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Abstract: The presence of imbalance in data significantly complicates the classification task, 
including fuzzy systems. Due to a large number of instances of bigger classes, instances of smaller 
classes are not recognized correctly. Therefore, additional tools for improving the quality of 
classification are required. The most common methods for handling imbalanced data have several 
disadvantages. For example, methods for generating additional instances of minority classes can 
worsen classification if there is a strong overlap of instances from different classes. Methods that 
directly modify the fuzzy classification algorithm lead to a decline in the interpretability of the 
model. In this paper, we study the efficiency of the gravitational search algorithm in the tasks of 
selecting the features and tuning the term parameters for fuzzy classifiers of imbalanced data. We 
consider only data with two classes and apply the algorithm based on extreme values of classes to 
construct models with a minimum number of rules. In addition, we propose a new quality metric 
based on the sum of the overall accuracy and the geometric mean with the presence of a priority 
coefficient between them. 

Keywords: fuzzy classifiers; gravitational search algorithm; imbalanced data; geometric mean; 
feature selection 

 

1. Introduction 

The classification task is to divide objects in the feature space into classes or categories based on 
retrospective observations with the given class label values. Real data are characterized by an 
imbalanced distribution of classes when the number of instances in some classes exceeds the number 
of instances in other classes. This situation is mainly explained by the limited occurrence of minority 
class instances [1]. For example, the normal web browsing traffic is dominant when classifying 
traffic on the Internet. However, detection of rare malicious connections is very important for 
training [1]. Similar examples can be given from the field of medical diagnosis, detection of bank 
fraud, and diagnosis of equipment malfunctions. 

The search for regularities in imbalanced data is a difficult task for specialists in data mining, 
machine learning, pattern recognition, and statistics [2]. The main problem of constructing classifiers 
of imbalanced data is poor adaption of standard training algorithms, which leads to a significant 
reduction in the effectiveness of classification. Due to the imbalance between classes, the standard 
classifier usually defines instances of minority classes incorrectly, since the model is retrained on 
instances of bigger classes [1]. 

It is not enough to evaluate the constructed classifier of imbalanced data using the overall 
accuracy [3]. Positive classes (with the smallest number of instances) are usually more important 
than negative classes (with the biggest number of instances). Reducing misclassification of minority 
class instances is crucial in many real-world challenges [4,5]. However, improving the classification 
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quality of positive classes often leads to poor recognition of instances of negative classes, as 
instances of different classes often intersect. Thus, in each data classification task, the developer of 
the data analysis system needs to prioritize; either to focus on improving the overall accuracy or try 
to correctly identify positive instances with some worsening in the definition of negative ones, or to 
look for some compromise. Finally, it all depends on the purpose of creating the model and the 
requirements for it. 

There is a large list of classification methods, for example, naive Bayes classifiers, support 
vector machines, artificial neural networks, and others. Unlike other methods, fuzzy classification 
does not imply the existence of rigid boundaries between neighboring classes. A classifying object 
may belong to several classes with various degrees of confidence. The advantage of a fuzzy classifier 
is understandability and interpretability of the rules, which makes fuzzy classifiers a practically 
useful data analysis tool. 

In many real-world applications, an accurate, but also a computationally simple system, is 
required. Therefore, we propose to use two procedures for constructing a fuzzy classifier. The first is 
to shrink the input feature space to reduce complexity. The second is to tune the fuzzy classifier 
parameters, which increases the definition quality of the output class label. Since these two 
procedures are formulated as optimization problems, a single optimization algorithm is applied to 
solve both of them. We use the gravitational search algorithm (GSA), which has previously proven 
itself well when working with a fuzzy classifier [6]. 

Since the goal of our work is to improve the efficiency of the fuzzy classifier of imbalanced data, 
it is necessary to choose an appropriate metric to use as a fitness function for the GSA. We explore 
the possibilities of applying the following metrics: the overall accuracy, the geometric mean, and a 
new function that combines the two previous estimates to find a compromise version of the 
classifier. 

The main contributions of this paper are as follows. 

1. We propose a new metric based on the sum of the overall accuracy and the geometric mean of 
each class accuracy. The presence of the coefficient controls the priority of the estimates used. 

2. We demonstrated the use of the feature selection method based on the binary gravitational 
search algorithm in order to reduce the effect of imbalance on classification. The application of 
the new metric as the fitness function assisted to find subsets of relevant features for both 
classes. 

3. We presented the combination of binary and continuous algorithms for constructing fuzzy 
classifiers of imbalanced data. The continuous gravitational search algorithm helped to increase 
the quality of classification on selected features. 

This article is organized as follows. Section 2 discusses the levels of problems when working 
with imbalanced data and provides basic methods for solving them. The procedure for constructing 
a fuzzy classifier and objective functions under consideration are described in Section 3. Section 4 
gives a short description of the gravitational search algorithm. Sections 5 and 6 present the 
experimental results and their analysis, respectively. Finally, we present the conclusions of our work 
in Section 7. 

2. Related Works 

Here, we represent the main approaches to improving the quality of imbalanced data 
classification. There are three levels of training problems on such data which include: (1) Problems 
associated with the definition of classification performance indexes, (2) problems related to the 
learning algorithm, and (3) problems related to the training data [7].  

The first level is determined by the lack of an objective method for evaluating (quantitative 
measures) existing knowledge to select the optimal classifier. The understanding that the overall 
accuracy is an insufficient measure for classifying imbalanced data has led to the application of new 
metrics such as the AUC (the area under the ROC curve) [8], the geometric mean, the balanced 
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accuracy, the Fβ-measure, and others [9]. To assess the effectiveness of the classifiers, the authors in 
[9] have proposed 18 indicators, which are classified into the following three categories: 

1. Threshold metrics geared towards minimizing the number of errors, i.e., the overall accuracy, 
the averaged accuracy (arithmetic and geometric), the Fβ-measure, and the Kappa-statistics; 

2. Metrics based on the probabilistic understanding of an error and used to assess the reliability of 
classifiers, such as the mean absolute error, the mean square error, and the cross-entropy; 

3. Metrics based on estimating instance separability, for example, the AUC, which is equivalent to 
Mann–Whitney–Wilcoxon statistics [9] for two classes. 

After analyzing the above 18 indicators, the authors of [7] conclude that the choice of metrics for 
imbalanced data is of paramount importance. Fernandez et al. [10] have described the use of a 
multiobjective evolutionary algorithm with a pair of metrics, which are the overall accuracy and the 
F1 measure. They concluded that the algorithm with simultaneous optimization of this pair of 
metrics can lead to a balanced accuracy for both classes. 

Classification algorithms make some changes to their construction and training processes in 
order to reduce the influence of imbalance in classes on the classification quality [7].  

Cost-sensitive learning methods are based on modifying the classification algorithm so that the 
costs of misclassifying the instances of minority classes are greater as compared with the instances of 
majority classes. A typical solution, here, is to use a weight matrix that takes into account the costs of 
each incorrectly classified instance [11]. This solution is not suitable for a fuzzy classifier since it does 
not estimate the probability of assigning an object to a particular class. 

There is a small list of methods for creating fuzzy classifiers in the presence of imbalance. 
Weights were added to fuzzy rules in [12–14]. Adding a weight function allows setting the priority 
of some rules over others when determining the output of the classifier. The weight values are most 
often configured by optimization algorithms. Another method of changing the fuzzy classification 
tool is to introduce a bipolar model using the principle of labeling the class, called maximum rule. 
The adjusted degree of belonging to each class is calculated based on the positive and negative 
degrees of membership in the bipolar fuzzy classifier [15]. The disadvantage of this model is the 
need to additionally introduce and adjust the matrix of dissimilarity coefficients and the difficulty to 
apply this method with another principle of assigning labels. Furthermore, the addition of 
supplementary modifications to fuzzy systems complicates the interpretation of the resulting 
models. Consequently, methods for improving the quality of the classifier without interfering 
directly with the classification algorithm are relevant. 

Data play an integral role in machine learning and data mining research. A number of data 
preprocessing methods have been developed in order to correct the imbalance in the data. 
Over-sampling methods based on increasing instances of a positive class try to produce a balanced 
dataset by creating additional instances of the minority class, while undersampling methods reduce 
the number of majority class instances to achieve a quantitative balance. The most famous 
representative of oversampling is the SMOTE and its modifications [5,16–18], in which the 
generation of new instances from a positive class depends on the measure of proximity to existing 
instances. Among undersampling methods, random undersampling (RUS) is often used. This 
non-heuristic method aims to eliminate class imbalance by randomly excluding instances of the 
negative class. Obviously, the disadvantage of RUS is the loss of information about data of a 
negative class [7,16,19]. 

Hybrid methods that combine two previous strategies of adding and removing data instances 
are described in [20,21]. In order to preserve useful information about majority classes, clustering 
methods have recently been applied [7,22,23]. 

Preprocessing methods are universal and easy to apply but have low efficiency and cannot be 
used as the only tool for solving the imbalance problem in classes. In addition, creating new 
instances of data is not acceptable for some classification tasks. For example, the artificial creation of 
patient’s records can lead to errors in diagnosing diseases. 

Another way to change data to improving the quality of recognizing minority classes is by carry 
out a procedure for selecting informative features. Feature selection consists of selecting, from the 
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input feature space, such a subset that would have fewer attributes but provide comparable 
classification accuracy relative to the full set. The formed subset should be sufficient to adequately 
represent all classes in the training samples. Selection methods are usually divided into four types, 
namely, integrated methods, filters, wrappers, and hybrid methods. 

A peculiarity of the integrated (built-in) methods is the principle of feature selection, which is 
part of the general mechanism of training a model on specific data [24]. An example of applying 
such methods is the selection of features during training a decision tree [25]. However, not every 
classification algorithm embeds the selection process into the learning process. 

Filtering methods, on the contrary, are universal, as they are used independently of the 
classifier at the stage of data preparation. Four groups of filters are distinguished in [26]. The 
methods which make up the first group are based on the distance. They select features that provide 
the greatest distance between classes. The second group of filters uses the calculation of the amount 
of information. Such methods select features which, when attached to an existing set, reduce its 
entropy [27]. The third group determines the relationship between features and classes using the 
correlation coefficient or mutual information [28]. The fourth group is represented by filters that 
minimize the number of inconsistent features. A case of inconsistency is the presence of two 
instances belonging to different classes but having the same values of the same features. Filter 
algorithms are easy to use but have low efficiency.  

Wrappers are methods that evaluate each subset of features based on the effectiveness of the 
constructed classifier. As a search algorithm, they usually use metaheuristic algorithms. Since such 
algorithms are iterative, the classifier needs to be reconstructed after each iteration. Wrapper 
methods can require considerable time and resources for large datasets [24]. The advantage of 
wrappers is the ability to choose a set of features that will be optimal for a particular classification 
algorithm. 

The method of applying a genetic algorithm for feature selection in the wrapper mode based on 
the SVM classifier is described in [29]. The fitness function of this algorithm is a measure consisting 
of a compromise between the geometric mean and the share of selected features. The results showed 
that the proposed method selects features that improve the recognition of minority classes. 

Hybrid feature selection methods consist of a combination of filters and wrappers. First, a filter 
is used for preliminary selection, then a classifier is built on the resulting subset and a wrapper 
algorithm is launched [30]. This approach is described in [31], which uses symmetric uncertainty for 
filtering in order to weigh features relative to their dependence on class labels, and the harmonic 
search as the wrapper algorithm. Hybrid selection methods can be a good solution for data with a 
large number of features.  

3. Materials and Methods 

3.1. The Fuzzy Classifier 

3.1.1. The Fuzzy Classifier Structure 

Classification algorithms determine the most suitable class from the set of all classes C = {c1, c2, 
…, cl} to each object xp = {xp1, xp2, …, xpm} from the set of n objects (p ∈ [1, n]), where xpk is the value of 
the kth feature of the pth object, k ∈ [1, m], m is the number of features. The fuzzy classifier is 
constructed on the basis of production rules, each of which has its own set of fuzzy terms. A fuzzy 
term is a structure on the feature definition domain, reflecting the degree of object membership to a 
rule. The terms can be described by membership functions of various kinds such as triangles, 
trapezoids, bells, or Gaussian-type functions. In this work, we used the membership functions of the 
Gaussian type, which differ from others by the property of symmetry. Figure 1 shows an example of 
partitioning some attribute x1 by Gaussian terms. 
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Figure 1. Example of a fuzzy partition of feature x1 by two symmetric fuzzy terms. 

A Gaussian fuzzy term characterizing the kth feature in the ith rule is given by the following 
expression: 
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where i is the rule number to which the term (i ∈ [1, r]) belongs, r is the number of fuzzy rules, b is 
the coordinate of the term vertex, and c is the function dispersion. The term parameters listed 
sequentially for each feature compose the antecedent vector θ = (b11, c11, b12, c12, b13, c13, b21, c21, …, bmr, 
cmr). 

The standard fuzzy rule consists of the antecedent part, which lists the variables and their 
terms, and the consequent part, which specifies the output class label as: 

Ri: If x1 is Ti1 and x2 is Ti2 and … and xm is Tim then class is cj, 

where cj is the label of the jth class from the set of classes C, class is an output variable.  
To use the possibility of feature selection in the wrapper mode, the binary feature vector S = (s1, 

s2, …, sm) must be introduced into the antecedent part. If sk = 1, then the kth feature is taken into 
account in the classification; otherwise the feature is ignored. Given the vector S, the fuzzy rule will 
change as follows: 

Ri: If (s1˄x1) is Ti1 and (s2˄x2) is Ti2 and … and (sm˄xm) is Tim then class is cj,  

where the record (sp˄xp) indicates the use (sp = 1) or ignorance (sp = 0) of the feature and its terms in 
the classifier. The binary vector S = (s1, s2, …, sm) is formed by the feature selection algorithm. 

3.1.2. Generation of the Fuzzy Rule Base 

There are various methods for generating fuzzy terms and forming a fuzzy classifier rule base 
such as uniform partitioning, random generation, clustering [32], and others. In this paper, we apply 
an algorithm based on the extreme values of classes of the training data. This algorithm constructs 
compact classifiers by using the minimum possible number of rules. In this case, the number of rules 
is equal to the number of classes, that is, there is one rule for each class. 

The algorithm based on extreme values of classes is presented in [6]. The first step is to 
determine the minimum and maximum values of the features for each class. In the second step, the 
terms are generated in such a way that the entire definition area is covered in the interval between 
the two extremes, and the top of the term is located in the middle of this segment. In the third step, 
the rule base is formed. Each feature is represented in the rule by only one term. The terms belonging 
to each separate class are combined in the antecedent part of the rule by the conjunction operation. 
The consequent part of the rule contains the label of this class. 

The presented algorithm is very simple, but its efficiency is not high. Therefore, it is necessary 
to use parameter tuning as an additional training step. The description of the procedure for term 
parameter tuning with the gravitational search algorithm is given in Section 3.2. 



Symmetry 2019, 11, 1458 6 of 21 

 

3.1.3. Output of Fuzzy Classifier 

The output of the classifier for the input string xp is formed by sequentially performing three 
steps. In the first step, the value of the membership function of the object to each term is calculated: 

( ) ( )ik pk ik pkx T xμ = . 

The degree of the object membership to each rule is evaluated in the second step: 
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The third step is to define the output class by the maximum rule. The output of the classifier 
will be the class that corresponds to the rule with the highest degree of membership: 
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After the procedure of forming the output has finished, the constructed model can be evaluated 
using various performance indexes.  

3.1.4. Classification Quality Evaluation 

The most common classification quality criterion is the overall accuracy, which is the 
percentage of correct classification. In the observation table {(xp; cp), p ∈ [1, z]}, where z is the number 
of instances, the measure of accuracy can be given as follows: 
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where f(xp; θ, S) is the output of the fuzzy classifier with the parameter vector θ and the binary 
feature vector S at the point xp. As noted earlier, the overall accuracy is not an objective assessment 
of classification quality when there is an imbalance in the class distribution. 

The geometric mean is a sensitive estimate for the accuracy of each class: 
1
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where Acci(θ, S) is the classification accuracy of ith class: 
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where zi is the number of instances with the ith class label. Thus, the fewer instances represent a 
class, the geometric mean increases more significantly with an increment in the number of correctly 
classified instances of that class. In the case when one of the classes is classified absolutely 
incorrectly, the geometric mean is zero. 

While using general accuracy as the objective function, on the one hand, the classifier prefers to 
focus on recognizing negative classes. The geometric mean, on the other hand, can lead to a large 
loss in the quality of classification of negative classes, even if the accuracy of positive classes is low. 
We propose to use a compromise option that combines both of these metrics and allows varying 
their importance degree using the coefficient γ ∈ [0; 1]: 

(1 )( , ) ( , ) ( , )GM AccFit γ ⋅ + − γ ⋅=θ S θ S θ S . 

The problem of constructing a fuzzy classifier reduces to searching for the maximum of the 
selected function. 
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3.2. Training a Classifier with the Gravitational Search Algorithm 

For selecting feature and tuning term parameters we suggest using the gravitational search 
algorithm in two versions, i.e., binary for optimizing the binary feature vector S and continuous for 
optimizing the continuous vector of term parameters θ. The GSA was first proposed by Rashedi, 
Nezamabadi-pour, and Saryazdi in 2009 [33], and in the same year, its binary version was described 
[34]. This algorithm is widely used to solve various problems. For example, the GSA was applied to 
optimize parameters in a geothermal power generation system in the study of Özkaraca and 
Keçebaş [35], to determine the location of a microseismic source in order to warn about explosions in 
tunnels in [36]. Mahanipour and Nezamabadi-pour described the use of GSA for the automatic 
creation of computer programs in [37] and the feature construction in [38]. 

The application of the binary and the continuous versions of the GSA for the fuzzy classifier has 
been described in detail earlier in [6]. In the binary GSA, a population of particles corresponding to 
binary feature vectors S is generated randomly. At each iteration, the algorithm calculates particle 
masses, gravity, acceleration, and velocity. Transformation functions are applied to transform the 
obtained speed value into a binary equivalent in order to update the feature vector. In this paper, we 
use the V-type transformation function: 

2IF ( (0;1) arctan( ( 1)) ), then ( 1) ( ), else ( 1) ( )
2

d d d d d
i i i i irand v t s t s t s t s tπ< + + = + =

π , 

where rand(0;1) is a random number in the range from 0 to 1, d
iv  is the speed of the dth element of 

the ith particle, d
is  is the value of the dth element of the ith feature vector, and t is the iteration 

number.  
The continuous GSA optimizes the numerical vector θ, consisting of the term parameters. In 

this version of the algorithm, the population is formed as follows: The first vector is input to the 
algorithm after the stage of creating the classifier structure and the remaining vectors are generated 
based on the first one with some deviation. Unlike the binary version, in GSAc the vector value is 
updated by the simple addition of the current value and the calculated speed: 

( 1) ( ) ( 1)d d d
i i it t V tθ + = θ + + , 

where d
iθ  is the value of the dth element of the ith vector. 

Five parameters are used in both versions of the GSA: the number of iterations t, the number of 
particles P, the value of the gravitational constant G0, the coefficient of the gravitational constant 
decrease α, and the variable for calculating the attractive force ε. The computational complexity of 
the GSA with n agents is O(n × d) where d is the search space dimension [39]. We did not modify the 
original GSA, therefore, both algorithms have the complexity O(P × d), where P is the number of 
particles and d is the size of the dataset. 

The classifier training procedure is as follows: After the algorithm based on extremes values of 
classes has created the initial vector θ, the binary GSA searches for the optimal vector S; then, the 
classifier is rebuilt on the obtained set of features Sbest and the algorithm for optimizing the term 
parameters is launched; the continuous GSA runs for a given number of iterations and provides the 
best parameter vector θbest; and the resulting Sbest and θbest are used to construct and validate the 
classifier on test data. 

4. Experimental Results 

The experiment was performed on imbalanced binary datasets from the KEEL repository [40]. 
The sets are described in Table 1. Here, Fall is the number of features in a dataset, Strall is the number 
of lines, Str+ is the number of rows of the smallest class, Str- is the number of rows of the largest class, 
and IR is the imbalance ratio. The imbalance ratio is the ratio of the number of rows of a negative 
class to the number of rows of a positive class. 
  



Symmetry 2019, 11, 1458 8 of 21 

 

Table 1. Description of the datasets used in the experiment. 

№ Data Set Fall Strall Str+ Str- IR 
1 vehicle0 18 846 199 647 3.25 
2 newthyroid2 5 215 35 180 5.14 
3 segment0 19 2308 329 1979 6.02 
4 page-blocks0 10 5472 559 4913 8.79 
5 vowel0 13 988 90 898 9.98 
6 cleveland-0vs4 13 177 13 164 12.62 
7 ecoli4 7 336 20 316 15.8 
8 yeast4 8 1484 51 1433 28.1 

Five-fold cross-validation was applied in all stages of the experiment. The data were divided 
into five pairs of training and test samples. The structure of the fuzzy classifier was formed by the 
algorithm based on the extreme values of classes with symmetric Gaussian terms. Since only two 
classes are represented in all data, the number of rules in all cases was two. 

In the first stage of the experiment, the efficiency of the continuous gravitational algorithm was 
tested when the priority coefficient γ in the fitness function was changed. The tuning of the fuzzy 
classifier parameters was carried out on full sets of features. The following parameters were set for 
the GSAc: 750 iterations, 15 particles, G0 = 10, α = 10, and ε = 0.01. The particle population was cleared 
after each 150th iteration, except for the best particle on the basis of which the population was 
generated anew. The parameters were chosen empirically as the most universal for the selected 
datasets. 

Table 2 contains the results of the first experimental stage, used to assess the quality of the 
constructed model based on the following: the classification accuracy, the geometric mean, as well as 
the percentage of correctly classified instances of the positive class relative to the total number of 
instances of the positive class (true positive rate) and the percentage of correctly classified instances 
of the negative class relative to the total number of instances of the negative class (true negative 
rate). The table shows the results obtained on the test data as an average of three runs (Avr.), and the 
best one (Best). 

Table 2. Classification results obtained while using the continuous gravitational search algorithm for 
tuning fuzzy classifier parameters. 

γ 0 1 0.25 0.5 0.75 
 Avr. Best Avr. Best Avr. Best Avr. Best Avr. Best 

vehicle0 
Acc. 81.64 82.50 81.52 82.03 84.75 85.11 82.62 86.28 82.82 84.28 
GM 57.47 59.56 69.28 70.36 74.85 81.45 74.28 81.63 74.12 80.40 

TPrate 34.84 37.69 54.10 55.78 62.56 77.23 63.65 74.87 62.93 74.82 
TNrate 96.03 96.29 89.95 90.11 91.55 87.48 88.46 89.80 88.91 87.16 

newthyroid2 
Acc. 98.76 99.07 98.76 99.07 98.60 99.07 98.91 99.53 98.45 99.07 
GM 98.05 98.24 98.85 99.44 98.35 99.44 98.54 99.72 97.46 98.24 

TPrate 97.14 97.14 99.05 100.00 98.10 100.00 98.10 100.00 96.19 97.14 
TNrate 99.07 99.44 98.70 98.89 98.70 98.89 99.07 99.44 98.89 99.44 

segment0 
Acc. 91.29 91.42 90.83 90.90 91.41 91.46 91.13 91.16 90.87 90.90 
GM 92.36 92.82 94.15 94.31 93.53 93.57 93.85 93.99 94.05 94.07 

TPrate 93.92 94.83 99.09 99.39 96.65 96.65 97.87 98.18 98.78 98.78 
TNrate 90.85 90.85 89.46 89.49 90.53 90.60 90.01 89.99 89.56 89.59 

page-blocks0 
Acc. 93.24 93.93 88.96 91.03 93.37 94.19 92.85 93.59 90.99 91.01 
GM 65.30 72.39 76.79 80.59 74.64 77.05 74.01 79.42 74.18 78.28 
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TPrate 44.07 53.31 64.52 69.59 57.36 60.64 56.95 65.30 58.64 65.86 
TNrate 98.83 98.55 91.74 93.47 97.47 98.01 96.93 96.80 94.67 93.87 

vowel0 
Acc. 92.11 92.71 88.59 89.67 96.86 97.67 96.19 96.86 95.75 96.46 
GM 47.99 54.09 90.22 92.15 93.94 96.69 95.01 96.75 94.75 97.04 

TPrate 36.67 46.67 92.59 95.56 90.74 95.56 93.70 97.78 93.70 97.78 
TNrate 97.66 95.88 88.20 89.09 97.48 97.89 96.44 94.77 95.96 96.33 

cleveland-0vs4 
Acc. 92.86 95.51 87.03 90.37 91.76 95.49 90.79 93.25 88.92 90.41 
GM 54.43 73.17 74.50 80.36 71.47 73.00 66.10 72.20 70.73 76.32 

TPrate 38.46 53.85 61.54 69.23 56.67 56.67 46.15 53.85 57.78 66.67 
TNrate 97.15 98.78 89.02 92.07 94.73 98.77 94.31 96.34 91.67 92.69 

ecoli4 
Acc. 96.91 97.32 94.25 97.02 96.92 97.62 95.78 95.84 94.84 95.53 
GM 76.17 79.06 91.06 95.90 78.71 81.74 78.25 85.83 82.07 85.73 

TPrate 61.00 65.00 88.33 95.00 65.00 70.00 66.00 80.00 73.33 80.00 
TNrate 99.18 99.37 94.62 97.15 98.94 99.37 97.66 96.84 96.20 96.52 

yeast4 
Acc. 96.52 96.63 81.81 86.66 92.57 92.05 89.31 88.54 85.47 88.88 
GM 2.11 6.32 78.28 80.18 69.12 74.76 76.55 83.22 74.41 78.20 

TPrate 0.65 1.96 75.16 74.51 51.45 60.55 66.01 78.43 64.61 68.55 
TNrate 100.00 100.00 82.04 87.09 94.03 93.17 90.14 88.90 86.21 89.60 

The purpose of the second experimental stage consisted of verifying the effectiveness of GSA on 
the task of selecting features in the wrapper mode for the fuzzy classifier of imbalanced data. The 
binary gravitational algorithm with the same coefficient γ was run three times on each sample. Due 
to the stochasticity of the algorithm, one to three different feature sets could be obtained on the same 
sample. Next, a set of features with the highest fitness function value was selected. A classifier was 
built on this set; the parameters of the created model were tuned by the continuous algorithm. The 
obtained values of quality indicators were averaged over three independent runs of the GSAc. 

The following parameters were empirically selected for the binary gravitational algorithm: 750 
iterations, 15 particles, G0 = 10, α = 10, and ε = 0.01. The parameters of the continuous algorithm did 
not differ from those used at the first stage of the experiment. Table 3 shows the results of the 
classifier on the selected feature sets before parameter tuning (GSAb) and after optimization (GSAb + 
GSAc). In the following table and further, formatting the cells according to a color scale was used to 
visualize the results. The values presented in each row were compared with each other. The hue of 
the color depended on the relative magnitude of the value compared to other cells in the row. Thus, 
the worst results are marked in red, the best are highlighted in green, the remaining values are 
colored in intermediate colors. 

Table 3. The results of constructing fuzzy classifiers on imbalanced datasets obtained with feature 
selection and parameter tuning. 

γ 0 0 1 1 0.5 0.5 
 GSAb GSAb + GSAc GSAb GSAb + GSAc GSAb GSAb + GSAc 

Dataset vehicle0 
Features 10.20 7.60 9.00 
Accuracy 83.33 84.43 80.61 77.07 81.09 84.28 

GM 66.40 67.25 75.28 78.01 71.78 78.28 
TPrate 47.24 47.91 67.34 83.08 58.79 69.35 
TNrate 94.44 95.67 84.70 75.22 87.94 88.87 

Dataset newthyroid2 
Features 3.60 3.20 3.20 
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Accuracy 99.53 99.07 98.60 98.45 98.60 98.45 
GM 98.52 97.03 99.16 98.66 99.16 98.66 

TPrate 97.14 94.29 100.00 99.05 100.00 99.05 
TNrate 100.00 100.00 98.33 98.33 98.33 98.33 

Dataset segment0 
Features 7.20 6.60 6.80 
Accuracy 97.36 97.88 96.45 98.73 97.40 98.60 

GM 95.76 96.80 96.28 98.79 97.08 98.34 
TPrate 93.62 95.34 96.05 98.89 96.66 97.97 
TNrate 97.98 98.30 96.51 98.70 97.52 98.70 

Dataset page-blocks0 
Features 3.80 4.20 2.80 
Accuracy 93.60 94.49 88.54 88.13 92.20 92.59 

GM 67.85 74.65 74.14 81.93 73.31 76.89 
TPrate 46.69 56.65 60.00 75.19 56.17 61.96 
TNrate 98.94 98.80 91.80 89.61 96.30 96.07 

Dataset vowel0 
Features 6.20 6.60 6.60 
Accuracy 88.86 92.11 87.45 97.64 88.25 97.20 

GM 85.64 75.59 90.02 96.97 88.94 94.85 
TPrate 82.22 67.78 93.33 96.30 90.00 92.22 
TNrate 89.53 94.54 86.86 97.77 88.08 97.70 

Data set cleveland-0vs4 
Features 4.00 6.80 6.60 
Accuracy 93.78 93.79 88.70 92.06 85.86 89.97 

GM 39.17 47.80 82.38 82.46 68.01 66.57 
TPrate 30.77 33.33 76.92 74.36 53.85 48.72 
TNrate 98.78 98.58 89.63 93.50 88.41 93.29 

Dataset ecoli4 
Features 3.00 3.20 3.00 
Accuracy 98.21 98.02 96.13 94.14 97.92 97.12 

GM 89.01 86.89 87.35 84.36 85.81 87.11 
TPrate 80.00 76.67 80.00 76.67 75.00 78.33 
TNrate 99.37 99.37 97.15 95.25 99.37 98.31 

Dataset yeast4 
Features 3.20 3.20 2.40 
Accuracy 96.23 96.23 78.24 84.05 87.26 90.43 

GM 6.30 6.30 66.99 77.69 67.05 79.26 
TPrate 1.96 1.96 58.82 71.90 52.94 69.28 
TNrate 99.58 99.58 78.93 84.48 88.49 91.18 

Table 4 shows fuzzy classifiers based on the best feature sets. The best sets here are those that 
gain the highest averaged value of the objective function with a given value γ over five samples. 

Table 4. The results of constructing fuzzy classifiers on the best feature sets found by the binary 
gravitational algorithm. 

Metrics Results 
DataSet vehicle0 
γ 0 1 0.5 

Features 1, 4, 8, 9, 10, 13, 14, 15, 16 1, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18 1, 5, 7, 9, 10, 11, 12, 15, 16, 17, 18 
F 9 11 11 

Acc. 85.07 78.30 84.00 
GM 66.87 82.86 80.58 
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TPrate 46.40 93.33 75.88 
TNrate 96.96 73.64 86.50 

Dataset newthyroid2 
γ 0 1 0.5 

Features 1, 2, 3, 5 1, 2, 5 1, 2, 5 
F 4 3 3 

Acc. 99.53 99.84 99.53 
GM 98.52 99.51 99.32 

TPrate 97.14 99.05 99.05 
TNrate 100.00 100.00 99.63 

Dataset segment0 
γ 0 1 0.5 

Features 1, 4, 6, 11, 14, 18, 19 1, 6, 8, 14, 16, 18 6, 8, 11, 14, 18, 19 
F 7 6 6 

Acc. 98.93 99.08 99.02 
GM 98.22 99.08 98.66 

TPrate 97.26 99.09 98.18 
TNrate 99.21 99.07 99.16 

Dataset page-blocks0 
γ 0 1 0.5 

Features 1, 2, 5, 10 4, 10 4, 10 
F 4 2 2 

Acc. 94.77 91.75 92.85 
GM 77.06 84.92 81.52 

TPrate 60.35 77.22 70.60 
TNrate 98.68 93.41 95.39 

Dataset vowel0 
γ 0 1 0.5 

Features 5, 6, 7, 8, 9, 10, 13 4, 5, 6, 7, 9, 13 4, 5, 6, 7, 8, 13 
F 7 6 6 

Acc. 96.39 98.18 97.74 
GM 82.83 98.11 97.41 

TPrate 70.00 98.15 97.04 
TNrate 99.03 98.18 97.81 

Dataset cleveland-0vs4 
γ 0 1 0.5 

Features 4, 8, 10 1, 4, 7, 9, 10, 13 10, 12 
F 3 6 2 

Acc. 94.72 93.04 93.02 
GM 54.96 85.19 86.17 

TPrate 41.03 76.92 82.05 
TNrate 98.98 94.31 93.90 

Dataset ecoli4 
γ 0 1 0.5 

Features 5, 6, 7 2, 3, 4, 5, 7 2, 3, 5, 7 
F 3 5 4 

Acc. 98.71 96.13 97.92 
GM 88.90 90.11 93.88 

TPrate 80.00 85.00 90.00 
TNrate 99.89 96.84 98.42 

Dataset yeast4 
γ 0 1 0.5 

Features 1, 2, 3, 7, 8 1, 3, 5 1, 3 
F 5 3 2 

Acc. 95.62 84.05 91.19 
GM 19.73 79.93 80.40 

TPrate 9.8 76.47 70.59 
TNrate 98.67 84.32 91.93 
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5. Discussion 

To confirm the effectiveness of the gravitational algorithm for optimizing the fuzzy classifier of 
imbalanced data, we performed a five-stage comparison. 

The task of the first stage was to check the quality of the fuzzy classifier in the presence of 
feature selection. For this purpose, we compared the results of fuzzy classifiers constructed on 
complete datasets (Table 1, average values for three runs) with those built on abbreviated sets of 
features (Table 3). In both cases, the results obtained after setting the GSAc parameters were taken 
into account. Table 5 shows the results of the pairwise comparison of the number of features by 
Wilcoxon’s sign rank criterion for linked samples. The significance level is 0.05; the null hypothesis 
states that the difference median between the two samples is zero. 

The first three rows of the table are the comparison of the number of features in the original set 
(Fall) and in the selected feature sets (Fbin). The last three rows are the comparison of the number of 
features when using the GSAb with different values of the coefficient γ in the fitness function. 

Table 5. The results of comparing classifiers by the number of selected features. 

Feature Sets Standardized Test Statistic p-Value Null Hypothesis 
Fall − Fbin, γ = 0 2.521 0.012 Reject 
Fall − Fbin, γ = 1 2.521 0.012 Reject 

Fall − Fbin, γ = 0,5 2.524 0.012 Reject 
Fbin, γ = 0 − Fbin, γ = 1 0 1 Retain 

Fbin, γ = 0 − Fbin, γ = 0.5 0.851 0.395 Retain 
Fbin, γ = 1 − Fbin, γ = 0.5 0.638 0.524 Retain 

On the basis of the results of the verification, we conclude that the binary gravitational 
algorithm can significantly reduce the number of features working with imbalanced data in the 
wrapper mode of the fuzzy classifier. In addition, there is no significant difference in the number of 
features when using one or another value of γ. 

Table 6 shows the results of comparing the performance indexes for classifiers built on complete 
and selected sets of features when changing the priority coefficient γ in the fitness function. The 
obtained values of the Wilcoxon’s sign rank criteria are grouped for each of four quality indexes (the 
total accuracy, the geometric mean, the percentage of correctly classified instances of the positive 
class, and the percentage of correctly identified instances of the negative class).  

Table 6. The results of comparing classification performance indexes in the absence and presence of 
feature selection performed using the binary gravitational search algorithm. 

Metric γ Standardized Test Statistic p-Value Null Hypothesis 

Accuracy 
(all-bin) 

0 −2.197 0.028 Reject 
1 −0.98 0.327 Retain 

0.5 −1.68 0.093 Retain 

GM 
(all-bin) 

0 −1.82 0.069 Retain 
1 −1.4 0.161 Retain 

0.5 −2.24 0.025 Reject 

TPrate 

(all-bin) 

0 −1.544 0.123 Retain 
1 −1.051 0.293 Retain 

0.5 −2.036 0.042 Reject 

TNrate 

(all-bin) 

0 −0.73 0.465 Retain 
1 −0.594 0.553 Retain 

0.5 −0.877 0.38 Retain 
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Thus, the results of the first stage of the comparison show that the use of the GSAb for selecting 
features in the wrapper mode of the fuzzy classifier of imbalanced data significantly reduces the 
number of features while maintaining or increasing the quality of classification. 

In the second stage, the effectiveness of the binary gravitational algorithm was tested in 
comparison with popular methods of selecting features. We used a random search (RS) and a 
filtering algorithm based on mutual information (MI).  

The filter was executed as follows: The value of mutual information was calculated for each 
feature with three randomly-selected neighbors. Next, the algorithm found the arithmetic mean of 
these values. The set of selected features included only those variables whose mutual information 
exceeded the value of the arithmetic mean. Both algorithms were run three times, among the 
obtained feature sets, those with the best accuracy were selected. Fuzzy classifiers were constructed 
on the selected feature sets using the algorithm based on extreme values of classes. The obtained 
values were compared with the results of fuzzy classifiers built on the feature sets found by the 
GSAb (Table 3). In this case, we considered the results without optimizing parameters. The average 
performance indexes of the classifiers are given in Table 7 (F is the number of features).  

Table 7. The results of constructing fuzzy classifiers obtained with the different feature selection 
algorithms. 

Alg. 
GSAb 

RS MI Alg. 
GSAb 

RS MI 
γ = 0 γ = 1 γ = 0.5 γ = 0 γ = 1 γ = 0.5 

Data vehicle0 Data vowel0 
F 10.20 7.60 9.00 6.60 8.40 F 6.20 6.60 6.60 5.80 5.40 

Acc. 83.33 80.61 81.09 70.08 79.43 Acc. 88.86 87.45 88.25 77.93 85.29 
GM 66.40 75.28 71.78 62.67 65.45 GM 85.64 90.02 88.94 81.13 75.59 

TPrate 47.24 67.34 58.79 53.29 48.22 TPrate 82.22 93.33 90.00 77.17 70.00 
TNrate 94.44 84.70 87.94 75.26 89.02 TNrate 89.53 86.86 88.08 85.56 86.55 
Data newthyroid2 Data cleveland-0_vs_4 

F 3.60 3.20 3.20 2.80 3.00 F 4.00 6.80 6.60 6.40 3.00 
Acc. 99.53 98.60 98.60 95.35 99.53 Acc. 93.78 88.70 85.86 53.51 98.22 
GM 98.52 99.16 99.16 94.85 98.52 GM 39.17 82.38 68.01 39.52 88.49 

TPrate 97.14 100.0 100.0 94.29 97.14 TPrate 30.77 76.92 53.85 53.75 80.00 
TNrate 100.0 98.33 98.33 95.56 100.0 TNrate 98.78 89.63 88.41 56.67 99.37 
Data segment0 Data ecoli4 

F 7.20 6.60 6.80 10.60 9.40 F 3.00 3.20 3.00 6.40 4.80 
Acc. 97.36 96.45 97.40 90.99 91.12 Acc. 98.21 96.13 97.92 96.73 87.34 
GM 95.76 96.28 97.08 88.67 85.08 GM 89.01 87.35 85.81 68.70 88.90 

TPrate 93.62 96.05 96.66 85.72 77.85 TPrate 80.00 80.00 75.00 50.00 91.11 
TNrate 97.98 96.51 97.52 91.86 93.33 TNrate 99.37 97.15 99.37 99.68 86.96 
Data page-blocks0 Data yeast4 

F 3.80 4.20 2.80 6.80 5.60 F 3.20 3.20 2.40 6.40 3.00 
Acc. 93.60 88.54 92.20 81.49 87.65 Acc. 96.23 78.24 87.26 94.21 91.24 
GM 67.85 74.14 73.31 59.80 51.98 GM 6.30 66.99 67.05 29.46 62.79 

TPrate 46.69 60.00 56.17 42.04 31.82 TPrate 1.96 58.82 52.94 16.00 45.64 
TNrate 98.94 91.80 96.30 85.98 94.00 TNrate 99.58 78.93 88.49 97.00 92.88 

Table 8 demonstrates the results of a pairwise comparison of the performance indexes of the 
obtained systems by the criterion of Wilcoxon’s sign ranks for linked samples. Here STS is the 
standardized test statistic, p is the p-value, and NH is the null hypothesis. The left half of Table 8 
shows the results of the comparison with the random search algorithm, the right half of the table 
demonstrates the comparison with the filter based on mutual information. 
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Table 8. Comparison of fuzzy classifier results obtained using different algorithms for feature 
selection. 

Algorithm STS p NH Algorithm STS p NH 
Features 

RS-GSA(γ = 0) 0.981 0.326 Retain MI-GSA(γ = 0) 0.281 0.778 Retain 
RS-GSA(γ = 1) 1.123 0.261 Retain MI-GSA(γ = 1) 0.421 0.674 Retain 

RS-GSA(γ = 0.5) 1.122 0.262 Retain MI-GSA(γ = 0.5) 0.35 0.726 Retain 
Accuracy 

RS-GSA(γ = 0) −2.521 0.012 Reject MI-GSA(γ = 0) −1.859 0.063 Retain 
RS-GSA(γ = 1) −1.4 0.161 Retain MI-GSA(γ = 1) −0.14 0.889 Retain 

RS-GSA(γ = 0.5) −1.96 0.05 Reject MI-GSA(γ = 0.5) −0.7 0.484 Retain 
GM 

RS-GSA(γ = 0) −1.26 0.208 Retain MI-GSA(γ = 0) −0.169 0.866 Retain 
RS-GSA(γ = 1) −2.521 0.012 Reject MI-GSA(γ = 1) −1.68 0.093 Retain 

RS-GSA(γ = 0.5) −2.521 0.012 Reject MI-GSA(γ = 0.5) −1.26 0.208 Retain 
TPrate 

RS-GSA(γ = 0) −0.14 0.889 Retain MI-GSA(γ = 0) 0.338 0.735 Retain 
RS-GSA(γ = 1) −2.521 0.012 Reject MI-GSA(γ = 1) −1.82 0.069 Retain 

RS-GSA(γ = 0.5) −2.371 0.018 Reject MI-GSA(γ = 0.5) −0.84 0.401 Retain 
TNrate 

RS-GSA(γ = 0) −2.383 0.017 Reject MI-GSA(γ = 0) −2.197 0.028 Reject 
RS-GSA(γ = 1) −1.12 0.263 Retain MI-GSA(γ = 1) 0.84 0.401 Retain 

RS-GSA(γ = 0.5) −1.682 0.092 Retain MI-GSA(γ = 0.5) −0.14 0.889 Retain 

The algorithms are statistically indistinguishable by the number of selected features. But the 
value of the standardized test statistic shows that fuzzy classifiers, constructed on the features 
selected by the gravitational search algorithm, have higher classification quality values in most 
cases. Hence, the binary gravitational algorithm is more preferable for imbalanced data classification 
in contrast to the random search or the filter based on mutual information. 

In the third stage of the comparison, we compared our results with fuzzy classifiers based on 
imbalanced data preprocessed by the SMOTE algorithm. We used a realization of the algorithm 
from the open library [41] and all parameters were taken by default. After applying SMOTE, the 
number of instances of the positive and negative classes was equal. Next, we conducted five-fold 
cross-validation. Fuzzy classifiers were constructed with the algorithm based on the extreme values 
of the classes. The feature selection was not produced. Table 9 presents the results of fuzzy classifiers 
averaged over five samples. 

Table 9. Results of fuzzy classifiers after using the over-sampling algorithm. 

Metrics vhc0 nth2 sgm0 pbl0 vwl0 clv04 ecl4 yst4 
Accuracy 66.46 99.17 89.97 68.49 50.00 95.57 83.91 72.29 

GM 60.50 99.16 89.93 63.19 0.00 95.50 83.90 72.07 
TPrate 69.68 98.33 88.62 73.31 0.00 94.01 83.78 73.79 
TNrate 63.26 100.00 91.31 63.68 100.00 97.14 84.04 70.80 

We compared the obtained results with the results demonstrated in Table 2, where fuzzy 
classifiers were constructed on complete sets of imbalanced data and optimized by the continuous 
GSA. The Wilcoxon’s criterion values for the third stage are presented in Table 10. 
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Table 10. Comparison of fuzzy classification results with and without preprocessing. 

Metrics Algorithms STS p NH 

Accuracy 
SMOTE-GSA(γ = 0) −1.96 0.05 Reject 
SMOTE-GSA(γ = 1) −1.96 0.05 Reject 

SMOTE-GSA(γ = 0.5) −1.96 0.05 Reject 

GM 
SMOTE-GSA(γ = 0) 0.84 0.401 Retain 
SMOTE-GSA(γ = 1) −1.4 0.161 Retain 

SMOTE-GSA(γ = 0.5) −0.84 0.401 Retain 

TPrate 
SMOTE-GSA(γ = 0) 1.4 0.161 Retain 
SMOTE-GSA(γ = 1) −0.14 0.889 Retain 

SMOTE-GSA(γ = 0.5) 0.84 0.401 Retain 

TNrate 
SMOTE-GSA(γ = 0) −1.26 0.208 Retain 
SMOTE-GSA(γ = 1) −0.84 0.401 Retain 

SMOTE-GSA(γ = 0.5) −1.12 0.263 Retain 

The comparison shows that fuzzy classifiers constructed on the original datasets and tuned by 
GSAc in relation to fuzzy classifiers built on oversampled data demonstrate better overall accuracy 
with comparable recognition quality of a positive class. Therefore, if for the classification task it is 
important not only to classify the positive class correctly, but also not to receive large losses in the 
recognition of a negative class, then a fuzzy classifier with parameter tuning with the GSAc is a more 
preferable tool. 

At the next stage of comparison, the feature selection was carried out on the oversampled data. 
Table 11 presents the results of fuzzy classification averaged over five samples on subsets of features 
obtained by the random search algorithm.  

Table 11. Results of fuzzy classifier construction on features selected after using the SMOTE 
algorithm. 

Metrics vhc0 nth2 sgm0 pbl0 vwl0 clv04 ecl4 yst4 
F. 8.40 3.00 8.80 1.20 5.60 1.00 6.20 2.00 

Acc. 60.51 97.78 86.00 62.05 49.38 90.98 86.52 50.70 
GM 44.98 97.75 85.75 48.90 14.62 90.91 86.20 11.57 

TPrate 69.22 100.00 92.26 71.35 6.25 93.39 87.67 40.77 
TNrate 51.78 95.56 79.75 52.74 92.50 88.57 85.38 60.63 

Table 12 presents the values of the performance indexes obtained after selecting features by the 
filter based on mutual information. 

Table 12. Results of constructing fuzzy classifiers on subsets of features found by the filter after using 
the oversampling algorithm. 

Metrics vhc0 nth2 sgm0 pbl0 vwl0 clv04 ecl4 yst4 
F. 8.60 1.80 12.00 4.00 6.00 5.00 5.20 5.00 

Acc. 69.47 94.72 90.40 53.81 52.19 91.30 89.48 71.49 
GM 66.65 94.55 90.34 27.49 9.84 90.86 89.44 68.40 

TPrate 72.75 89.44 89.08 62.83 5.00 86.75 88.78 71.49 
TNrate 66.20 100.00 91.72 44.78 99.38 95.87 90.18 71.50 

We compared these values with the results of constructing fuzzy classifiers with feature 
selection and parameter tuning using the GSA on the initial datasets (Table 3). Table 13 shows the 
results of the comparison by the Wilcoxon test. 
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Table 13. Comparison of the results of constructing fuzzy classifiers on oversampled and origin data 
using the selection of features. 

Metrics Algorithm 1 Algorithm 2 Standardized Test Statistic p-Value Null Hypothesis 

Features 

SMOTE+RS 
GSA(γ = 0) −0.841 0.4 Retain 
GSA(γ = 1) −0.631 0.528 Retain 

GSA(γ = 0.5) −0.7 0.484 Retain 

SMOTE+MI 
GSA(γ = 0) 0.983 0.326 Retain 
GSA(γ = 1) 0.771 0.441 Retain 

GSA(γ = 0.5) 0.84 0.401 Retain 

Accuracy 

SMOTE+RS 
GSA(γ = 0) −2.521 0.012 Reject 
GSA(γ = 1) −2.521 0.012 Reject 

GSA(γ = 0.5) −2.24 0.025 Reject 

SMOTE+MI 
GSA(γ = 0) −2.521 0.012 Reject 
GSA(γ = 1) −2.521 0.012 Reject 

GSA(γ = 0.5) −2.38 0.017 Reject 

GM 

SMOTE+RS 
GSA(γ = 0) −0.84 0.401 Retain 
GSA(γ = 1) −1.823 0.068 Retain 

GSA(γ = 0.5) −1.963 0.05 Reject 

SMOTE+MI 
GSA(γ = 0) −0.42 0.674 Retain 
GSA(γ = 1) −1.82 0.069 Retain 

GSA(γ = 0.5) −1.54 0.123 Retain 

TPrate 

SMOTE+RS 
GSA(γ = 0) 1.26 0.208 Retain 
GSA(γ = 1) −0.98 0.327 Retain 

GSA(γ = 0.5) 0 1 Retain 

SMOTE+MI 
GSA(γ = 0) 0.98 0.327 Retain 
GSA(γ = 1) −0.84 0.401 Retain 

GSA(γ = 0.5) 0.14 0.889 Retain 

TNrate 

SMOTE+RS 
GSA(γ = 0) −2.521 0.012 Reject 
GSA(γ = 1) −2.521 0.012 Reject 

GSA(γ = 0.5) −2.521 0.012 Reject 

SMOTE+MI 
GSA(γ = 0) −2.028 0.043 Reject 
GSA(γ = 1) −1.68 0.093 Retain 

GSA(γ = 0.5) −1.68 0.093 Retain 

The results demonstrate that fuzzy classifiers optimized by the gravitational search algorithm 
show better results than fuzzy classifiers constructed on selected sets of features after data 
oversampling using the SMOTE. 

The last stage of the comparison was to check the effectiveness of the fuzzy classifier using the 
GSA for selecting features and tuning parameters relative to the state-of-art classification algorithms. 
Using the open sklearn library, the following classifiers were built on complete data sets: Gaussian 
naive Bayes (GNB), logistic regression classifier (LR), decision tree classifier (DT), multilayer 
perceptron classifier (MLP), linear support vector classifier (LSV), K-nearest neighbors classifier 
with k = 3 (3NN), AdaBoost classifier (AB), random forest classifier (RF), and gradient boosting for 
classification (GB) [42]. All algorithm parameters were used by default. 

Table 14 contains the results of constructing various classifiers on selected data sets. The last 
three columns show the fuzzy classifiers from Table 4. 

Table 14. The results of constructing various classification algorithms on imbalanced datasets. 

Data Sets Classification Algorithms Fuzzy Classifiers 
vhc0 GNB LR DT MLP LSV 3NN AB RF GB γ = 0 γ = 1 γ = 0.5 
Acc. 64.9 96.6 93.6 98.1 96.8 94.8 96.2 95.6 96.5 85.1 78.3 84.0 
GM 70.7 95.6 91.7 97.4 96.0 92.3 95.6 94.1 95.0 66.9 82.9 80.6 

TPrate 85.4 94.0 88.4 96.0 94.5 87.9 94.5 91.5 92.5 46.4 93.3 75.9 
TNrate 58.6 97.4 95.2 98.8 97.5 96.9 96.8 96.9 97.7 97.0 73.6 86.5 
nth2 GNB LR DT MLP LSV 3NN AB RF GB γ = 0 γ = 1 γ = 0.5 
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Acc. 96.3 98.1 95.8 97.7 98.1 98.1 99.1 96.7 97.2 99.5 99.8 99.5 
GM 96.5 95.3 91.1 95.0 96.5 95.1 98.2 91.5 91.6 98.5 99.5 99.3 

TPrate 97.1 91.4 85.7 91.4 94.3 91.4 97.1 85.7 85.7 97.1 99.0 99.0 
TNrate 96.1 99.4 97.8 98.9 98.9 99.4 99.4 98.9 99.4 100.0 100.0 99.6 
sgm0 GNB LR DT MLP LSV 3NN AB RF GB γ = 0 γ = 1 γ = 0.5 
Acc. 83.3 99.7 99.2 99.7 96.8 99.3 99.6 99.4 99.3 98.9 99.1 99.0 
GM 89.2 99.3 98.4 98.4 97.6 99.1 99.1 98.5 98.3 98.2 99.1 98.7 

TPrate 98.5 98.8 97.3 99.1 99.1 98.8 98.5 97.3 97.0 97.3 99.1 98.2 
TNrate 80.7 99.9 99.5 99.8 96.4 99.4 99.7 99.8 99.7 99.2 99.1 99.2 
pbl0 GNB LR DT MLP LSV 3NN AB RF GB γ = 0 γ = 1 γ = 0.5 
Acc. 88.7 94.1 95.3 95.4 93.9 95.3 94.3 95.7 96.5 94.8 91.8 92.9 
GM 65.4 74.9 85.1 86.1 71.8 83.4 84.1 86.3 87.7 77.1 84.9 81.5 

TPrate 47.4 58.1 74.6 76.0 53.3 71.2 73.5 76.4 79.2 60.3 77.2 70.6 
TNrate 93.4 98.1 97.7 97.6 98.5 98.1 96.6 97.9 98.4 98.7 93.4 95.4 
vwl0 GNB LR DT MLP LSV 3NN AB RF GB γ = 0 γ = 1 γ = 0.5 
Acc. 93.7 91.2 95.2 94.7 89.3 94.4 96.2 95.5 97.0 96.4 98.2 97.7 
GM 87.3 71.0 86.2 80.5 65.8 78.3 81.7 78.5 84.2 82.8 98.1 97.4 

TPrate 81.1 58.9 77.8 73.3 55.6 63.3 68.9 63.3 74.4 70.0 98.1 97.0 
TNrate 95.0 94.4 97.0 96.9 92.7 97.6 98.9 98.8 99.2 99.0 98.2 97.8 
clv04 GNB LR DT MLP LSV 3NN AB RF GB γ = 0 γ = 1 γ = 0.5 
Acc. 87.9 95.4 91.3 95.9 92.5 95.9 93.1 93.1 93.0 94.7 93.0 93.0 
GM 84.9 82.0 60.1 80.2 60.8 80.2 55.2 37.0 45.5 55.0 85.2 86.2 

TPrate 84.6 69.2 46.2 69.2 46.2 69.2 38.5 23.1 53.8 41.0 76.9 82.1 
TNrate 88.1 97.5 95.0 98.1 96.3 98.1 97.5 98.8 96.3 99.0 94.3 93.9 
ecl4 GNB LR DT MLP LSV 3NN AB RF GB γ = 0 γ = 1 γ = 0.5 
Acc. 81.2 93.4 94.6 94.0 94.0 93.4 95.8 96.7 96.7 98.7 96.1 97.9 
GM 83.9 85.7 74.6 83.6 88.6 85.7 81.8 78.2 84.5 88.9 90.1 93.9 

TPrate 95.0 80.0 60.0 75.0 85.0 80.0 70.0 65.0 75.0 80.0 85.0 90.0 
TNrate 80.4 94.3 96.8 95.3 94.6 94.3 97.5 98.7 98.1 99.9 96.8 98.4 
yst4 GNB LR DT MLP LSV 3NN AB RF GB γ = 0 γ = 1 γ = 0.5 
Acc. 16.0 96.6 96.0 95.3 96.5 96.8 96.4 96.0 96.4 95.6 84.1 91.2 
GM 34.6 30.1 54.7 44.7 6.3 47.5 47.2 30.1 45.1 19.7 79.9 80.4 

TPrate 96.1 11.8 31.4 27.5 2.0 23.5 23.5 11.8 23.5 9.8 76.5 70.6 
TNrate 13.1 99.7 98.3 97.7 99.9 99.4 99.0 99.0 99.0 98.7 84.3 91.9 

The obtained values were compared using the criterion of Wilcoxon’s sign ranks for linked 
samples (Tables A1–A4). The fuzzy classifier demonstrates results comparable with analogues in 
terms of the overall accuracy and the geometric mean but has fewer features. It shows the best 
results for the TPrate value when the coefficient γ is equal to one. With the coefficient γ is equal to 
0.5, the fuzzy classifier shows statistically comparable results with analogues by the value of TPrate 
and yields only to three algorithms by the value of TNrate.  

Thus, if the chosen priority coefficient γ is zero, the proposed metric represents the overall 
accuracy. Then the classifier focuses on recognizing a negative class, and as a result, the model has a 
low value of the Type I error, but a high value of the Type II error. 

In the case when γ is equal to 1, the function will be identical to the geometric mean. Then, the 
efficiency of the fuzzy classifier with respect to the positive class will increase. As a result, the Type 
II error will decrease, but the Type I error can increase significantly. 

When using coefficient γ close to 0.5, a system with low values of both errors will be obtained 
simultaneously. The proposed metric can be useful for such data as vowel0, ecoli4, and yeast4, when 
a high-quality classification of one class can lead to large losses in the ability of the model to 
recognize another class. 
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6. Conclusions 

We considered the possibility of applying the gravitational search algorithm to improve the 
efficiency of the fuzzy classifier in the presence of data imbalance. The binary GSA reduced the 
space of input features by selecting informative feature subsets in the wrapper mode for a fuzzy 
classifier. The continuous GSA helped to improve the quality of classification. We proposed a new 
metric that could influence the final performance indexes of the model by choosing the priority 
coefficient. The function with the ability to change priority between the number of correctly defined 
positive and negative classes allowed the developer to flexibly configure the fuzzy classifier. In 
future works, we plan to further study the impact of the coefficient in the metric on the result and 
make proposals about the recommended value of the coefficient for certain characteristics of the 
dataset. 
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Appendix A 

Table A1. The results of the comparison of various classification algorithms with fuzzy classifiers 
optimized with the gravitational search algorithm by the value of the overall accuracy. 

Algorithms 
FC, γ = 0 FC, γ = 1 FC, γ = 0.5 

STS  p NH STS p NH STS p NH 
GNB −2.521 0.012 Reject −2.521 0.012 Reject −2.521 0.012 Reject 
LR −0.21 0.833 Retain 0.7 0.484 Retain 0.42 0.674 Retain 
DT −0.56 0.575 Retain 0.42 0.674 Retain 0.14 0.889 Retain 

MLP −0.14 0.889 Retain 1.122 0.262 Retain 0.7 0.484 Retain 
LSV −1.12 0.263 Retain 0.14 0.889 Retain −0.28 0.779 Retain 
3NN 0 1 Retain 0.98 0.327 Retain 0.7 0.484 Retain 
AB −0.14 0.889 Retain 0.98 0.327 Retain 0.7 0.484 Retain 
RF −0.491 0.624 Retain 1.26 0.208 Retain 0.771 0.441 Retain 
GB 0.07 0.944 Retain 1.183 0.237 Retain 0.845 0.398 Retain 

Table A2. The results of the comparison of various classification algorithms with fuzzy classifiers 
optimized with the gravitational search algorithm by the value of the geometric mean accuracy of 
each class. 

Algorithms 
FC, γ = 0 FC, γ = 1 FC, γ = 0.5 

STS  p NH STS p NH STS p NH 
GNB 0.28 0.779 Retain −2.521 0.012 Reject −2.521 0.012 Reject 
LR 0.421 0.674 Retain −1.54 0.123 Retain −1.54 0.123 Retain 
DT 1.12 0.263 Retain −1.82 0.069 Retain −1.68 0.093 Retain 

MLP 1.26 0.208 Retain −1.4 0.161 Retain −1.26 0.208 Retain 
LSV −0.7 0.484 Retain −1.963 0.05 Reject −1.82 0.069 Retain 
3NN 1.26 0.208 Retain −1.521 0.128 Retain −1.26 0.208 Retain 
AB 0.84 0.401 Retain −1.69 0.091 Retain −1.26 0.208 Retain 
RF 0 1 Retain −1.68 0.093 Retain −1.68 0.093 Retain 
GB 0.84 0.401 Retain −1.54 0.123 Retain −1.4 0.161 Retain 
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Table A3. The results of the comparison of various classification algorithms with fuzzy classifiers 
optimized with the gravitational search algorithm by the value of the true positive rate. 

Algorithms 
FC, γ = 0 FC, γ = 1 FC, γ = 0.5 

STS  p NH STS p NH STS p NH 
GNB 1.859 0.063 Retain −0.42 0.674 Retain 0.42 0.674 Retain 
LR 0.338 0.735 Retain −2.24 0.025 Reject −1.54 0.123 Retain 
DT 1.014 0.31 Retain −2.521 0.012 Reject −1.82 0.069 Retain 

MLP 1.54 0.123 Retain −2.028 0.043 Reject −1.26 0.208 Retain 
LSV −0.28 0.779 Retain −1.992 0.046 Reject −1.68 0.093 Retain 
3NN 1.521 0.128 Retain −2.521 0.012 Reject −1.4 0.161 Retain 
AB 1.014 0.31 Retain −2.24 0.025 Reject −1.4 0.161 Retain 
RF −0.169 0.866 Retain −2.524 0.012 Reject −1.68 0.093 Retain 
GB 1.4 0.161 Retain −2.24 0.025 Reject −1.54 0.123 Retain 

Table A4. The results of the comparison of various classification algorithms with fuzzy classifiers 
optimized with the gravitational search algorithm by the value of the true negative rate. 

Algorithms 
FC, γ = 0 FC, γ = 1 FC, γ = 0.5 

STS  p NH STS p NH STS p NH 
GNB −2.521 0.012 Reject −2.366 0.018 Reject −2.521 0.012 Reject 
LR −1.12 0.263 Retain 1.26 0.208 Retain 0.98 0.327 Retain 
DT −2.38 0.017 Reject 1.183 0.237 Retain 0.98 0.327 Retain 

MLP −1.54 0.123 Retain 1.26 0.208 Retain 1.12 0.263 Retain 
LSV −1.68 0.093 Retain 0.56 0.575 Retain 0.42 0.674 Retain 
3NN −1.54 0.123 Retain 1.26 0.208 Retain 1.332 0.183 Retain 
AB −1.54 0.123 Retain 2.383 0.017 Reject 1.96 0.05 Reject 
RF −1.262 0.207 Retain 2.103 0.035 Reject 2.1 0.036 Reject 
GB −0.631 0.528 Retain 2.38 0.017 Reject 2.1 0.036 Reject 
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