Methane Emission Heterogeneity and Its Temporal Variability on an Abandoned Milled Peatland in the Baltic Region of Russia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate
2.3. Selection of Research Sites
2.4. CH4 Flux Measurements
2.5. Meteorological Measurement
2.6. Laboratory Analysis of Air Samples
2.7. Flux Calculations and Gap Filling
2.8. Emission Mapping
3. Results
3.1. Weather Conditions in the Study Period of 2022–2024
3.2. Methane Fluxes at the Soil–Atmosphere Interface
3.3. Seasonal Dynamics of Methane Fluxes on Land Cover Sites
4. Discussion
4.1. Potential Factors Affecting Seasonal Variability of Methane Emission in the Study Peatland
4.2. Annual and Inter-Annual Variability of Methane Emission in the Study Peatland
4.3. Inter-Regional Comparisons
4.4. Methane Emission Site Types on an Abandoned Peatland
- Sites emitting 100 kg ha−1yr−1 or more (ditches with a thick Sphagnum carpet, exhibiting an average monthly CH4 production of more than 10 kg ha−1month−1, with a decrease during periods of ice development).
- Sites emitting 50–100 kg ha−1yr−1, i.e., 5–7 kg ha−1month−1 (areas with a well-developed carpet of Sphagnum mosses, which experience considerable waterlogging throughout the year: ‘Juncus’, ‘Sphagnum’, ‘Tussock ditch’).
- Sites emitting 20–50 kg ha−1yr−1, i.e., 2–4 kg ha−1month−1 (moderately dry abandoned peat extraction fields, which are dominated by aerenchymatous plants: ‘Phragmites’ and ‘Eriophorum’).
- Sites emitting 1–10 kg ha−1yr−1, i.e., 0.2–0.6 kg ha−1month−1 (dry peat extraction fields, dominated by dwarf shrubs, often with regenerating post-pyrogenic patches: ‘Calluna’ and ‘Post-Fire’).
- Weakly emitting or weakly methane-sequestering sites—locations capable of emitting and sequestering methane in negligible quantities, no more than 1 kg ha−1yr−1, in average from −0.1 to 0.1 kg ha−1month−1 (‘Bare Peat’ and ‘Green Moss’).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time | Sovietsk MS | Bare Peat | Eriophorum | Calluna | Post-Fire | Phragmites | Sphagnum | Juncus |
---|---|---|---|---|---|---|---|---|
1 May 2023 | 12.9 | 11.94 | 11.98 | 11.88 | 11.88 | 12.01 | 11.98 | 11.86 |
1 June 2023 | 17.3 | 16.66 | 16.67 | 16.47 | 16.47 | 16.76 | 16.75 | 16.49 |
1 July 2023 | 17.7 | 17.30 | 17.36 | 17.28 | 17.28 | 17.30 | 17.36 | 17.22 |
1 August 2023 | 19.3 | 19.15 | 19.22 | 19.19 | 19.19 | 19.08 | 19.18 | 19.14 |
1 September 2023 | 17 | 16.38 | 16.55 | 16.52 | 16.52 | 16.24 | 16.44 | 16.36 |
1 October 2023 | 8.6 | 8.57 | 8.77 | 8.72 | 8.72 | 8.66 | 8.68 | 8.65 |
1 November 2023 | 2.5 | 2.15 | 2.34 | 2.34 | 2.34 | 2.18 | 2.30 | 2.33 |
1 December 2023 | 0.8 | 0.76 | 0.93 | 0.99 | 0.99 | 0.92 | 0.93 | 0.99 |
1 January 2024 | −2.8 | −2.74 | −2.64 | −2.55 | −2.55 | −2.70 | −2.63 | −2.61 |
1 February 2024 | 3.3 | 3.40 | 3.47 | 3.62 | 3.62 | 3.46 | 3.57 | 3.61 |
1 March 2024 | 4.9 | 4.74 | 4.79 | 4.95 | 4.95 | 4.82 | 4.90 | 4.93 |
1 April 2024 | 9 | 8.96 | 9.04 | 9.24 | 9.24 | 8.98 | 9.05 | 9.24 |
1 May 2024 | 16.5 | 15.61 | 15.72 | 15.81 | 15.81 | 15.77 | 15.84 | 16.03 |
1 June 2024 | 17.9 | 17.40 | 17.43 | 17.41 | 17.41 | 17.43 | 17.57 | 17.43 |
1 July 2024 | 19.5 | 19.06 | 19.20 | 19.17 | 19.17 | 19.20 | 19.28 | 19.20 |
1 August 2024 | 19.1 | 18.42 | 18.44 | 18.50 | 18.50 | 18.45 | 18.55 | 18.50 |
1 September 2024 | 17.1 | 16.09 | 16.15 | 16.22 | 16.22 | 16.15 | 16.15 | 16.05 |
1 October 2024 | 9.2 | 8.81 | 8.94 | 9.04 | 9.04 | 8.86 | 8.89 | 8.94 |
1 November 2024 | 4.2 | 3.92 | 4.04 | 4.12 | 4.12 | 4.03 | 4.08 | 4.09 |
1 December 2024 | 2.6 | 2.54 | 2.66 | 2.77 | 2.77 | 2.64 | 2.66 | 2.74 |
Time | Bare Peat | Eriophorum | Calluna | Post-Fire | Phragmites | Sphagnum | Juncus |
---|---|---|---|---|---|---|---|
1 May 2023 | −68.5 | −68.2 | −44.4 | −63.4 | −25.8 | −11.7 | 2.9 |
1 June 2023 | −69.2 | −66.2 | −60.4 | −79.4 | −44.3 | −28.9 | −7.2 |
1 July 2023 | −62.8 | −64.1 | −66.4 | −85.4 | −47.6 | −24.9 | −11.6 |
1 August 2023 | −64.3 | −67.8 | −79.8 | −98.8 | −55.6 | −29.4 | −18.5 |
1 September 2023 | −56.1 | −56.0 | −63.7 | −82.7 | −39.3 | −8.4 | −11.2 |
1 October 2023 | −47.9 | −46.4 | −59.8 | −78.8 | −28.6 | −3.1 | −8.6 |
1 November 2023 | −42.0 | −39.7 | −47.0 | −66.0 | −20.0 | −0.1 | 0.2 |
1 December 2023 | −35.6 | −34.8 | −40.7 | −59.7 | −19.6 | 1.5 | 10.8 |
1 January 2024 | −32.8 | −33.0 | −33.0 | −52.0 | −24.8 | 2.6 | 18.5 |
1 February 2024 | −22.9 | −29.8 | −28.6 | −47.6 | −23.1 | 4.0 | 20.1 |
1 March 2024 | −42.4 | −35.9 | −31.1 | −50.1 | −27.6 | 2.3 | 18.8 |
1 April 2024 | −46.0 | −34.4 | −27.4 | −46.4 | −18.6 | 2.0 | 25.4 |
1 May 2024 | −64.7 | −50.0 | −33.1 | −52.1 | −30.6 | −11.6 | 20.2 |
1 June 2024 | −75.0 | −67.6 | −55.6 | −74.6 | −57.2 | −38.9 | −2.3 |
1 July 2024 | −48.8 | −48.3 | −49.3 | −68.3 | −34.7 | −7.1 | −2.5 |
1 August 2024 | −61.5 | −48.6 | −52.6 | −71.6 | −42.3 | −15.1 | −0.8 |
1 September 2024 | −73.6 | −65.6 | −73.2 | −92.2 | −61.8 | −33.5 | −8.7 |
1 October 2024 | −65.6 | −58.9 | −73.4 | −92.4 | −49.5 | −17.9 | −8.3 |
1 November 2024 | −54.9 | −51.3 | −63.8 | −82.8 | −36.2 | −6.8 | −4.9 |
1 December 2024 | −39.3 | −37.8 | −46.0 | −65.0 | −26.0 | −0.1 | 7.7 |
Time | Bare Peat | Eriophorum | Calluna | Post-Fire | Phragmites | Sphagnum | Juncus |
---|---|---|---|---|---|---|---|
1 May 2023 | 0.10 | 0.16 | 0.13 | 0.13 | 0.16 | 0.14 | 0.20 |
1 June 2023 | 0.10 | 0.16 | 0.13 | 0.13 | 0.16 | 0.15 | 0.22 |
1 July 2023 | 0.09 | 0.16 | 0.12 | 0.12 | 0.17 | 0.14 | 0.21 |
1 August 2023 | 0.09 | 0.15 | 0.11 | 0.11 | 0.18 | 0.14 | 0.21 |
1 September 2023 | 0.09 | 0.14 | 0.11 | 0.11 | 0.17 | 0.13 | 0.20 |
1 October 2023 | 0.08 | 0.14 | 0.10 | 0.10 | 0.15 | 0.12 | 0.18 |
1 November 2023 | 0.19 | 0.19 | 0.14 | 0.14 | 0.19 | 0.16 | 0.22 |
1 December 2023 | 0.78 | 0.67 | 0.65 | 0.65 | 0.69 | 0.58 | 0.68 |
1 January 2024 | 0.63 | 0.56 | 0.55 | 0.55 | 0.61 | 0.51 | 0.57 |
1 February 2024 | 0.08 | 0.12 | 0.09 | 0.09 | 0.13 | 0.10 | 0.11 |
1 March 2024 | 0.07 | 0.13 | 0.09 | 0.09 | 0.14 | 0.11 | 0.12 |
1 April 2024 | 0.07 | 0.14 | 0.10 | 0.10 | 0.14 | 0.11 | 0.10 |
1 May 2024 | 0.09 | 0.16 | 0.12 | 0.12 | 0.16 | 0.15 | 0.14 |
1 June 2024 | 0.08 | 0.16 | 0.14 | 0.14 | 0.17 | 0.16 | 0.23 |
1 July 2024 | 0.08 | 0.16 | 0.15 | 0.15 | 0.18 | 0.14 | 0.24 |
1 August 2024 | 0.09 | 0.16 | 0.17 | 0.17 | 0.19 | 0.15 | 0.24 |
1 September 2024 | 0.10 | 0.15 | 0.16 | 0.16 | 0.19 | 0.15 | 0.27 |
1 October 2024 | 0.10 | 0.14 | 0.14 | 0.14 | 0.18 | 0.15 | 0.23 |
1 November 2024 | 0.23 | 0.25 | 0.24 | 0.24 | 0.28 | 0.22 | 0.31 |
1 December 2024 | 0.09 | 0.10 | 0.10 | 0.10 | 0.13 | 0.09 | 0.15 |
Time | Bare Peat | Eriophorum | Calluna | Post-Fire | Phragmites | Sphagnum | Juncus |
---|---|---|---|---|---|---|---|
1 May 2023 | 22.8 | 29.9 | 4.2 | 4.2 | 13.7 | 5.8 | 14.1 |
1 June 2023 | 22.6 | 27.7 | 3.8 | 3.8 | 10.7 | 2.7 | 17.0 |
1 July 2023 | 24.7 | 28.8 | 4.4 | 4.4 | 11.2 | 2.2 | 14.1 |
1 August 2023 | 25.1 | 28.3 | 3.4 | 3.4 | 10.6 | 2.5 | 11.2 |
1 September 2023 | 26.9 | 29.8 | 4.5 | 4.5 | 12.4 | 4.6 | 12.4 |
1 October 2023 | 29.2 | 32.6 | 6.3 | 6.3 | 14.7 | 5.8 | 14.1 |
1 November 2023 | 29.2 | 32.8 | 6.3 | 6.3 | 14.8 | 6.3 | 15.5 |
1 December 2023 | 40.1 | 34.2 | 6.9 | 6.9 | 14.9 | 12.2 | 41.3 |
1 January 2024 | 37.2 | 34.8 | 6.8 | 6.8 | 15.4 | 17.7 | 97.5 |
1 February 2024 | 38.7 | 37.1 | 10.3 | 10.3 | 16.3 | 23.9 | 100.0 |
1 March 2024 | 32.6 | 35.0 | 8.9 | 8.9 | 15.1 | 19.4 | 100.0 |
1 April 2024 | 31.0 | 34.6 | 8.9 | 8.9 | 15.8 | 18.6 | 100.0 |
1 May 2024 | 27.3 | 29.8 | 6.8 | 6.8 | 14.0 | 11.4 | 86.6 |
1 June 2024 | 26.2 | 27.1 | 1.3 | 1.3 | 10.3 | 3.7 | 21.9 |
1 July 2024 | 29.9 | 30.8 | 2.3 | 2.3 | 14.7 | 8.4 | 20.6 |
1 August 2024 | 28.1 | 29.7 | 2.1 | 2.1 | 14.2 | 7.4 | 19.7 |
1 September 2024 | 26.7 | 28.9 | 1.6 | 1.6 | 13.6 | 3.7 | 15.2 |
1 October 2024 | 28.5 | 30.9 | 3.5 | 3.5 | 15.9 | 5.2 | 15.2 |
1 November 2024 | 29.7 | 32.3 | 5.1 | 5.1 | 17.5 | 7.1 | 15.9 |
1 December 2024 | 31.3 | 33.6 | 6.0 | 6.0 | 18.6 | 10.5 | 19.6 |
Time | Bare Peat | Eriophorum | Calluna | Post-Fire | Phragmites | Sphagnum | Juncus |
---|---|---|---|---|---|---|---|
1 May 2023 | 20.4 | 48.2 | 45.0 | 45.0 | 62.5 | 68.5 | 88.2 |
1 June 2023 | 20.7 | 44.3 | 40.0 | 40.0 | 52.3 | 47.9 | 39.3 |
1 July 2023 | 21.4 | 44.5 | 38.3 | 38.3 | 51.2 | 45.8 | 27.9 |
1 August 2023 | 22.2 | 43.2 | 36.7 | 36.7 | 49.4 | 47.0 | 15.3 |
1 September 2023 | 24.0 | 46.1 | 38.6 | 38.6 | 51.6 | 62.8 | 28.8 |
1 October 2023 | 25.7 | 48.0 | 41.0 | 41.0 | 53.1 | 86.2 | 44.6 |
1 November 2023 | 26.3 | 50.4 | 42.8 | 42.8 | 54.8 | 98.5 | 100.0 |
1 December 2023 | 55.4 | 56.9 | 45.1 | 45.1 | 55.9 | 92.6 | 100.0 |
1 January 2024 | 38.7 | 55.1 | 46.4 | 46.4 | 55.8 | 100.0 | 100.0 |
1 February 2024 | 46.7 | 55.8 | 48.1 | 48.1 | 56.4 | 100.0 | 100.0 |
1 March 2024 | 28.4 | 53.6 | 47.3 | 47.3 | 55.5 | 100.0 | 100.0 |
1 April 2024 | 27.4 | 54.3 | 48.2 | 48.2 | 57.4 | 99.9 | 100.0 |
1 May 2024 | 24.5 | 50.0 | 47.9 | 47.9 | 55.8 | 65.9 | 100.0 |
1 June 2024 | 23.2 | 45.3 | 43.0 | 43.0 | 49.2 | 44.2 | 88.3 |
1 July 2024 | 28.3 | 49.6 | 44.3 | 44.3 | 48.7 | 64.1 | 82.0 |
1 August 2024 | 26.7 | 49.2 | 43.0 | 43.0 | 46.7 | 56.7 | 79.8 |
1 September 2024 | 24.9 | 46.6 | 37.9 | 37.9 | 43.7 | 45.2 | 71.2 |
1 October 2024 | 26.2 | 47.9 | 41.7 | 41.7 | 46.2 | 48.2 | 74.6 |
1 November 2024 | 27.3 | 48.8 | 43.3 | 43.3 | 47.6 | 66.5 | 80.1 |
1 December 2024 | 29.2 | 50.5 | 45.1 | 45.1 | 49.1 | 98.4 | 99.1 |
References
- Yue, X.-L.; Gao, Q.-X. Contributions of natural systems and human activity to greenhouse gas emissions. Adv. Clim. Change Res. 2018, 9, 243–252. [Google Scholar] [CrossRef]
- Levy, P.; Clement, R.; Cowan, N.; Keane, B.; Myrgiotis, V.; van Oijen, M.; van Oijen, M.; Smallman, T.L.; Toet, S.; Williams, M. Challenges in scaling up greenhouse gas fluxes: Experience from the UK greenhouse gas emissions and feedbacks program. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006743. [Google Scholar] [CrossRef]
- Saunois, M.; Martinez, A.; Poulter, B.; Zhang, Z.; Raymond, P.A.; Regnier, P.; Canadell, J.G.; Jackson, R.B.; Patra, P.K.; Bousquet, P.; et al. Global Methane Budget 2000–2020. Earth Syst. Sci. Data 2025, 17, 1873–1958. [Google Scholar] [CrossRef]
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef]
- Limpens, J.; Berendse, F.; Blodau, C.; Canadell, J.G.; Freeman, C.; Holden, J.; Roulet, N.; Rydin, H.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences 2008, 5, 1475–1491. [Google Scholar] [CrossRef]
- Inisheva, L.I. Special Features of Mire Ecosystems Functioning Under the Influence of Natural and Anthropogenic Factors; TSPU: Tomsk, Russia, 2020; pp. 1–484. (In Russian) [Google Scholar]
- Clymo, R.S.; Turunen, J.; Tolonen, K. Carbon accumulation in peatland. Oikos 1998, 81, 368–388. [Google Scholar] [CrossRef]
- Rydin, H.; Jeglum, J.K. The Biology of Peatlands, 2nd ed.; Oxford University Press: Oxford, UK, 2013; pp. 1–432. [Google Scholar] [CrossRef]
- Sirin, A.A.; Suvorov, G.G.; Chistotin, M.V.; Glagolev, M.V. Values of methane emission from drainage ditches. Environ. Dyn. Glob. Clim. Change 2012, 3, 1–10, (In Russian with English Summary). [Google Scholar] [CrossRef][Green Version]
- Glagolev, M.V.; Ilyasov, D.V.; Terentyeva, I.E.; Sabrekov, A.F.; Krasnov, O.A.; Maksutov, S.S. Methane and carbon dioxide fluxes in the waterlogged forests of Western Siberian southern and middle taiga subzones. Atmos. Ocean. Opt. 2017, 30, 301–309, (In Russian with English Summary). [Google Scholar] [CrossRef]
- Kreyling, J.; Tanneberger, F.; Jansen, F.; van der Linden, S.; Aggenbach, C.; Blüml, V.; Couwenberg, J.; Emsens, W.-J.; Joosten, H.; Klimkowska, A.; et al. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 2021, 12, 5693. [Google Scholar] [CrossRef] [PubMed]
- Joosten, H.; Sirin, A.; Couwenberg, J.; Laine, J.; Smith, P. The role of peatlands in climate regulation. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Bonn, A., Allot, T., Evans, M., Joosten, H., Stoneman, R., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 63–76. [Google Scholar] [CrossRef]
- Günther, A.; Barthelmes, A.; Huth, V.; Joosten, H.; Jurasinski, G.; Koebsch, F.; Couwenberg, J. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 2020, 11, 1644. [Google Scholar] [CrossRef] [PubMed]
- Zerbe, S.; Steffenhagen, P.; Parakenings, K.; Timmermann, T.; Frick, A.; Gelbrecht, J.; Zak, D. Ecosystem service restoration after 10 years of rewetting peatlands in NE Germany. Environ. Manag. 2013, 51, 1194–1209. [Google Scholar] [CrossRef]
- Mrotzek, A.; Michaelis, D.; Günther, A.; Wrage-Mönnig, N.; Couwenberg, J. Mass balances of a drained and a rewetted peatland: On former losses and recent gains. Soil Syst. 2020, 4, 16. [Google Scholar] [CrossRef]
- Carbon Supersites: Russian Federation. The Ministry of Science and Higher Education of the Russian Federation. 2023. Available online: https://carbon-polygons.ru/en/ (accessed on 9 July 2025).
- Abakumov, E.; Polyakov, V. Carbon polygons and carbon offsets: Current state, key challenges and pedological aspects. Agronomy 2021, 11, 2013. [Google Scholar] [CrossRef]
- The Rossyanka Carbon Polygon. Scientific and Educational Project for Climate Active Greenhouse Gas Study. 2023. Available online: http://rosyanka.kantiana.ru/ (accessed on 9 July 2025). (In Russian).
- Rivas-Martínez, S.; Rivas-Sáenz, S.; Penaz, A. Worldwide bioclimatic classification system. Glob. Geobot. 2011, 1, 1–634. [Google Scholar] [CrossRef]
- Napreenko, M.; Danchenkov, A.; Napreenko-Dorokhova, T.; Samerkhanova, A. Vegetation mapping in drained peatlands for the carbon research objectives: A case study from Kaliningrad Region. Mires Peat 2023, 29, 1–25. [Google Scholar] [CrossRef]
- Napreenko, M.G.; Napreenko-Dorokhova, T.V. The main patterns of present-day zonal vegetation development in Kaliningrad Oblast, Russian Federation (southeastern Baltic), inferred by palynological data. Vestn. St. Petersburg Univ. Earth Sci. 2020, 65, 337–361, (In Russian with English Summary). [Google Scholar] [CrossRef]
- Greenup, A.L.; Bradford, M.A.; McNamara, N.P.; Ineson, P.; Lee, J.A. The role of Eriophorum vaginatum in CH4 flux from an ombrotrophic peatland. Plant Soil 2000, 227, 265–272. [Google Scholar] [CrossRef]
- Minkkinen, K.; Laine, J. Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant Soil 2006, 285, 289–304. [Google Scholar] [CrossRef]
- Waddington, J.M.; Day, S.M. Methane emission from a peatland following restoration. J. Geophys. Res. 2007, 112, e12646. [Google Scholar] [CrossRef]
- Veretennikova, E.E.; Dyukarev, E.A. Comparison of methane fluxes of open and forested bogs of the southern taiga zone of Western Siberia. Boreal Environ. Res. 2021, 26, 43–59. [Google Scholar]
- Rissanen, A.; Ojanen, P.; Stenberg, L.; Larmola, T.; Anttila, J.; Tuominen, S.; Minkkinen, K.; Koskinen, M.; Mäkipää, R. Vegetation impacts ditch methane emissions from boreal forestry-drained peatlands—Moss-free ditches have an order-of-magnitude higher emissions than moss-covered ditches. Front. Environ. Sci. 2023, 11, 1121969. [Google Scholar] [CrossRef]
- Napreenko, M.; Kileso, A.; Napreenko-Dorokhova, T.; Antsiferova, O.; Bashirova, L.; Goltsvert, G. Carbon flux inventories on disturbed peatlands as part of the Carbon Supersite Programme in the Baltic Region. Int. J. Environ. Sci. Technol. 2024, 22, 11267–11274. [Google Scholar] [CrossRef]
- Romanova, E.A.; Vinogradova, O.L.; Frizina, I.V. Modern Landscapes in the Kaliningrad Region. In Terrestrial and Inland Water Environment of the Kaliningrad Region; Gritsenko, V.A., Sivkov, V.V., Yurov, A.V., Kostianoy, A.G., Eds.; The Handbook of Environmental Chemistry, 65; Springer: Cham, Switzerland, 2018; pp. 97–119. [Google Scholar] [CrossRef]
- Antsiferova, O.; Napreenko, M.; Napreenko-Dorokhova, T. Transformation of soils and mire community reestablishment potential in disturbed abandoned peatland: A case study from the Kaliningrad Region, Russia. Land 2023, 12, 1880. [Google Scholar] [CrossRef]
- Glagolev, M.V.; Sabrekov, A.F.; Kazantsev, V.S. Measuring Gas Exchange at the Soil-Atmosphere Interface; TSPU: Tomsk, Russia, 2010; pp. 1–96. Available online: https://tspu.ru/files/Lidooss/museumtorfa/gasoobmen.pdf (accessed on 13 August 2025). (In Russian)
- Maier, M.; Weber, T.K.D.; Fiedler, J.; Fuß, R.; Glatzel, S.; Huth, V.; Jordan, S.; Jurasinski, G.; Kutzbach, L.; Schäfer, K.; et al. Introduction of a guideline for measurements of greenhouse gas fluxes from soils using non-steady-state chambers. J. Plant Nutr. Soil Sci. 2022, 185, 447–461. [Google Scholar] [CrossRef]
- Kiselev, M.V.; Voropay, N.N.; Dyukarev, E.A.; Kurakov, S.A.; Kurakova, P.S.; Makeev, E.A. Automatic meteorological measuring systems for microclimate monitoring. IOP Conf. Ser. Earth Environ. Sci. 2018, 190, 012031. [Google Scholar] [CrossRef]
- GSO 10605; Description of the Standard Sample Type GSO 10605. PGS-Service: Zarechny, Russia, 2024. Available online: https://pgs.ru/dir_images/docs_file_83_l.pdf (accessed on 13 August 2025). (In Russian)
- Lee, S.; Wolberg, G.; Shin, S.Y. Scattered Data Interpolation with Multilevel B-Splines. IEEE Trans. Vis. Comput. Graph. 1997, 3, 228–244. [Google Scholar] [CrossRef]
- Poulter, B.; Fluet-Chouinard, E.; Hugelius, G.; Koven, C.; Fatoyinbo, L.; Page, S.E.; Rosentreter, J.A.; Smart, L.S.; Taillie, P.J.; Thomas, N.; et al. A review of global wetland carbon stocks and management challenges. In Wetland Carbon and Environmental Management; Krauss, K.W., Zhu, Z., Stagg, C.L., Eds.; Geophysical Monograph Series; Wiley: Hoboken, NJ, USA, 2022; pp. 3–20. [Google Scholar] [CrossRef]
- Veretennikova, E.E.; Dyukarev, E.A.; Kuryina, I.V. Temporal variability of methane emission from a raised bog in Western Siberia. Atmospheric Ocean. Opt. 2022, 35, 769–774. [Google Scholar] [CrossRef]
- Dyukarev, E.A.; Veretennikova, E.E.; Sabrekov, A.F.; Kulik, A.A.; Zarov, E.A. Methane and carbon dioxide fluxes correlation according to automatic chamber observations at the Mukhrino bog ridgeand hollow complex. Environ. Dyn. Glob. Clim. Change 2024, 15, 276–288. [Google Scholar] [CrossRef]
- Couwenberg, J.; Thiele, A.; Tanneberger, F.; Augustin, J.; Bärisch, S.; Dubovik, D.; Lyashchynskaya, N.V.; Michaelis, D.; Minke, M.; Skuratovich, A.; et al. Assessing greenhouse gas emission from peatlands using vegetation as a proxy. Hydrobiologia 2011, 674, 67–89. [Google Scholar] [CrossRef]
- Henneberg, A.; Elsgaard, L.; Sorrell, B.K.; Brix, H.; Petersen, S.O. Does Juncus effusus enhance methane emissions from grazed pastures on peat? Biogeosciences 2015, 12, 5667–5676. [Google Scholar] [CrossRef]
- Daun, C.; Huth, V.; Gaudig, G.; Günther, A.; Krebs, M.; Jurasinski, G. Full-cycle greenhouse gas balance of a Sphagnum paludiculture site on former bog grassland in Germany. Sci. Total Environ. 2023, 877, 162943. [Google Scholar] [CrossRef] [PubMed]
Research Site | Plant Community Category (Adapted After [20]) | Location |
---|---|---|
1. Bare Peat | Open areas with bare peat | 54.798990° N 21.658226° E |
2. Juncus | Juncus- and sedge-dominated inundated fen-like communities | 54. 802349° N 21. 658880° E |
3. Eriophorum | Sparse birch regrowth with Eriophorum | 54.798277° N 21.660018° E |
4. Post-Fire | Birch stand on post-pyrogenic sites | 54.801040° N 21.660440° E |
5. Calluna | Dense high birch regrowth with Calluna | 54.801853° N 21.656780° E |
6. Sphagnum | Wet birch regrowth with Sphagna and Eriophorum | 54.797548° N 21. 654183° E |
7. Green Moss | Open areas with sparse moss fragments | 54.798990° N 21.658226° E |
8. Phragmites | Birch stand with Phragmites and Calluna | 54.797063° N 21.657030° E |
9. Tussock Ditch | Hydrophilic vegetation in drainage ditches with dominance of Eriophorum tussocks | 54.798752° N 21.658657° E |
10. Sphagnum-Lawn Ditch | Hydrophilic vegetation in ditches with dominance of Sphagnum lawns with Eriophorum | 54.801615° N 21.658122° E |
Research Site | Cumulative Annual/Inter-Annual Methane Fluxes | ||||
---|---|---|---|---|---|
2022 kg (CH4) ha−1yr−1 | 2023 kg (CH4) ha−1yr−1 | 2024 kg (CH4) ha−1yr−1 | 2022–2024 | ||
kg (CH4) ha−1yr−1 | kg (CH4) ha−1month−1 | ||||
Sphagnum-Lawn Ditch | 87.3 | 113.8 | 213.2 | 138.1 | 11.5 |
Tussock Ditch | 50.3 | 81.1 | 113.4 | 81.6 | 6.8 |
Juncus | 46.3 | 65.4 | 119.0 | 76.9 | 6.4 |
Sphagnum | 44.0 | 53.6 | 89.2 | 62.3 | 5.2 |
Phragmites | 38.6 | 25.6 | 63.1 | 42.4 | 3.5 |
Eriophorum | 20.2 | 18.6 | 22.3 | 20.4 | 1.7 |
Calluna | 7.8 | 6.8 | 8.7 | 7.8 | 0.6 |
Post-Fire | 2.5 | 1.7 | 2.5 | 2.2 | 0.2 |
Bare Peat | 0.5 | −0.3 | −0.1 | 0.02 | 0.002 |
Green Moss | 0.1 | −0.4 | −0.3 | −0.2 | −0.02 |
Total (from 1 ha of the peatland area) | 19.4 | 18.7 | 28.8 | 22.3 | 1.9 |
Research Site | Winter | Spring | Summer | Autumn | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2024 | 2022 | 2023 | 2024 | 2022 | 2023 | 2024 | 2022 | 2023 | 2024 | |
Sphagnum-Lawn Ditch | 2.9 | 4.5 | 5.7 | 5.5 | 5.1 | 12.8 | 17.2 | 12.5 | 41.8 | 3.5 | 15.9 | 10.7 |
Tussock Ditch | 1.1 | 2.9 | 4.6 | 6.0 | 7.6 | 7.5 | 6.4 | 6.8 | 17.3 | 3.3 | 9.6 | 8.4 |
Juncus | 2.5 | 3.2 | 3.7 | 2.5 | 3.2 | 6.3 | 6.8 | 4.9 | 13.5 | 2.8 | 6.6 | 6.2 |
Sphagnum | 1.3 | 2.5 | 2.7 | 2.5 | 2.7 | 5.4 | 9.9 | 7.3 | 26.4 | 1.7 | 9.4 | 5.1 |
Phragmites | 1.5 | 1.6 | 1.5 | 2.5 | 1.2 | 6.4 | 6.7 | 3.2 | 10.8 | 2.2 | 2.5 | 2.4 |
Eriophorum | 1.5 | 1.6 | 1.7 | 0.9 | 1.5 | 1.3 | 2.3 | 1.2 | 1.7 | 1.9 | 1.9 | 2.7 |
Calluna | 0.7 | 0.7 | 0.7 | 0.5 | 0.5 | 0.6 | 0.8 | 0.4 | 0.6 | 0.6 | 0.7 | 1.0 |
Post-Fire | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.04 | 0.2 | 0.2 | 0.2 | 0.3 |
Bare Peat | −0.01 | −0.02 | 0.01 | 0.1 | 0.02 | −0.01 | 0.01 | −0.1 | −0.01 | 0.01 | −0.02 | −0.02 |
Green Moss | −0.01 | 0.1 | 0.1 | −0.1 | −0.1 | −0.1 | 0.1 | −0.1 | −0.1 | 0.01 | −0.1 | −0.04 |
Region | Land Cover Site and Flux Value, kg(CH4)ha−1month−1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Kaliningrad (milled peatland) | Green moss −0.02 | Bare peat 0.002 | Post-fire 0.2 | Calluna 0.6 | Eriophorum 1.7 | Pragmites 3.5 | Sphagnum 5.2 | Juncus 6.4 | Tussock ditch 6.8 | Sphagnum-lawn ditch 11.5 |
Belarus (milled peatland) [38] | Polytrichum 1.8 | Bare peat 1.8 | Calluna negligible | Eriophorum 9.1 | Sphagnum hummock 21.3 | Sphagnum lawn 157.9 | ||||
Canada (milled peatland) [24] | Moss 0.01 | Peat −0.2 | Shrub 0.2 | Herbaceous −0.1 | Ditch 29.1 | |||||
Denmark (grazed pasture on peat) [39] | Juncus tussock 10.7 | |||||||||
NW Germany (drained bog grassland) [40] | Ditch with floating Sphagnum mats 16.6 | |||||||||
Moscow oblast (milled peatland) [9] | Ditch 277.6 | |||||||||
Finland (forestry-drained peatland) [26] | Vascular ditch 7.3 | Sphagnum + vascular ditch 3.2 | ||||||||
UK (communities on a bog) [22] | Sphagnum + Eriophorum 21.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napreenko, M.; Dyukarev, E.; Kileso, A.; Napreenko-Dorokhova, T.; Modanova, E.; Bashirova, L.; Voropay, N.; Goltsvert, G. Methane Emission Heterogeneity and Its Temporal Variability on an Abandoned Milled Peatland in the Baltic Region of Russia. Land 2025, 14, 1840. https://doi.org/10.3390/land14091840
Napreenko M, Dyukarev E, Kileso A, Napreenko-Dorokhova T, Modanova E, Bashirova L, Voropay N, Goltsvert G. Methane Emission Heterogeneity and Its Temporal Variability on an Abandoned Milled Peatland in the Baltic Region of Russia. Land. 2025; 14(9):1840. https://doi.org/10.3390/land14091840
Chicago/Turabian StyleNapreenko, Maxim, Egor Dyukarev, Aleksandr Kileso, Tatiana Napreenko-Dorokhova, Elizaveta Modanova, Leyla Bashirova, Nadezhda Voropay, and German Goltsvert. 2025. "Methane Emission Heterogeneity and Its Temporal Variability on an Abandoned Milled Peatland in the Baltic Region of Russia" Land 14, no. 9: 1840. https://doi.org/10.3390/land14091840
APA StyleNapreenko, M., Dyukarev, E., Kileso, A., Napreenko-Dorokhova, T., Modanova, E., Bashirova, L., Voropay, N., & Goltsvert, G. (2025). Methane Emission Heterogeneity and Its Temporal Variability on an Abandoned Milled Peatland in the Baltic Region of Russia. Land, 14(9), 1840. https://doi.org/10.3390/land14091840