independent runs of the GSA..

The following parameters were empirically selected for the binary gravitational algorithm: 750
iterations, 15 particles, Go = 10, a = 10, and & = 0.01. The parameters of the continuous algorithm did
not differ from those used at the first stage of the experiment. Table 3 shows the results of the
classifier on the selected feature sets before parameter tuning (GSAv) and after optimization (GSAb +
GSA.). In the following table and further, formatting the cells according to a color scale was used to
visualize the results. The values presented in each row were compared with each other. The hue of
the color depended on the relative magnitude of the value compared to other cells in the row. Thus,
the worst results are marked in red, the best are highlighted in green, the remaining values are
colored in intermediate colors.

Table 3. The results of constructing fuzzy classifiers on imbalanced datasets obtained with feature
selection and parameter tuning.

Y 0 0 1 1 0.5 0.5
GSAbr GSAb»+GSA: GSAbr GSAv+GSA: GSAbr GSAb+ GSAc

Dataset vehicle0
Features 9.00
Accuracy = 83.33 81.09 -

GM 71.78

TPrate 58.79 69.35

TNrate 87.94 88.87
Dataset newthyroid2
Features —
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Accuracy
GM 98.52
TPrate 97.14
TNrate

Dataset
Features
Accuracy
GM
TPrate
TNrate
Dataset
Features
Accuracy
GM
TPrate
TNrate
Dataset vowel0
Features
Accuracy
GM 85.64
TPrate 82.22
TNrate 89.53
Data set
Features
Accuracy
GM
TPrate
TNrate
Dataset
Features
Accuracy
GM
TPrate
TNrate
Dataset
Features
Accuracy
GM
TPrate
TNrate

6.80
97.40
97.08
96.66
97.52

page-blocks0

3.80

92.20 92.59

74.14 73.31 76.89
60.00 56.17 61.96

96.30 96.07

74.65
56.65

88.94
90.00

92.22

94.54

6.60
89.97
66.57
48.72
93.29

84.05 87.26 90.43
67.05
52.94

88.49 91.18

84.48

Table 4 shows fuzzy classifiers based on the best feature sets. The best sets here are those that
gain the highest averaged value of the objective function with a given value vy over five samples.

Table 4. The results of constructing fuzzy classifiers on the best feature sets found by the binary
gravitational algorithm.

Metrics Results
DataSet vehicle0
Y 0 1 0.5
Features 1,4,8,9,10,13,14,15,16 1,4,6,7,9,10,12,13,15,16,18 1,5,7,9,10,11,12,15,16,17,18
F
Acc. 84.00

GM 80.58
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TNrate 8650
Dataset newthyroid2
Y 0 1 0.5
Features 1,2,5
F
Acc.
GM
TPrate
TNrate
Dataset segment0
Y 0 1 0.5
Features 1,4,6,11,14,18,19 1,6,8,14,16,18 6,8,11,14,18,19
F
Acc.
GM
TPrate
TNrate
Dataset page-blocks0
Y 0 1 0.5
4,10

Features
F
Acc.
GM
TPrate
TNrate

Dataset vowel0
Y 0 1 0.5
Features 5,6,7,8,9,10,13 4,5,6,7,9,13 4,5,6,7,8,13
F
Acc.
GM
TP rate
TNrate 98.18
Dataset cleveland-Ovs4
Y 0 1 0.5
Features 4,8, 10 1,4,7,9,10,13
F 3
Acc.
GM

92.85
81.52
70.60
95.39

93.04
85.19
TP rate 7692
TN rate 9431
Dataset ecoli4
Y 0 1 0.5
Features 2,3,4,57
F
Acc.
GM
TPrate
TN rate
Dataset
Y
Features
F
Acc.
GM
TP rate
TNrate

91.93
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5. Discussion

To confirm the effectiveness of the gravitational algorithm for optimizing the fuzzy classifier of
imbalanced data, we performed a five-stage comparison.

The task of the first stage was to check the quality of the fuzzy classifier in the presence of
feature selection. For this purpose, we compared the results of fuzzy classifiers constructed on
complete datasets (Table 1, average values for three runs) with those built on abbreviated sets of
features (Table 3). In both cases, the results obtained after setting the GSA. parameters were taken
into account. Table 5 shows the results of the pairwise comparison of the number of features by
Wilcoxon'’s sign rank criterion for linked samples. The significance level is 0.05; the null hypothesis
states that the difference median between the two samples is zero.

The first three rows of the table are the comparison of the number of features in the original set
(Fan) and in the selected feature sets (Fvin). The last three rows are the comparison of the number of
features when using the GSAb with different values of the coefficient v in the fitness function.

Table 5. The results of comparing classifiers by the number of selected features.

Feature Sets Standardized Test Statistic p-Value Null Hypothesis
Fau = Foin, y=0 2.521 0.012 Reject
Fait = Foin, y =1 2.521 0.012 Reject
Fai = Foin, Yy =0,5 2.524 0.012 Reject
Foin, y=0— Foin, y =1 0 1 Retain
Fbin, y =0 — Foin, y =0.5 0.851 0.395 Retain
Fbin, y =1 = Foin, y=0.5 0.638 0.524 Retain

On the basis of the results of the verification, we conclude that the binary gravitational
algorithm can significantly reduce the number of features working with imbalanced data in the
wrapper mode of the fuzzy classifier. In addition, there is no significant difference in the number of
features when using one or another value of y.

Table 6 shows the results of comparing the performance indexes for classifiers built on complete
and selected sets of features when changing the priority coefficient y in the fitness function. The
obtained values of the Wilcoxon's sign rank criteria are grouped for each of four quality indexes (the
total accuracy, the geometric mean, the percentage of correctly classified instances of the positive
class, and the percentage of correctly identified instances of the negative class).

Table 6. The results of comparing classification performance indexes in the absence and presence of
feature selection performed using the binary gravitational search algorithm.

Metric vy Standardized Test Statistic p-Value Null Hypothesis

Accuracy -2.197 0.028 Rej e.ct

(all-bin) -0.98 0.327 Retain

0.5 -1.68 0.093 Retain

-1.82 0.069 Retain

(alIG— Il\)/in) 1 -14 0.161 Retain

0.5 -2.24 0.025 Reject

TPoe -1.544 0.123 Retain

(all-bin) 1 -1.051 0.293 Retain

0.5 -2.036 0.042 Reject

- N - B
(all-bin) ’ :

0.5 -0.877 0.38 Retain
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Thus, the results of the first stage of the comparison show that the use of the GSADb for selecting
features in the wrapper mode of the fuzzy classifier of imbalanced data significantly reduces the
number of features while maintaining or increasing the quality of classification.

In the second stage, the effectiveness of the binary gravitational algorithm was tested in
comparison with popular methods of selecting features. We used a random search (RS) and a
filtering algorithm based on mutual information (MI).

The filter was executed as follows: The value of mutual information was calculated for each
feature with three randomly-selected neighbors. Next, the algorithm found the arithmetic mean of
these values. The set of selected features included only those variables whose mutual information
exceeded the value of the arithmetic mean. Both algorithms were run three times, among the
obtained feature sets, those with the best accuracy were selected. Fuzzy classifiers were constructed
on the selected feature sets using the algorithm based on extreme values of classes. The obtained
values were compared with the results of fuzzy classifiers built on the feature sets found by the
GSAb (Table 3). In this case, we considered the results without optimizing parameters. The average
performance indexes of the classifiers are given in Table 7 (F is the number of features).

Table 7. The results of constructing fuzzy classifiers obtained with the different feature selection

algorithms.

Alg. GSAv RS MI Alg GSAv RS MI
vy=0 vy=1 v=05 y=0 y=1 v=05

Data vehicle0 Data vowelQ

F 760  9.00 F

Acc. 80.61 81.09 Acc. 87.45 | 88.25

GM 71.78 GM

TPrate 58.79  53.29 TPrate

TNrate 84.70 87.94 89.02 TN 86.86 88.08

Data newthyroid2 Data cleveland-0_vs_4

F 320 320 F | 400 680 660 640

Acc. 98.60 98.60 Acc. 9378 88.70 85.86

GM GM 68.01

TPrate TPrate 53.85 53.75

TNrate 98.33 98.33 TNrate 89.63 88.41

Data Data ecoli4

F F 3.20 - 4.80

Acc. Acc. 96.13 96.73

GM GM 87.35 85.81

TPrate TPwe 80.00 80.00 75.00

TNrate TNwe 9937 9715 99.37

Data Data

F F 3.20 1640 3.00

Acc. Acc. 9421 91.24

GM  67.85 GM 2946 62.79

TPrate 42.04 TPrate 16.00 45.64

TNiate 94.00 TNate 88.49 97.00 92.88

Table 8 demonstrates the results of a pairwise comparison of the performance indexes of the
obtained systems by the criterion of Wilcoxon’'s sign ranks for linked samples. Here STS is the
standardized test statistic, p is the p-value, and NH is the null hypothesis. The left half of Table 8
shows the results of the comparison with the random search algorithm, the right half of the table
demonstrates the comparison with the filter based on mutual information.
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Table 8. Comparison of fuzzy classifier results obtained using different algorithms for feature
selection.

Algorithm STS p NH Algorithm STS p NH
Features
RS-GSA(y=0) 0981 0.326 Retain MI-GSA(y=0) 0281 0.778 Retain
RS-GSA(y=1) 1123 0.261 Retain MI-GSA(y=1) 0421 0.674 Retain
RS-GSA(y=0.5) 1.122 0.262 Retain MI-GSA(y=0.5) 035 0.726 Retain
Accuracy
RS-GSA(y=0) -2.521 0.012 Reject MI-GSA(y=0) -1.859 0.063 Retain
RS-GSA(y=1) -14 0.161 Retain MI-GSA(y=1) -0.14 0.889 Retain
RS-GSA(y=0.5) -196 0.05 Reject MI-GSA(y=0.5) -0.7 0484 Retain
GM
RS-GSA(y=0) -126 0.208 Retain MI-GSA(y=0) -0.169 0.866 Retain
RS-GSA(y=1) -2521 0.012 Reject MI-GSA(y=1) -1.68 0.093 Retain
RS-GSA(y=0.5) -2.521 0.012 Reject MI-GSA(y=0.5) -126 0.208 Retain
TPrate
RS-GSA(y=0) -0.14 0.889 Retain MI-GSA(y=0) 0.338 0.735 Retain
RS-GSA(y=1) 2521 0.012 Reject MI-GSA(y=1) -1.82 0.069 Retain
RS-GSA(y=0.5) -2371 0.018 Reject MI-GSA(y=0.5) -0.84 0.401 Retain
TNrate
RS-GSA(y=0) -2.383 0.017 Reject MI-GSA(y=0) -2.197 0.028 Reject
RS-GSA(y=1) -112 0.263 Retain MI-GSA(y=1) 0.84 0401 Retain
RS-GSA(y=0.5) -1.682 0.092 Retain MI-GSA(y=0.5) -0.14 0.889 Retain

The algorithms are statistically indistinguishable by the number of selected features. But the
value of the standardized test statistic shows that fuzzy classifiers, constructed on the features
selected by the gravitational search algorithm, have higher classification quality values in most
cases. Hence, the binary gravitational algorithm is more preferable for imbalanced data classification
in contrast to the random search or the filter based on mutual information.

In the third stage of the comparison, we compared our results with fuzzy classifiers based on
imbalanced data preprocessed by the SMOTE algorithm. We used a realization of the algorithm
from the open library [41] and all parameters were taken by default. After applying SMOTE, the
number of instances of the positive and negative classes was equal. Next, we conducted five-fold
cross-validation. Fuzzy classifiers were constructed with the algorithm based on the extreme values
of the classes. The feature selection was not produced. Table 9 presents the results of fuzzy classifiers
averaged over five samples.

Table 9. Results of fuzzy classifiers after using the over-sampling algorithm.

Metrics vhc0 nth2 sgm0 pbl0 vwl0 clv04 ecld yst4
Accuracy 6646 99.17 89.97 6849 50.00 9557 8391 72.29
GM 60.50 99.16 89.93 63.19 0.00 9550 83.90 72.07
TPrate  69.68 9833 88.62 7331 0.00 94.01 83.78 73.79
TNrae 6326 100.00 91.31 63.68 100.00 97.14 84.04 70.80

We compared the obtained results with the results demonstrated in Table 2, where fuzzy
classifiers were constructed on complete sets of imbalanced data and optimized by the continuous
GSA. The Wilcoxon'’s criterion values for the third stage are presented in Table 10.
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Table 10. Comparison of fuzzy classification results with and without preprocessing.

Metrics Algorithms STS p NH
SMOTE-GSA(y=0) -196 0.05 Reject
Accuracy  SMOTE-GSA(y=1) -196 0.05 Reject
SMOTE-GSA(y=0.5) -196 0.05 Reject
SMOTE-GSA(y=0) 0.84 0401 Retain
GM SMOTE-GSA(y=1) -14 0.161 Retain
SMOTE-GSA(y=0.5) -0.84 0.401 Retain
SMOTE-GSA(y =0) 14 0.161 Retain
TPrate SMOTE-GSA(y=1) -0.14 0.889 Retain
SMOTE-GSA(y=0.5) 0.84 0401 Retain
SMOTE-GSA(y=0) -1.26 0.208 Retain
TNrate ~ SMOTE-GSA(y=1) -0.84 0.401 Retain
SMOTE-GSA(y=0.5) -1.12 0.263 Retain

The comparison shows that fuzzy classifiers constructed on the original datasets and tuned by
GSAc in relation to fuzzy classifiers built on oversampled data demonstrate better overall accuracy
with comparable recognition quality of a positive class. Therefore, if for the classification task it is
important not only to classify the positive class correctly, but also not to receive large losses in the
recognition of a negative class, then a fuzzy classifier with parameter tuning with the GSA.is a more
preferable tool.

At the next stage of comparison, the feature selection was carried out on the oversampled data.
Table 11 presents the results of fuzzy classification averaged over five samples on subsets of features
obtained by the random search algorithm.

Table 11. Results of fuzzy classifier construction on features selected after using the SMOTE

algorithm.

Metrics vhc0 nth2 sgm0 pbl0 vwl0 clv04 ecld ystd
F. 840 300 880 120 560 1.00 620 2.00
Acc. 6051 9778 86.00 62.05 49.38 90.98 86.52 50.70
GM 4498 9775 8575 4890 14.62 9091 86.20 11.57
TPrate  69.22 100.00 9226 7135 625 9339 87.67 40.77
TNrae  51.78 9556 79.75 52.74 9250 88.57 85.38 60.63

Table 12 presents the values of the performance indexes obtained after selecting features by the
filter based on mutual information.

Table 12. Results of constructing fuzzy classifiers on subsets of features found by the filter after using

the oversampling algorithm.

Metrics vhc0 nth2 sgm0 pbl0 vwl0 clv04 ecld ystd
F. 860 180 12.00 4.00 6.00 500 520 5.00
Acc. 6947 9472 9040 53.81 5219 9130 89.48 71.49
GM  66.65 9455 90.34 2749 9.84 90.86 89.44 68.40
TPrae 7275 8944 89.08 6283 500 86.75 8878 7149
TNrate 6620 100.00 91.72 4478 99.38 95.87 90.18 71.50

We compared these values with the results of constructing fuzzy classifiers with feature
selection and parameter tuning using the GSA on the initial datasets (Table 3). Table 13 shows the
results of the comparison by the Wilcoxon test.



Symmetry 2019, 11, 1458

16 of 21

Table 13. Comparison of the results of constructing fuzzy classifiers on oversampled and origin data

using the selection of features.

Metrics Algorithm1 Algorithm 2 Standardized Test Statistic p-Value Null Hypothesis
GSA(y=0) -0.841 04 Retain
SMOTE+RS  GSA(y=1) -0.631 0.528 Retain
Features GSA(y=0.5) -0.7 0.484 Retain
GSA(y =0) 0.983 0.326 Retain
SMOTE+MI ~ GSA(y=1) 0.771 0.441 Retain
GSA(y=0.5) 0.84 0.401 Retain
GSA(y=0) -2.521 0.012 Reject
SMOTE+RS ~ GSA(y=1) -2.521 0.012 Reject
Accuracy GSA(y=0.5) -2.24 0.025 Reject
GSA(y=0) -2.521 0.012 Reject
SMOTE+MI  GSA(y=1) -2.521 0.012 Reject
GSA(y=0.5) -2.38 0.017 Reject
GSA(y=0) -0.84 0.401 Retain
SMOTE+RS  GSA(y=1) -1.823 0.068 Retain
M GSA(y=0.5) -1.963 0.05 Reject
GSA(y =0) -0.42 0.674 Retain
SMOTE+MI  GSA(y=1) -1.82 0.069 Retain
GSA(y=0.5) -1.54 0.123 Retain
GSA(y=0) 1.26 0.208 Retain
SMOTE+RS  GSA(y=1) -0.98 0.327 Retain
TPre GSA(y=0.5) 1 Retain
GSA(y=0) 0.98 0.327 Retain
SMOTE+MI  GSA(y=1) -0.84 0.401 Retain
GSA(y=0.5) 0.14 0.889 Retain
GSA(y=0) -2.521 0.012 Reject
SMOTE+RS  GSA(y=1) —2.521 0.012 Reject
TNowe GSA(y=0.5) -2.521 0.012 Reject
GSA(y=0) -2.028 0.043 Reject
SMOTE+MI  GSA(y=1) -1.68 0.093 Retain
GSA(y=0.5) -1.68 0.093 Retain

The results demonstrate that fuzzy classifiers optimized by the gravitational search algorithm
show better results than fuzzy classifiers constructed on selected sets of features after data
oversampling using the SMOTE.

The last stage of the comparison was to check the effectiveness of the fuzzy classifier using the
GSA for selecting features and tuning parameters relative to the state-of-art classification algorithms.

Using the open sklearn library, the following classifiers were built on complete data sets: Gaussian
naive Bayes (GNB), logistic regression classifier (LR), decision tree classifier (DT), multilayer
perceptron classifier (MLP), linear support vector classifier (LSV), K-nearest neighbors classifier
with k = 3 (3NN), AdaBoost classifier (AB), random forest classifier (RF), and gradient boosting for
classification (GB) [42]. All algorithm parameters were used by default.

Table 14 contains the results of constructing various classifiers on selected data sets. The last
three columns show the fuzzy classifiers from Table 4.

Table 14. The results of constructing various classification algorithms on imbalanced datasets.

Data Sets Classification Algorithms Fuzzy Classifiers
vhc0 GNB LR DT MLP LSV 3NN AB RF GB vy=0 y=1 y=05
Acc. 649 96.6 93.6 968 948 962 956 965 851 783  84.0
GM 70.7 956 917 960 923 956 941 950 669 829  80.6
TPrate 854 940 884 945 879 945 915 925 | 464 933 759
TNrate 58.6 | 974 952 975 969 968 969 977 970 73.6 86.5
nth2 GNB LR DT MLP LSV 3NN AB RF GB vy=0 y=1 y=05
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Acc.  [968 981 97.7
GM 965 93 95.0
TPrate - 91.4 91.4
TNate 994 978 989
sgm0 GNB LR DT MLP
Acc.

GM

TPwe 985 988

TNiste 99.5

pbl0  GNB LR DT MLP
Acc. 941 953 954
GM 749 851 86.1
TPste 581 746 76.0
TNee | 984 981 977 976
vwld GNB LR DT MLP
Acc. | 937 952 947
GM 873 862 805
TPue 811 778 733
TNwe 950 944 970 969
dv04 GNB LR DT MLP
Acc. 91.3 -
GM 60.1

TPste 692 462 692
TNiate 975 950 98.1
edld GNB LR DT MLP
Acc.  [812 934 946 940
GM 839 87 . 83.6
TPrate - 80.0 75.0
TNiate 943 968 953
yst4  GNB LR DT MLP
Ace. 160966 9.0 953
GM 346 301 547 447
TPeate 118 314 275
TNate 983 977

98.1
96.5
94.3
98.9
LSV

LSV

93.9

71.8

LSV
92.5
60.8
46.2
96.3
LSV
94.0
88.6
85.0
94.6
LSV

98.1
95.1
91.4
99.4
3NN

3NN
95.3
83.4
71.2
98.1
3NN
94.4
78.3
63.3
97.6
3NN

69.2
98.1
3NN
93.4
85.7
80.0
94.3
3NN

47.5
23.5
99.4
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AB GB vy=0 y=1 vy=05
99.1 990
98.7
98.2
99.2 99.2

AB RF GB v=0 v=05
931 931 930 947 930 930
55.2 55.0

38.5 53.8 410

97.5 963 94.3

AB =0 vy=1 v=05
95.8 967 967 96.1

81.8 782 845 90.1

70.0 . 75.0 85.0

97.5 98.1 9.8 984
AB RF GB vy=0 vy=1 v=05
9.4 960 964 956 841 912
472 301 451  19.7

235 118 235 98

99.0 99.0 99.0 987 843 919

The obtained values were compared using the criterion of Wilcoxon’s sign ranks for linked

samples (Tables A1-A4). The fuzzy classifier demonstrates results comparable with analogues in

terms of the overall accuracy and the geometric mean but has fewer features. It shows the best

results for the TPrate value when the coefficient y is equal to one. With the coefficient y is equal to

0.5, the fuzzy classifier shows statistically comparable results with analogues by the value of TPrate
and yields only to three algorithms by the value of TNrate.

Thus, if the chosen priority coefficient v is zero, the proposed metric represents the overall
accuracy. Then the classifier focuses on recognizing a negative class, and as a result, the model has a
low value of the Type I error, but a high value of the Type II error.

In the case when v is equal to 1, the function will be identical to the geometric mean. Then, the

efficiency of the fuzzy classifier with respect to the positive class will increase. As a result, the Type

II error will decrease, but the Type I error can increase significantly.

When using coefficient y close to 0.5, a system with low values of both errors will be obtained

simultaneously. The proposed metric can be useful for such data as vowel0, ecoli4, and yeast4, when
a high-quality classification of one class can lead to large losses in the ability of the model to

recognize another class.
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6. Conclusions

We considered the possibility of applying the gravitational search algorithm to improve the
efficiency of the fuzzy classifier in the presence of data imbalance. The binary GSA reduced the
space of input features by selecting informative feature subsets in the wrapper mode for a fuzzy
classifier. The continuous GSA helped to improve the quality of classification. We proposed a new
metric that could influence the final performance indexes of the model by choosing the priority
coefficient. The function with the ability to change priority between the number of correctly defined
positive and negative classes allowed the developer to flexibly configure the fuzzy classifier. In
future works, we plan to further study the impact of the coefficient in the metric on the result and
make proposals about the recommended value of the coefficient for certain characteristics of the
dataset.
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Appendix A

Table Al. The results of the comparison of various classification algorithms with fuzzy classifiers
optimized with the gravitational search algorithm by the value of the overall accuracy.

. FC,v=0 FC,v=1 FC,y=0.5
Algorithms = ™ " H  s1s » NH SIS p NH
GNB -2.521 0.012 Reject -2.521 0.012 Reject -2.521 0.012 Reject
LR -0.21 0.833 Retain 0.7 0.484 Retain 042 0.674 Retain
DT -0.56 0.575 Retain 042 0.674 Retain 0.14 0.889 Retain
MLP -0.14 0.889 Retain 1.122 0.262 Retain 0.7 0.484 Retain
LSV -1.12 0.263 Retain 0.14 0.889 Retain -0.28 0.779 Retain
3NN 0 1 Retain 098 0.327 Retain 0.7 0.484 Retain
AB -0.14 0.889 Retain 098 0.327 Retain 0.7 0484 Retain
RF -0.491 0.624 Retain 1.26 0.208 Retain 0.771 0.441 Retain
GB 0.07 0944 Retain 1.183 0.237 Retain 0.845 0.398 Retain

Table A2. The results of the comparison of various classification algorithms with fuzzy classifiers
optimized with the gravitational search algorithm by the value of the geometric mean accuracy of

each class.
) FC,v=0 FC,v=1 FC,v=0.5
Algorithms —org pY NH _ STS ;/ NH _ STS Za NH
GNB 028 0.779 Retain -2.521 0.012 Reject -2.521 0.012 Reject
LR 0421 0.674 Retain -1.54 0.123 Retain -1.54 0.123 Retain
DT 1.12 0263 Retain -1.82 0.069 Retain -1.68 0.093 Retain
MLP 1.26 0208 Retain -14 0.161 Retain -1.26 0.208 Retain
LSV -0.7 0484 Retain -1.963 0.05 Reject -1.82 0.069 Retain
3NN 126 0208 Retain -1.521 0.128 Retain -1.26 0.208 Retain
AB 0.84 0401 Retain -1.69 0.091 Retain -1.26 0.208 Retain
RF 0 1 Retain -1.68 0.093 Retain -1.68 0.093 Retain

GB 0.84 0401 Retain -154 0.123 Retain -1.4 0.161 Retain
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Table A3. The results of the comparison of various classification algorithms with fuzzy classifiers
optimized with the gravitational search algorithm by the value of the true positive rate.

. FC,vy=0 FC,vy=1 FC,vy=0.5
Algorithms —c ™ ""NH s1s » NH SIS p NH
GNB 1.859 0.063 Retain -042 0.674 Retain 042 0.674 Retain
LR 0.338 0.735 Retain —2.24 0.025 Reject -1.54 0.123 Retain
DT 1.014 031 Retain -2.521 0.012 Reject -1.82 0.069 Retain
MLP 1.54 0.123 Retain -2.028 0.043 Reject -1.26 0.208 Retain
LSV -0.28 0.779 Retain -1.992 0.046 Reject -1.68 0.093 Retain
3NN 1.521 0.128 Retain -2.521 0.012 Reject -1.4 0.161 Retain
AB 1.014 031 Retain -224 0.025 Reject -14 0.161 Retain
RF -0.169 0.866 Retain -2.524 0.012 Reject -1.68 0.093 Retain
GB 14  0.161 Retain -224 0.025 Reject -1.54 0.123 Retain

Table A4. The results of the comparison of various classification algorithms with fuzzy classifiers
optimized with the gravitational search algorithm by the value of the true negative rate.

Algorithms FC,y=0 FC,vy=1 FC,vy=0.5
STS p NH STS p NH STS p NH
GNB -2.521 0.012 Reject -2.366 0.018 Reject -2.521 0.012 Reject
LR -1.12 0.263 Retain 1.26 0.208 Retain 098 0.327 Retain
DT -2.38 0.017 Reject 1.183 0.237 Retain 0.98 0.327 Retain
MLP -154 0.123 Retain 126 0.208 Retain 1.12 0.263 Retain
LSV -1.68 0.093 Retain 0.56 0575 Retain 042 0.674 Retain
3NN -154 0.123 Retain 126 0.208 Retain 1.332 (0.183 Retain
AB -1.54 0.123 Retain 2383 0.017 Reject 1.96 0.05 Reject
RF -1.262 0.207 Retain 2.103 0.035 Reject 2.1 0.036 Reject
GB -0.631 0.528 Retain 238 0.017 Reject 2.1 0.036 Reject
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