Mapping Land Surface Drought in Water-Scarce Arid Environments Using Satellite-Based TVDI Analysis
Abstract
1. Introduction
2. Methodology
2.1. Study Area Description
2.2. Data Manipulation and Drought Index Modeling
2.3. Land Surface Temperature (LST)
2.4. Normalized Difference Vegetation Index (NDVI)
2.5. Temperature Vegetation Dryness Index (TVDI)
2.6. Mann–Kendall (MK) Test for the TVDI
3. Results and Discussion
3.1. Soil Water Content Based on TVDI
3.2. Trends of TVDI, Precipitation, and LST
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalezios, N.; Blanta, A.; Spyropoulos, N.; Tarquis, A. Risk identification of agricultural drought for sustainable agroecosystems. Nat. Hazards Earth Syst. Sci. 2014, 14, 2435–2448. [Google Scholar] [CrossRef]
- Frischen, J.; Meza, I.; Rupp, D.; Wietler, K.; Hagenlocher, M. Drought risk to agricultural systems in Zimbabwe: A spatial analysis of hazard, exposure, and vulnerability. Sustainability 2020, 12, 752. [Google Scholar] [CrossRef]
- Shen, Q.; Liang, L.; Luo, X.; Li, Y.; Zhang, L. Analysis of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China from 1982 to 2010. Environ. Monit. Assess. 2017, 189, 471. [Google Scholar] [CrossRef] [PubMed]
- Behrang Manesh, M.; Khosravi, H.; Heydari Alamdarloo, E.; Saadi Alekasir, M.; Gholami, A.; Singh, V.P. Linkage of agricultural drought with meteorological drought in different climates of Iran. Theor. Appl. Climatol. 2019, 138, 1025–1033. [Google Scholar] [CrossRef]
- Imberger, S.J.; Walsh, C.J.; Tsyrlin, E.; Kerr, D.G.; Tewman, M. Variability in the response of amphipods and macroinvertebrate assemblage structure to prolonged drought in forested upland streams. Biodivers. Conserv. 2016, 25, 1465–1480. [Google Scholar] [CrossRef]
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar]
- Shahzaman, M.; Zhu, W.; Bilal, M.; Habtemicheal, B.A.; Mustafa, F.; Arshad, M.; Ullah, I.; Ishfaq, S.; Iqbal, R. Remote sensing indices for spatial monitoring of agricultural drought in South Asian countries. Remote Sens. 2021, 13, 2059. [Google Scholar] [CrossRef]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: A review. Remote Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
- Elkatoury, A.; Alazba, A.A.; Radwan, F.; Kayad, A.; Mossad, A. Evapotranspiration Estimation Assessment Using Various Satellite-Based Surface Energy Balance Models in Arid Climates. Earth Syst. Environ. 2024, 8, 1347–1369. [Google Scholar] [CrossRef]
- Elkatoury, A.; Alazba, A.; Mossad, A. Estimating evapotranspiration using coupled remote sensing and three SEB models in an arid region. Environ. Process. 2020, 7, 109–133. [Google Scholar] [CrossRef]
- Zhao, Q.; Qu, Y. The Retrieval of Ground NDVI (Normalized Difference Vegetation Index) Data Consistent with Remote-Sensing Observations. Remote Sens. 2024, 16, 1212. [Google Scholar] [CrossRef]
- da Silva Quinaia, T.L.; do Valle Junior, R.F.; de Miranda Coelho, V.P.; da Cunha, R.C.; Valera, C.A.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Application of an improved vegetation index based on the visible spectrum in the diagnosis of degraded pastures: Implications for development. Land Degrad. Dev. 2021, 32, 4693–4707. [Google Scholar] [CrossRef]
- Elkatoury, A.; Alazba, A.A. Irrigation Water Demand Management-Based Innovative Strategy: Model Application on the Green Riyadh Initiative, Saudi Arabia. Water 2024, 16, 3559. [Google Scholar] [CrossRef]
- Wei, X.; Huang, S.; Huang, Q.; Liu, D.; Leng, G.; Yang, H.; Duan, W.; Li, J.; Bai, Q.; Peng, J. Analysis of vegetation vulnerability dynamics and driving forces to multiple drought stresses in a changing environment. Remote Sens. 2022, 14, 4231. [Google Scholar] [CrossRef]
- Ding, Y.; He, X.; Zhou, Z.; Hu, J.; Cai, H.; Wang, X.; Li, L.; Xu, J.; Shi, H. Response of vegetation to drought and yield monitoring based on NDVI and SIF. Catena 2022, 219, 106328. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Cao, L.; Feng, R.; Pan, Y. Response of NDVI of natural vegetation to climate changes and drought in China. Land 2021, 10, 966. [Google Scholar] [CrossRef]
- Natsagdorj, E.; Renchin, T.; Maeyer, P.D.; Darkhijav, B. Spatial distribution of soil moisture in Mongolia using SMAP and MODIS satellite data: A time series model (2010–2025). Remote Sens. 2021, 13, 347. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Chen, X.; Wang, H.; Yao, N.; Liu, F. Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index. Theor. Appl. Climatol. 2021, 143, 159–176. [Google Scholar] [CrossRef]
- Meng, X.; Mao, K.; Meng, F.; Shi, J.; Zeng, J.; Shen, X.; Cui, Y.; Jiang, L.; Guo, Z. A fine-resolution soil moisture dataset for China in 2002–2018. Earth Syst. Sci. Data Discuss. 2020, 13, 3239–3261. [Google Scholar] [CrossRef]
- Park, J.-Y.; Ahn, S.-R.; Hwang, S.-J.; Jang, C.-H.; Park, G.-A.; Kim, S.-J. Evaluation of MODIS NDVI and LST for indicating soil moisture of forest areas based on SWAT modeling. Paddy Water Environ. 2014, 12, 77–88. [Google Scholar] [CrossRef]
- Tao, L.; Ryu, D.; Western, A.; Boyd, D. A new drought index for soil moisture monitoring based on MPDI-NDVI trapezoid space using MODIS data. Remote Sens. 2020, 13, 122. [Google Scholar] [CrossRef]
- Viswambharan, S.; Kumaramkandath, I.T.; Tali, J.A. A geospatial approach in monitoring the variations on surface soil moisture and vegetation water content: A case study of Palakkad District, Kerala, India. Environ. Earth Sci. 2022, 81, 494. [Google Scholar] [CrossRef]
- Ji, Z.; Wang, Y.; Wang, L. Threshold identification of evapotranspiration under different land-use types in the Loess Plateau, China. J. Hydrol. Reg. Stud. 2024, 53, 101780. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Wardlow, B.D.; Bayissa, Y.A.; Tadesse, T.; Svoboda, M.D.; Gedam, S.S. Developing a remote sensing-based combined drought indicator approach for agricultural drought monitoring over Marathwada, India. Remote Sens. 2020, 12, 2091. [Google Scholar] [CrossRef]
- Gong, Z.; Zhao, S.; Gu, J. Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001–2013. J. Geogr. Sci. 2017, 27, 143–160. [Google Scholar] [CrossRef]
- De Keersmaecker, W.; Lhermitte, S.; Hill, M.J.; Tits, L.; Coppin, P.; Somers, B. Assessment of regional vegetation response to climate anomalies: A case study for Australia using GIMMS NDVI time series between 1982 and 2006. Remote Sens. 2017, 9, 34. [Google Scholar] [CrossRef]
- Łabędzki, L. Categorical forecast of precipitation anomaly using the standardized precipitation index SPI. Water 2017, 9, 8. [Google Scholar] [CrossRef]
- Riley, J.W.; Calhoun, D.L.; Barichivich, W.J.; Walls, S.C. Identifying small depressional wetlands and using a topographic position index to infer hydroperiod regimes for pond-breeding amphibians. Wetlands 2017, 37, 325–338. [Google Scholar] [CrossRef]
- Šebenik, U.; Brilly, M.; Šraj, M. Drought analysis using the standardized precipitation index (SPI). Acta Geogr. Slov. 2017, 57, 31–49. [Google Scholar] [CrossRef]
- Helali, J.; Asaadi, S.; Jafarie, T.; Habibi, M.; Salimi, S.; Momenpour, S.E.; Shahmoradi, S.; Hosseini, S.A.; Hessari, B.; Saeidi, V. Drought monitoring and its effects on vegetation and water extent changes using remote sensing data in Urmia Lake watershed, Iran. J. Water Clim. Change 2022, 13, 2107–2128. [Google Scholar] [CrossRef]
- Mehravar, S.; Amani, M.; Moghimi, A.; Javan, F.D.; Samadzadegan, F.; Ghorbanian, A.; Stein, A.; Mohammadzadeh, A.; Mirmazloumi, S.M. Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI); 21-year drought monitoring in Iran using satellite imagery within google Earth engine. Adv. Space Res. 2021, 68, 4573–4593. [Google Scholar] [CrossRef]
- Shashikant, V.; Mohamed Shariff, A.R.; Wayayok, A.; Kamal, M.R.; Lee, Y.P.; Takeuchi, W. Utilizing TVDI and NDWI to classify severity of agricultural drought in Chuping, Malaysia. Agronomy 2021, 11, 1243. [Google Scholar] [CrossRef]
- Bhandari, A.; Kumar, A.; Singh, G. Feature extraction using Normalized Difference Vegetation Index (NDVI): A case study of Jabalpur city. Procedia Technol. 2012, 6, 612–621. [Google Scholar] [CrossRef]
- Guo, Y.; Han, L.; Zhang, D.; Sun, G.; Fan, J.; Ren, X. The Factors Affecting the Quality of the Temperature Vegetation Dryness Index (TVDI) and the Spatial–Temporal Variations in Drought from 2011 to 2020 in Regions Affected by Climate Change. Sustainability 2023, 15, 11350. [Google Scholar] [CrossRef]
- Thanabalan, P.; Vidhya, R.; Kankara, R.; Manonmani, R. Time-series analysis of MODIS (LST and NDVI) and TRMM rainfall for drought assessment over India. Appl. Geomat. 2023, 15, 383–405. [Google Scholar] [CrossRef]
- Ali, S.; Basit, A.; Makanda, T.A.; Inamullah; Khan, F.U.; Sajid, M.; Riaz, T.; Abbasi, H.F.; Manzoor; Sohail, A. Improving drought mitigation strategies and disaster risk reduction through MODIS and TRMM-based data in relation to climate change over Pakistan. Environ. Sci. Pollut. Res. 2023, 30, 40563–40575. [Google Scholar] [CrossRef]
- Mossad, A.; Alazba, A.A. Determination and prediction of standardized precipitation index (SPI) using TRMM data in arid ecosystems. Arab. J. Geosci. 2018, 11, 132. [Google Scholar] [CrossRef]
- Chen, C.-F.; Son, N.-T.; Chang, L.-Y.; Chen, C.-C. Monitoring of soil moisture variability in relation to rice cropping systems in the Vietnamese Mekong Delta using MODIS data. Appl. Geogr. 2011, 31, 463–475. [Google Scholar] [CrossRef]
- Elkatoury, A.; Alazba, A.; Abdelbary, A. Evaluating the performance of two SEB models for estimating ET based on satellite images in arid regions. Arab. J. Geosci. 2020, 13, 74. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Mwangi, P.W.; Karanja, F.N.; Kamau, P.K. Analysis of the relationship between land surface temperature and vegetation and built-up indices in upper-hill, Nairobi. J. Geosci. Environ. Prot. 2018, 6, 1–16. [Google Scholar] [CrossRef]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Athar, H. Teleconnections and variability in observed rainfall over Saudi Arabia during 1978–2010. Atmos. Sci. Lett. 2015, 16, 373–379. [Google Scholar] [CrossRef]
- Azmoodehfar, M.H.; Azarmsa, S.A. Assessment the effect of ENSO on weather temperature changes using fuzzy analysis (case study: Chabahar). APCBEE Procedia 2013, 5, 508–513. [Google Scholar] [CrossRef]
- Folland, C.; Renwick, J.; Salinger, M.; Mullan, A. Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett. 2002, 29, 21-1–21-4. [Google Scholar] [CrossRef]
- Lau, K.; Weng, H. Coherent modes of global SST and summer rainfall over China: An assessment of the regional impacts of the 1997–98 El Niño. J. Clim. 2001, 14, 1294–1308. [Google Scholar] [CrossRef]
- Fasullo, J.; Otto-Bliesner, B.; Stevenson, S. ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophys. Res. Lett. 2018, 45, 9216–9225. [Google Scholar] [CrossRef]
- Kumar, V.V.; Deo, R.C.; Ramachandran, V. Total rain accumulation and rain-rate analysis for small tropical Pacific islands: A case study of Suva, Fiji. Atmos. Sci. Lett. 2006, 7, 53–58. [Google Scholar] [CrossRef]
- Abid, M.A.; Almazroui, M.; Kucharski, F.; O’Brien, E.; Yousef, A.E. ENSO relationship to summer rainfall variability and its potential predictability over Arabian Peninsula region. NPJ Clim. Atmos. Sci. Lett. 2018, 1, 20171. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, Q.; Du, L.; Sun, S. Analysis of spatial-temporal variation of agricultural drought and its response to ENSO over the past 30 years in the Huang-Huai-Hai Region, China. Terr. Atmos. Ocean. Sci. 2013, 24, 745–759. [Google Scholar] [CrossRef]
- Hasanean, H.; Almazroui, M. Rainfall: Features and variations over Saudi Arabia, a review. Climate 2015, 3, 578–626. [Google Scholar] [CrossRef]
- Almazroui, M. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res. 2011, 99, 400–414. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, S.-H.; Qin, Z.-H.; He, K.-X.; Chong, C.; Luo, Y.-X.; Zhou, X.-D. Drought change trend using MODIS TVDI and its relationship with climate factors in China from 2001 to 2010. J. Integr. Agric. 2014, 13, 1501–1508. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Abatan, A.A.; Abiodun, B.J.; Lawal, K.A.; Gutowski Jr, W.J. Trends in extreme temperature over Nigeria from percentile-based threshold indices. Int. J. Climatol. 2016, 36, 2527–2540. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.-S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- Shi, J.; Wen, K.; Cui, L. Distribution and trend on consecutive days of severe weathers in China during 1959–2014. J. Geogr. Sci. 2016, 26, 658–672. [Google Scholar] [CrossRef]
- Cropper, T.E.; Cropper, P.E. A 133-year record of climate change and variability from Sheffield, England. Climate 2016, 4, 46. [Google Scholar] [CrossRef]
- Matiu, M.; Ankerst, D.P.; Menzel, A. Asymmetric trends in seasonal temperature variability in instrumental records from ten stations in Switzerland, Germany and the UK from 1864 to 2012. Int. J. Climatol. 2016, 36, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Pei, T.; Zhou, C. The role of changing multiscale temperature variability in extreme temperature events on the eastern and central Tibetan Plateau during 1960–2008. Int. J. Climatol. 2014, 34, 3683–3701. [Google Scholar] [CrossRef]
- Somorowska, U. Changes in drought conditions in Poland over the past 60 years evaluated by the Standardized Precipitation-Evapotranspiration Index. Acta Geophys. 2016, 64, 2530–2549. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Alias, N.; Chung, E.-S. Trend analysis of droughts during crop growing seasons of Nigeria. Sustainability 2018, 10, 871. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. European drought climatologies and trends based on a multi-indicator approach. Glob. Planet. Change 2015, 127, 50–57. [Google Scholar] [CrossRef]
- Coll, J.R.; Aguilar, E.; Ashcroft, L. Drought variability and change across the Iberian Peninsula. Theor. Appl. Climatol. 2017, 130, 901–916. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Change 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Liu, X.; Guo, M.; She, D. The use of SPEI and TVDI to assess temporal-spatial variations in drought conditions in the middle and lower reaches of the Yangtze River basin, China. Adv. Meteorol. 2018, 2018, 9362041. [Google Scholar] [CrossRef]
- Ejaz, N.; Bahrawi, J.; Alghamdi, K.M.; Rahman, K.U.; Shang, S. Drought monitoring using landsat derived indices and Google Earth engine platform: A case study from Al-Lith Watershed, Kingdom of Saudi Arabia. Remote Sens. 2023, 15, 984. [Google Scholar] [CrossRef]
- Mohamed, A.; Abdelrahman, K.; Abdelrady, A. Application of time-variable gravity to groundwater storage fluctuations in Saudi Arabia. Front. Earth Sci. 2022, 10, 873352. [Google Scholar] [CrossRef]
Satellite Mission | Band Number | K1, W∙m−2∙sr−1∙μm−1 | K2, Kelvin |
---|---|---|---|
Landsat 7 | 6 | 666.09 | 1282.71 |
Landsat 8 | 10 | 774.89 | 1321.08 |
11 | 480.89 | 1201.14 |
Drought Class | Range |
---|---|
Severe Drought | 0.8−1 |
Drought | 0.6−0.8 |
Normal | 0.4−0.6 |
Severe Wet | 0.2−0.4 |
Wet | 0−0.2 |
Season | Drought Condition | Mann–Kendall Test | OLS Regression Line | Theil–Sen Trend Line | ||||
---|---|---|---|---|---|---|---|---|
S | Zs | p-Value | Slope | Intercept | Slope | Intercept | ||
Spring | Severe Drought | 19 | 0.68 | 0.2480 | 0.10 | 9.48 | 0.11 | 9.16 |
Drought | 51 | 1.89 | 0.0291 ** | 0.35 | 77.26 | 0.24 | 79.41 | |
Normal | −65 | −2.42 | 0.0077 * | −0.22 | 8.90 | −0.19 | 8.12 | |
Severe Wet | −20 | −0.72 | 0.2360 | −0.01 | 0.54 | −0.01 | 0.53 | |
Wet | −11 | −0.38 | 0.3520 | −0.08 | 3.34 | −0.01 | 2.24 | |
Summer | Severe Drought | 25 | 0.91 | 0.1820 | 0.06 | 10.36 | 0.14 | 9.25 |
Drought | 47 | 1.74 | 0.0407 ** | 0.40 | 73.73 | 0.37 | 74.22 | |
Normal | −57 | −2.12 | 0.0170 * | −0.22 | 9.57 | −0.19 | 9.34 | |
Severe Wet | −4 | −0.11 | 0.4550 | 0.00 | 0.73 | 0.00 | 0.53 | |
Wet | −25 | −0.91 | 0.1820 | −0.15 | 4.69 | −0.06 | 3.27 | |
Autumn | Severe Drought | −18 | −0.64 | 0.2600 | −0.08 | 13.17 | −0.08 | 13.57 |
Drought | 41 | 1.52 | 0.0649 | 0.46 | 70.20 | 0.37 | 70.74 | |
Normal | −37 | −1.36 | 0.0863 * | −0.21 | 10.24 | −0.20 | 10.11 | |
Severe Wet | −3 | −0.08 | 0.4700 | 0.00 | 0.91 | −0.01 | 0.68 | |
Wet | −37 | −1.36 | 0.0863 * | −0.22 | 6.04 | −0.15 | 5.00 | |
Winter | Severe Drought | −6 | −0.19 | 0.4250 | −0.01 | 11.89 | −0.02 | 11.84 |
Drought | −3 | −0.08 | 0.4700 | −0.06 | 78.00 | −0.01 | 77.54 | |
Normal | −5 | −0.15 | 0.4400 | −0.07 | 7.71 | −0.03 | 7.14 | |
Severe Wet | 47 | 1.75 | 0.0403 ** | 0.05 | 0.39 | 0.04 | 0.35 | |
Wet | 32 | 1.18 | 0.1200 | 0.09 | 2.01 | 0.11 | 1.57 | |
Severe Drought | 126 | 0.61 | 0.2720 | 0.004 | 11.240 | 0.007 | 11.036 | |
Drought | 423 | 2.05 | 0.0201 ** | 0.063 | 75.246 | 0.053 | 76.199 | |
Annual | Normal | −584 | −2.83 | 0.0023 * | −0.041 | 8.880 | −0.040 | 8.537 |
Severe Wet | 16 | 0.07 | 0.4710 | 0.003 | 0.648 | 0.000 | 0.515 | |
Wet | −160 | −0.77 | 0.2200 | −0.020 | 3.894 | −0.009 | 2.951 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alazba, A.A.; Mossad, A.; Geli, H.M.E.; El-Shafei, A.; Elkatoury, A.; Ezzeldin, M.; Alrdyan, N.; Radwan, F. Mapping Land Surface Drought in Water-Scarce Arid Environments Using Satellite-Based TVDI Analysis. Land 2025, 14, 1302. https://doi.org/10.3390/land14061302
Alazba AA, Mossad A, Geli HME, El-Shafei A, Elkatoury A, Ezzeldin M, Alrdyan N, Radwan F. Mapping Land Surface Drought in Water-Scarce Arid Environments Using Satellite-Based TVDI Analysis. Land. 2025; 14(6):1302. https://doi.org/10.3390/land14061302
Chicago/Turabian StyleAlazba, A A, Amr Mossad, Hatim M. E. Geli, Ahmed El-Shafei, Ahmed Elkatoury, Mahmoud Ezzeldin, Nasser Alrdyan, and Farid Radwan. 2025. "Mapping Land Surface Drought in Water-Scarce Arid Environments Using Satellite-Based TVDI Analysis" Land 14, no. 6: 1302. https://doi.org/10.3390/land14061302
APA StyleAlazba, A. A., Mossad, A., Geli, H. M. E., El-Shafei, A., Elkatoury, A., Ezzeldin, M., Alrdyan, N., & Radwan, F. (2025). Mapping Land Surface Drought in Water-Scarce Arid Environments Using Satellite-Based TVDI Analysis. Land, 14(6), 1302. https://doi.org/10.3390/land14061302