The Impact of Transportation Accessibility on Regional Land Price Disparities in South Korea, 2010–2019
Abstract
1. Introduction
2. Background
2.1. Transportation Accessibility and Regional Development
2.2. Transportation Accessibility and Land Price
2.3. Transportation Infrastructure Policies in Korea
3. Materials and Methods
3.1. Data
3.2. Methodologies
3.2.1. Spatial Panel Model
3.2.2. Cross-Sectional Spatial Econometrics Model
3.2.3. Geographically Weighted Regression Model
3.2.4. Gini Coefficient
4. Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GRDP | 7.962 | *** | 7.344 | *** | 7.329 | *** | 7.27 | *** | 7.249 | *** | 7.236 | *** | 7.213 | *** | 5.972 | *** | 5.811 | *** | 5.652 | *** |
Establishment | 0.048 | 0.014 | 0.046 | 0.060 | 0.074 | * | 0.085 | * | 0.103 | ** | −0.021 | −0.025 | 0.006 | |||||||
Manufacturer | 0.182 | *** | 0.224 | *** | 0.236 | *** | 0.209 | *** | 0.181 | *** | 0.197 | *** | 0.180 | *** | 0.712 | *** | 0.723 | *** | 0.718 | *** |
Density | −1.480 | *** | −1.221 | *** | −1.251 | *** | −1.166 | *** | −1.261 | *** | −1.288 | *** | −1.370 | *** | −2.417 | *** | −2.449 | *** | −2.598 | *** |
Aging | 0.368 | *** | 0.373 | *** | 0.379 | *** | 0.385 | *** | 0.394 | *** | 0.399 | *** | 0.407 | *** | 0.366 | *** | 0.371 | *** | 0.379 | *** |
Restriction | −0.070 | *** | −0.043 | *** | −0.043 | *** | −0.039 | *** | −0.033 | *** | −0.035 | *** | −0.032 | *** | −0.041 | *** | −0.038 | *** | −0.035 | *** |
GRDP | 0.276 | ** | 0.189 | 0.191 | * | 0.233 | ** | 0.289 | *** | 0.266 | ** | 0.295 | ** | 0.394 | *** | 0.419 | *** | 0.448 | *** | |
ln_TRAD_R | 0.208 | *** | 0.204 | *** | 0.178 | *** | 0.187 | *** | 0.204 | *** | 0.181 | *** | 0.179 | *** | 0.145 | *** | 0.154 | *** | 0.160 | *** |
0.067 | *** | 0.072 | *** | 0.051 | * | 0.076 | *** | 0.064 | *** | 0.050 | * | 0.053 | * | 0.087 | *** | 0.092 | *** | 0.096 | *** | |
2.582 | *** | 2.623 | *** | 0.951 | *** | 1.741 | *** | 2.673 | *** | 0.956 | *** | 0.955 | *** | 0.945 | *** | 0.949 | *** | 0.953 | *** | |
0.090 | *** | 0.099 | *** | 0.105 | *** | 0.099 | *** | 0.089 | *** | 0.105 | *** | 0.105 | *** | 0.079 | *** | 0.080 | *** | 0.082 | *** | |
N | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | ||||||||||
Pseudo R2 | 0.960 | 0.955 | 0.952 | 0.956 | 0.954 | 0.951 | 0.952 | 0.966 | 0.965 | 0.963 | ||||||||||
LL | −54.38 | −65.72 | −74.68 | −66.63 | −53.18 | −74.37 | −74.65 | −38.85 | −41.61 | −44.85 |
Variable | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GRDP | 8.536 | *** | 7.994 | *** | 7.84 | *** | 7.837 | *** | 7.821 | *** | 7.796 | *** | 7.759 | *** | 6.399 | *** | 6.280 | *** | 6.162 | *** |
Establishment | 0.056 | 0.004 | 0.070 | 0.061 | 0.073 | 0.094 | ** | 0.112 | ** | −0.016 | −0.021 | 0.002 | ||||||||
Manufacturer | 0.180 | *** | 0.268 | *** | 0.188 | *** | 0.232 | *** | 0.221 | *** | 0.197 | *** | 0.181 | *** | 0.727 | *** | 0.738 | *** | 0.733 | *** |
Density | −1.326 | *** | −1.155 | *** | −1.177 | *** | −1.050 | *** | −1.179 | *** | −1.183 | *** | −1.270 | *** | −2.365 | *** | −2.392 | *** | −2.533 | *** |
Aging | 0.374 | *** | 0.368 | *** | 0.389 | *** | 0.395 | *** | 0.402 | *** | 0.410 | *** | 0.418 | *** | 0.375 | *** | 0.381 | *** | 0.391 | *** |
Restriction | −0.075 | *** | −0.052 | *** | −0.042 | *** | −0.044 | *** | −0.041 | *** | −0.038 | *** | −0.036 | *** | −0.044 | *** | −0.042 | *** | −0.039 | *** |
GRDP | 0.272 | ** | 0.109 | 0.247 | ** | 0.197 | * | 0.213 | * | 0.258 | ** | 0.289 | ** | 0.388 | *** | 0.413 | *** | 0.440 | *** | |
ln_TRAD_T | 0.143 | *** | 0.111 | *** | 0.123 | *** | 0.108 | *** | 0.108 | *** | 0.107 | *** | 0.107 | *** | 0.084 | *** | 0.086 | *** | 0.087 | *** |
0.069 | *** | 0.067 | ** | 0.081 | *** | 0.052 | * | 0.051 | * | 0.051 | * | 0.055 | * | 0.089 | *** | 0.094 | *** | 0.099 | *** | |
2.567 | *** | 0.933 | *** | 3.144 | *** | 0.953 | *** | 0.954 | *** | 0.956 | *** | 0.954 | *** | 0.943 | *** | 0.947 | *** | 0.951 | *** | |
0.093 | *** | 0.113 | *** | 0.094 | *** | 0.108 | *** | 0.107 | *** | 0.107 | *** | 0.107 | *** | 0.080 | *** | 0.082 | *** | 0.085 | *** | |
N | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | ||||||||||
Pseudo R2 | 0.960 | 0.955 | 0.952 | 0.956 | 0.954 | 0.951 | 0.952 | 0.966 | 0.965 | 0.963 | ||||||||||
LL | −54.38 | −65.72 | −74.68 | −66.63 | −53.18 | −74.37 | −74.65 | −38.85 | −41.61 | −44.85 |
Variable | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GRDP | 7.149 | *** | 6.165 | *** | 6.202 | *** | 6.048 | *** | 6.053 | *** | 6.057 | *** | 6.000 | *** | 4.943 | *** | 4.703 | *** | 4.499 | *** |
Establishment | 0.042 | 0.009 | 0.054 | 0.061 | 0.064 | 0.088 | * | 0.103 | ** | −0.021 | −0.026 | 0.006 | ||||||||
Manufacturer | 0.211 | *** | 0.262 | *** | 0.235 | *** | 0.229 | *** | 0.224 | *** | 0.197 | *** | 0.182 | *** | 0.706 | *** | 0.718 | *** | 0.715 | *** |
Density | −1.418 | *** | −1.263 | *** | −1.242 | *** | −1.154 | *** | −1.279 | *** | −1.284 | *** | −1.312 | *** | −2.410 | *** | −2.461 | *** | −2.670 | *** |
Aging | 0.342 | *** | 0.346 | *** | 0.367 | *** | 0.373 | *** | 0.378 | *** | 0.388 | *** | 0.396 | *** | 0.359 | *** | 0.364 | *** | 0.373 | *** |
Restriction | −0.081 | *** | −0.047 | *** | −0.043 | *** | −0.039 | *** | −0.037 | *** | −0.034 | *** | −0.031 | *** | −0.039 | *** | −0.036 | *** | −0.033 | *** |
GRDP | 0.238 | ** | 0.128 | 0.197 | * | 0.214 | * | 0.218 | * | 0.266 | ** | 0.297 | ** | 0.397 | *** | 0.423 | *** | 0.451 | *** | |
ln_UTILITY | 0.188 | *** | 0.203 | *** | 0.190 | *** | 0.199 | *** | 0.197 | *** | 0.194 | *** | 0.196 | *** | 0.161 | *** | 0.171 | *** | 0.176 | *** |
0.078 | *** | 0.076 | *** | 0.061 | ** | 0.058 | ** | 0.061 | ** | 0.059 | ** | 0.062 | ** | 0.097 | *** | 0.103 | *** | 0.109 | *** | |
0.879 | *** | 0.918 | *** | 0.945 | *** | 0.948 | *** | 0.948 | *** | 0.952 | *** | 0.952 | *** | 0.940 | *** | 0.946 | *** | 0.951 | *** | |
0.098 | *** | 0.108 | *** | 0.103 | *** | 0.103 | *** | 0.103 | *** | 0.103 | *** | 0.103 | *** | 0.078 | *** | 0.079 | *** | 0.081 | *** | |
N | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | ||||||||||
Pseudo R2 | 0.960 | 0.955 | 0.952 | 0.956 | 0.954 | 0.951 | 0.952 | 0.966 | 0.965 | 0.963 | ||||||||||
LL | −54.38 | −65.72 | −74.68 | −66.63 | −53.18 | −74.37 | −74.65 | −38.85 | −41.61 | −44.85 |
1 | Utility accessibility refers to an accessibility measure derived from the logsum utility function, incorporating travel time, distance, and socioeconomic characteristics. A full explanation is provided in Section 3.2. |
2 | Adaptive bi-square kernel function assigns weights that decrease with increasing distance from the target location, reaching zero beyond a certain threshold distance, which is automatically optimized based on the spatial distribution of the data to ensure the most appropriate bandwidth for the analysis. |
3 | The results for all regression analyses applying the SAC model for TRAD road and railway accessibility and utility accessibility from 2010 to 2019 are summarized in Appendix A Table A1, Table A2 and Table A3. |
References
- Chung, I.; Lee, B.; Kim, H. The Strategies of Equity Improvement toward Fair Society—Focusing on the Equity in Transportation Policy; Korea Research Institute for Human Settlements: Sejong, Republic of Korea, 2011. [Google Scholar]
- Jo, J.; Woo, M. The impacts of high-speed rail on regional economy and balanced development: Focused on Gyeongbu and Gyeongjeon lines of Korea Train eXpress (KTX). J. Korea Plan. Assoc. 2014, 49, 263–278. [Google Scholar] [CrossRef]
- Jun, E.; Lee, S. The effects of rapid rail transit on balanced regional development. Seoul Stud. 2007, 8, 73–87. [Google Scholar]
- Lee, S.; Jung, I. The effects of high-speed rail on regional disparity. J. Korea Reg. Econ. 2011, 9, 61–79. [Google Scholar]
- Park, J.; Kim, C.; Lee, S. The effects of transportation accessibility on influx of population and gross regional domestic product. Korea Spat. Plan. Rev. 2020, 107, 25–40. [Google Scholar]
- Chae, J.; Sung, H. Impact of Spatial Accessibility Index, Based on Road Network and Actual Trips, on Housing Price. J. Korea Plan. Assoc. 2019, 54, 76–83. [Google Scholar] [CrossRef]
- Choi, U.; Kim, J. Impact of Large-scale Transportation Infrastructure Plan on the Housing Markets: Focus on GTX, Housing Consumer Confidence Index and Sales Prices. J. Digit. Converg. 2021, 19, 9–18. [Google Scholar]
- Kang, C. Effects of intermodalism of public transit on land prices: Case of metro and bus transit in Seoul, Korea. Korea Real Estate Rev. 2021, 31, 47–68. [Google Scholar] [CrossRef]
- Cook, L.M.; Munnell, A.H. How does public infrastructure affect regional economic performance? N. Engl. Econ. Rev. 1990, 69–112. [Google Scholar]
- Litman, T. Evaluating Public Transit Benefits and Costs; Victoria Transport Policy Institute: Victoria, BC, Canada, 2015. [Google Scholar]
- Munnell, A.H. Why has productivity growth declined? Productivity and public investment. N. Engl. Econ. Rev. 1990, 3–22. [Google Scholar]
- Qi, G.; Shi, W.; Lin, K.-C.; Yuen, K.F.; Xiao, Y. Spatial spillover effects of logistics infrastructure on regional development: Evidence from China. Transp. Res. Part A Policy Pract. 2020, 135, 96–114. [Google Scholar] [CrossRef]
- Aschauer, D.A. Why is infrastructure important? In Is There a Shortfall in Public Capital Investment? Munnell, A.H., Ed.; Federal Bank of Boston: Boston, MA, USA, 1990; pp. 21–50. [Google Scholar]
- Harris, C.C., Jr. Symposium on multiregional forecasting and policy simulation models: New developments and extensions of the multiregional, multi-industry forecasting model. J. Reg. Sci. 1980, 20, 159–171. [Google Scholar] [CrossRef]
- Mills, E.S.; Carlino, G. Dynamics of county growth. In Advances in Spatial Theory and Dynamics; Anderson, A.E., Batten, D.F., Johansson, B., Nijkamp, P., Eds.; North-Holland: Amsterdam, The Netherlands, 1989; pp. 195–205. [Google Scholar]
- Ahlfeldt, G.M.; Feddersen, A. From periphery to core: Measuring agglomeration effects using high-speed rail. J. Econ. Geogr. 2017, 18, 355–390. [Google Scholar] [CrossRef]
- Banister, D.; Berechman, Y. Transport investment and the promotion of economic growth. J. Transp. Geogr. 2001, 9, 209–218. [Google Scholar] [CrossRef]
- Bröcker, J.; Korzhenevych, A.; Schürmann, C. Assessing spatial equity and efficiency impacts of transport infrastructure projects. Transp. Res. Part B Methodol. 2010, 44, 795–811. [Google Scholar] [CrossRef]
- Hwang, E. A study on the urban growth according to transportation construction. J. Korea Plan. Assoc. 2002, 37, 159–172. [Google Scholar]
- Monzón, A.; Ortega, E.; López, E. Efficiency and spatial equity impacts of high-speed rail extensions in urban areas. Cities 2013, 30, 18–30. [Google Scholar] [CrossRef]
- Qin, Y. ‘No county left behind?’ The distributional impact of high-speed rail upgrades in China. J. Econ. Geogr. 2017, 17, 489–520. [Google Scholar] [CrossRef]
- Munnell, A.H. Policy watch: Infrastructure investment and economic growth. J. Econ. Perspect. 1992, 6, 189–198. [Google Scholar] [CrossRef]
- Cai, W.; Wu, Z.; Lu, Y. The Impact of High-Speed Rails on Urban Consumption: From the Perspective of “Local-Adjacent” Effect. Front. Environ. Sci. 2022, 10, 884965. [Google Scholar] [CrossRef]
- Cantos, P.; Gumbau-Albert, M.; Maudos, J. Transport infrastructures, spillover effects and regional growth: Evidence of the Spanish case. Transp. Rev. 2005, 25, 25–50. [Google Scholar] [CrossRef]
- Chen, C.-L.; Loukaitou-Sideris, A.; de Ureña, J.M.; Vikerman, R. Spatial short and long-term implications and planning challenges of high-speed rail: A literature review framework for the special issue. Eur. Plan. Stud. 2019, 27, 415–433. [Google Scholar] [CrossRef]
- Gutiérrez, J.; González, R.; Gómez, G. The European high-speed train network. J. Transp. Geogr. 1996, 4, 227–238. [Google Scholar] [CrossRef]
- Kim, E.; Moon, S.; Yi, Y. Analyzing spillover effects of development of Asian highway on regional growth of Northeast Asian countries. Rev. Dev. Econ. 2021, 25, 1243–1266. [Google Scholar] [CrossRef]
- Yu, N.; De Jong, M.; Storm, S.; Mi, J. Spatial spillover effects of transport infrastructure: Evidence from Chinese regions. J. Transp. Geogr. 2013, 28, 56–66. [Google Scholar] [CrossRef]
- Leck, E.; Bekhor, S.; Gat, D. Equity impacts of transportation improvements on core and peripheral cities. J. Transp. Land Use 2008, 1, 153–182. [Google Scholar] [CrossRef]
- Cavallaro, F.; Bruzzone, F.; Nocera, S. Effects of high-speed rail on regional accessibility. Transportation 2022, 50, 1685–1721. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, J. Can highway networks promote productivity? Evidence from China. J. Adv. Transp. 2021, 2021, 6860979. [Google Scholar] [CrossRef]
- Meijiers, E.; Hoekstra, J.; Leijten, M.; Louw, E.; Spaans, M. Connecting the periphery: Distributive effects of new infrastructure. J. Transp. Geogr. 2012, 22, 187–198. [Google Scholar] [CrossRef]
- Sánchez-Mateos, H.S.M.; Givoni, M. The accessibility impact of a new high-speed rail line in the UK: A preliminary analysis of winners and losers. J. Transp. Geogr. 2012, 25, 105–114. [Google Scholar] [CrossRef]
- Zhang, A.; Wan, Y.; Yang, H. Impacts of high-speed rail on airlines, airports, and regional economics: A survey of recent research. Transp. Policy 2019, 81, A1–A19. [Google Scholar] [CrossRef]
- Chong, Z.; Qin, C.; Chen, Z. Estimating the economic benefits of high-speed rail in China: A new perspective from the connectivity improvement. J. Transp. Land Use 2019, 121, 287–302. [Google Scholar] [CrossRef]
- Kim, E.; Yi, Y. Impact analysis of high-speed rail investment on regional economic inequality: A hybrid approach using a transportation network-CGE model. J. Transp. Econ. Policy 2019, 53, 314–333. [Google Scholar]
- Bollinger, C.R.; Ihlanfeldt, K.R.; Bowes, D.R. Spatial variation in office rents within the Atlanta Region. Urban Stud. 1998, 35, 1097–1118. [Google Scholar] [CrossRef]
- Gatzlaff, D.H.; Smith, M.T. The impact of the Miami Metrorail on the value of residences near station locations. Land Econ. 1993, 69, 54–68. [Google Scholar] [CrossRef]
- He, S.; Wu, X.; Zhang, T.; Wei, Y.D. Exploring the impact of multimodal access on property and land economies in Shanghai’s Inner Ring Districts: Leveraging advanced spatial analysis techniques. Land 2024, 13, 311. [Google Scholar] [CrossRef]
- Iacono, M.; Levinson, D. Accessibility dynamics and location premia: Do land values follow accessibility changes? Urban Stud. 2017, 54, 364–381. [Google Scholar] [CrossRef]
- Januário, J.F.; Costa, Á.; Cruz, C.O.; Sarmento, J.M.; Sousa, V.F.E. Transport infrastructure, accessibility, and spillover effects: An empirical analysis of the Portuguese real estate market from 2000 to 2018. Res. Transp. Econ. 2021, 90, 101130. [Google Scholar] [CrossRef]
- Wu, C.; Huang, X.; Chen, B. Telecoupling mechanism of urban land expansion based on transportation accessibility: A case study of transitional Yangtze River economic belt, China. Land Use Policy 2020, 99, 104856. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, W.; Wu, F.; Zhao, K. Unveiling the impact of transportation infrastructure construction on rurality: A case study from Guangdong, China. Buildings 2024, 14, 2288. [Google Scholar] [CrossRef]
- Allen, T.; Arkolakis, C. The welfare effects of transportation infrastructure improvements. Rev. Econ. Stud. 2022, 89, 2911–2957. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z. The impact of transportation development on land price differences between cities: Widening or narrowing?—A case study based on the provincial level of Mainland China. Growth Change 2022, 53, 910–932. [Google Scholar] [CrossRef]
- Kim, C.; Cho, H.; Choi, J.; Park, J.; Kang, D. 2021 Transportation SOC Investment Outlook; The Korea Transport Institute: Sejong, Republic of Korea, 2021.
- Kim, K. A study on the gap in employment and earned income between regions in Korea. Int. Area Stud. Rev. 2023, 27, 3–37. [Google Scholar] [CrossRef]
- Banister, D.; Thurstain-Goodwin, M. Quantification of the non-transport benefits resulting from rail investment. J. Transp. Geogr. 2011, 19, 212–223. [Google Scholar] [CrossRef]
- Kim, H.; Sultana, S. The impacts of high-speed rail extensions on accessibility and spatial equity changes in South Korea from 2004 to 2018. J. Transp. Geogr. 2015, 45, 48–61. [Google Scholar] [CrossRef]
- Kim, J.; Yu, J. Forecasting income disparity in Korea and some suggestions for environmental welfare from tax reform. J. Environ. Policy Adm. 2018, 26, 37–58. [Google Scholar]
- Donaldson, D. Railroads of the Raj: Estimating the impact of transportation infrastructure. Am. Econ. Rev. 2018, 108, 899–934. [Google Scholar] [CrossRef]
- Tsutsumi, M.; Seya, H. Measuring the impact of large-scale transportation projects on land price using spatial statistical models. Pap. Reg. Sci. 2008, 87, 385–401. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, H.; Lee, Y.; Lee, J. Analysis of determinants and validation on standard official housing price in Seoul. J. Urban Stud. Real. Estate 2020, 11, 109–124. [Google Scholar] [CrossRef]
- Kim, B.; Kim, T. A study on estimation of land value using spatial statistics: Focusing on real transaction land prices in Korea. Sustainability 2016, 8, 203. [Google Scholar] [CrossRef]
- Kopczewska, K.; Kopyt, M.; Ćwiąkowski, P. Spatial interactions in business and housing location models. Land 2021, 10, 1348. [Google Scholar] [CrossRef]
- Koster, H.R.A.; Thisse, J.-F. Understanding spatial agglomeration: Increasing returns, land, and transportation costs. Annu. Rev. Econ. 2024, 16, 55–78. [Google Scholar] [CrossRef]
- Pratiwi, L.C. Analysis of land price value in Tenayan Raya District as an urban service center. J. Reg. Spat. Econ. Manag. 2025, 4, 789–800. [Google Scholar]
- Park, S.; Park, S.W.; Kim, H.; Lee, S. The dynamic effect of population ageing on house prices: Evidence from Korea. Pac. Rim Prop. Res. J. 2017, 23, 195–212. [Google Scholar] [CrossRef]
- Lee, D.; Choi, C. An analysis of the effects of development-restricted areas on land price using spatial analysis. Land 2021, 10, 660. [Google Scholar] [CrossRef]
- Hansen, W.G. How accessibility shapes land use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Choi, E.; Park, J.; Kim, C.; Lee, S. The Impact of Improved Transportation Accessibility on Agricultural Productivity. J. Rural Dev. JRD 2020, 43, 83–114. [Google Scholar]
- Lee, K.; Kim, C.; Lee, S. The impact of transportation accessibility on the mode choice for commuters in Seoul Metropolitan Area from 2005 to 2015: Application of a conditional logit model. Seoul Stud. 2021, 22, 77–102. [Google Scholar]
- Geurs, K.; Zondag, B.; de Jong, G.; de Bok, M. Accessibility appraisal of land-use/transport policy strategies: More than just adding up travel-time savings. Transp. Res. Part D Transp. Environ. 2010, 15, 382–393. [Google Scholar] [CrossRef]
- Kim, C.; Kang, D.; Lee, J.; Kang, K.; Seo, S.; Song, K.; Lee, H. A Preliminary Study on the Future National Transportation Master Plan; The Korea Transport Institute: Sejong, Republic of Korea, 2019.
- Anselin, L.; Gallo, J.L.; Jayet, H. The Econometrics of Panel Data; Springer: Berlin, Germany, 2008. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Lee, S.; Yun, S.; Park, J.; Min, S. The Practice of Spatial Econometric Models; Park Youngsa: Seoul, Republic of Korea, 2006. [Google Scholar]
- Lee, L.; Yu, J. Estimation of spatial autoregressive panel data models with fixed effects. J. Econom. 2010, 154, 165–185. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Yitzhaki, S. Relative deprivation and the Gini coefficient. Q. J. Econ. 1979, 93, 321–324. [Google Scholar] [CrossRef]
- Lee, S. Exploring Spatio-Temporal Variations in Housing Prices between Transit-Station Areas (TSA) and Non-TSA: Application of Space-Time Cube Model and Propensity Score Matching. J. Real Estate Anal. 2024, 10, 1–20. [Google Scholar] [CrossRef]
- OECD. Road Infrastructure, Inclusive Development and Traffic Safety in Korea; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Lee, S.; Yang, J.; Cho, K.; Cho, D. The Influence of Transportation Accessibility on Traffic Volumes in South Korea: An Extreme Gradient Boosting Approach. Urban Sci. 2023, 7, 91. [Google Scholar] [CrossRef]
- Hoogendoorn, S.; van Gemern, J.; Verstraten, P.; Folmer, K. House prices and accessibility: Evidence from a quasi-experiment in transport infrastructure. J. Econ. Geogr. 2019, 19, 57–87. [Google Scholar] [CrossRef]
- Krugman, P. Increasing returns and economic geography. J. Polit. Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Alonso, W. Location and Land Use: Toward a General Theory of Land Rent; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
Variable Name | Definition | Source | |
---|---|---|---|
Dependent Variable | |||
Average Land Price | (log) Average land price by region (KRW/) | Korea Real Estate Board | |
Regional Variables | |||
GRDP | (log) GRDP per capita (million KRW/person) | Statistics Korea | |
Establishment | (log) Number of establishments per 1000 people | ||
Manufacturer | % of manufacturing establishments to total establishments | ||
Density | (log) Population per total area (people/) | ||
Aging | % of population aged 65 and above | ||
Restriction | % of restricted development area to total area | ||
Accessibility Variables | |||
ln_TRAD_R | (log) TRAD road accessibility | Korea Transport Institute | |
ln_TRAD_T | (log) TRAD railway accessibility | ||
ln_WATT_R | (log) WATT road accessibility | ||
ln_WATT_T | (log) WATT railway accessibility | ||
ln_UTILITY | (log) Utility accessibility |
Yearly Index | |||||
---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | 2014 | |
Moran’s I | 0.544 *** | 0.545 *** | 0.548 *** | 0.545 *** | 0.542 *** |
2015 | 2016 | 2017 | 2018 | 2019 | |
Moran’s I | 0.539 *** | 0.537 *** | 0.531 *** | 0.525 *** | 0.501 *** |
TRAD Accessibility | WATT Accessibility | Utility Accessibility | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Road | Railway | Road | Railway | ||||||
GRDP | 0.103 | *** | 0.125 | *** | 0.075 | *** | 0.124 | *** | 0.115 | *** |
Establishment | 0.091 | *** | 0.082 | *** | 0.078 | *** | 0.082 | *** | 0.084 | *** |
Manufacturer | 0.713 | *** | 0.678 | *** | 0.569 | *** | 0.676 | *** | 0.657 | *** |
Density | 0.521 | *** | 0.557 | *** | 0.515 | *** | 0.555 | *** | 0.476 | *** |
Aging | 0.013 | *** | 0.015 | *** | 0.009 | *** | 0.015 | *** | 0.015 | *** |
Restriction | −0.936 | *** | −0.983 | *** | −0.889 | *** | −0.985 | *** | −0.975 | *** |
ln_TRAD_R | 1.497 | *** | ||||||||
ln_TRAD_T | 0.079 | |||||||||
ln_WATT_R | −2.965 | *** | ||||||||
ln_WATT_T | −0.115 | *** | ||||||||
ln_UTILITY | 0.087 | *** | ||||||||
1.279 | *** | 1.284 | *** | 1.074 | *** | 1.274 | *** | 1.252 | *** | |
0.065 | *** | 0.066 | *** | 0.06 | *** | 0.066 | *** | 0.066 | *** | |
N | 2470 | 2470 | 2470 | 2470 | 2470 | |||||
Time Period | 10 | 10 | 10 | 10 | 10 | |||||
# of groups | 247 | 247 | 247 | 247 | 247 | |||||
Pseudo R2 | 0.871 | 0.859 | 0.760 | 0.847 | 0.844 | |||||
LL | 2913 | 2874 | 3064 | 2877 | 2890 |
Variable | Yearly Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | 2014 | ||||||
ln_TRAD_R | 0.208 | *** | 0.204 | *** | 0.178 | *** | 0.187 | *** | 0.204 | *** |
ln_TRAD_T | 0.143 | *** | 0.111 | *** | 0.123 | *** | 0.108 | *** | 0.108 | *** |
ln_UTILITY | 0.188 | *** | 0.203 | *** | 0.190 | *** | 0.199 | *** | 0.197 | *** |
N | 247 | 247 | 247 | 247 | 247 | |||||
2015 | 2016 | 2017 | 2018 | 2019 | ||||||
ln_TRAD_R | 0.181 | *** | 0.180 | *** | 0.145 | *** | 0.154 | *** | 0.160 | *** |
ln_TRAD_T | 0.107 | *** | 0.107 | *** | 0.084 | *** | 0.086 | *** | 0.087 | *** |
ln_UTILITY | 0.194 | *** | 0.196 | *** | 0.161 | *** | 0.171 | *** | 0.176 | *** |
N | 247 | 247 | 247 | 247 | 247 |
GWR Coefficients | % of (+) or (−) Coefficients | % of t-Values p < 0.1 | % of t-Values p < 0.05 | |||||
---|---|---|---|---|---|---|---|---|
Variable | Min | Max | Mean | Std. | (+) | (−) | ||
Intercept | 0.548 | 8.618 | 4.608 | 1.827 | 100% | 0% | 93.93% | 92.71% |
GRDP | −0.192 | 0.406 | 0.101 | 0.181 | 63.56% | 36.44% | 34.41% | 29.96% |
Establishment | −0.024 | 1.564 | 0.504 | 0.412 | 98.79% | 1.21% | 60.32% | 55.06% |
Manufacturer | −3.601 | −0.031 | −2.020 | 0.912 | 0% | 100% | 82.19% | 73.68% |
Density | 0.308 | 0.650 | 0.504 | 0.086 | 100% | 0% | 100% | 100% |
Aging | −0.050 | 0.077 | 0.006 | 0.039 | 35.63% | 64.37% | 61.94% | 57.89% |
Restriction | 0.026 | 2.457 | 0.690 | 0.330 | 100% | 0% | 94.33% | 93.52% |
ln_TRAD_R | −0.005 | 0.517 | 0.259 | 0.120 | 99.60% | 0.40% | 86.23% | 76.92% |
GWR Diagnostics | Adj R2 | 0.982 | AIC | 13.889 |
GWR Coefficients | % of (+) or (−) Coefficients | % of t-Values p < 0.1 | % of t-Values p < 0.05 | |||||
---|---|---|---|---|---|---|---|---|
Variable | Min | Max | Mean | Std. | (+) | (−) | ||
Intercept | 1.394 | 8.844 | 5.169 | 1.641 | 100% | 0% | 97.17% | 95.95% |
GRDP | −0.185 | 0.416 | 0.103 | 0.186 | 60.73% | 39.27% | 35.63% | 32.39% |
Establishment | 0.018 | 1.576 | 0.520 | 0.436 | 100% | 0% | 59.92% | 55.47% |
Manufacturer | −3.519 | 0.043 | −1.882 | 0.897 | 0.40% | 99.60% | 76.11% | 68.02% |
Density | 0.315 | 0.695 | 0.512 | 0.079 | 100% | 0% | 100% | 100% |
Aging | −0.054 | 0.074 | 0.003 | 0.039 | 34.41% | 65.59% | 71.26% | 65.99% |
Restriction | 0.004 | 2.441 | 0.695 | 0.333 | 100% | 0% | 93.93% | 92.31% |
ln_TRAD_T | −0.135 | 0.432 | 0.188 | 0.130 | 93.93% | 6.07% | 81.38% | 63.56% |
GWR Diagnostics | Adj R2 | 0.981 | AIC | 20.327 |
GWR Coefficients | % of (+) or (−) Coefficients | % of t-Values p < 0.1 | % of t-Values p < 0.05 | |||||
---|---|---|---|---|---|---|---|---|
Variable | Min | Max | Mean | Std. | (+) | (−) | ||
Intercept | −1.315 | 7.728 | 3.472 | 1.974 | 95.55% | 4.45% | 73.28% | 67.21% |
GRDP | −0.204 | 0.477 | 0.111 | 0.198 | 64.37% | 35.63% | 36.84% | 30.36% |
Establishment | 0.008 | 1.661 | 0.507 | 0.426 | 100% | 0% | 59.11% | 54.66% |
Manufacturer | −3.981 | 0.015 | −2.035 | 1.050 | 0.40% | 99.60% | 79.76% | 65.59% |
Density | 0.305 | 0.67 | 0.516 | 0.093 | 100% | 0% | 100% | 100% |
Aging | −0.056 | 0.095 | 0.008 | 0.041 | 36.03% | 63.97% | 60.73% | 57.89% |
Restriction | 0.014 | 2.514 | 0.700 | 0.364 | 100% | 0% | 93.12% | 87.85% |
ln_UTILITY | −0.107 | 0.500 | 0.23 | 0.109 | 96.76% | 3.24% | 85.83% | 77.73% |
GWR Diagnostics | Adj R2 | 0.943 | AIC | 252.724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Choi, D.; Lee, S. The Impact of Transportation Accessibility on Regional Land Price Disparities in South Korea, 2010–2019. Land 2025, 14, 1515. https://doi.org/10.3390/land14081515
Lee K, Choi D, Lee S. The Impact of Transportation Accessibility on Regional Land Price Disparities in South Korea, 2010–2019. Land. 2025; 14(8):1515. https://doi.org/10.3390/land14081515
Chicago/Turabian StyleLee, Kyungjae, Dohyeong Choi, and Seongwoo Lee. 2025. "The Impact of Transportation Accessibility on Regional Land Price Disparities in South Korea, 2010–2019" Land 14, no. 8: 1515. https://doi.org/10.3390/land14081515
APA StyleLee, K., Choi, D., & Lee, S. (2025). The Impact of Transportation Accessibility on Regional Land Price Disparities in South Korea, 2010–2019. Land, 14(8), 1515. https://doi.org/10.3390/land14081515