Analysis of the Evolution of Non-Agriculturization Arable Land Use Pattern and Its Driving Mechanisms
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Research Method
2.3.1. Non-Agricultural Rate
2.3.2. Kernel Density Estimation
2.3.3. Gravity Center Model
2.3.4. Standard Deviation Elliptical Model
2.3.5. Model Selection and Evaluation
3. Results
3.1. Analysis of the Change in Non-Agricultural Types of Cultivated Land in Different Stages
3.2. Kernel Density Analysis of Non-Agriculturization of Arable Land Use
3.3. Migration of Non-Agriculturization Gravity in Guangzhou’s Arable Land Use
3.4. Analysis of Driving Factors of Arable Land Non-Agriculturization
4. Discussion
4.1. Changes in the Temporal Dynamics of Farmland Conversion to Non-Agriculturization Use
4.2. Spatial Pattern Changes in Farmland Conversion to Non-Agriculturization Uses
4.3. Analysis of the Driving Mechanisms of Farmland Conversion to Non-Agriculturization Uses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, C.; Jin, X.; Yang, X.; Xu, W.; Sun, R.; Zhou, Y. Comprehensive evaluation of newly cultivated land sustainable utilization at project scale: A case study in Guangdong, China. J. Geogr. Sci. 2024, 34, 745–762. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.; Zhong, C. Spatial and Temporal Differences and Influencing Factors of Eco-Efficiency of Cultivated Land Use in Main Grain-Producing Areas of China. Sustainability 2024, 16, 5734. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, H.; Zou, R.; Shi, Z.; Wu, W.; Wu, L.; Wang, L.; Ren, X.; Xie, Y.; Ren, S.; et al. Evolution and prospect of systematic cognition on the cultivated land resources. J. Agric. Resour. Environ. 2021, 38, 937–945. [Google Scholar]
- Wu, Z.; Fan, Q.; Li, W.; Zheng, Y. The Spatial–Temporal Evolution and Impact Mechanism of Cultivated Land Use in the Mountainous Areas of Southwest Hubei Province, China. Land 2024, 13, 1946. [Google Scholar] [CrossRef]
- Chen, F.; Liu, J.; Chang, Y.; Zhang, Q.; Yu, H.; Zhang, S. Spatial Pattern Differentiation of Non-grain Cultivated Land and Its Driving Factors in China. China Land Sci. 2021, 35, 33–43. [Google Scholar]
- General Office of the State Council. The General Office of the State Council issued the Notice on Resolutely stopping the “Non-agricultural” behavior of cultivated land. Agric. Eng. 2020, 10, 3. [Google Scholar]
- Yang, Y.; Peng, B.; Lv, M.; Chen, X.; Guo, X. Spatial and temporal changes and driving mechanism of cultivated land conversion in central Yunnan urban agglomeration from 1990 to 2020. J. Soil Water Conserv. 2024, 38, 239–251. [Google Scholar]
- Liu, H.; Wang, H.; Jin, Z.; Pan, C. Spatial and temporal evolution characteristics and driving mechanism of cultivated land conversion in Lower Liaohe River Plain. Chin. J. Eco-Agric. 2024, 32, 1420–1431. [Google Scholar]
- Su, Y. Study on the Spatial-Temporal Evolution and Control of Non-Grain Production within Cultivated Land. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2020. [Google Scholar]
- Kong, X. To stop the “non-agricultural transformation” of cultivated land, we must enhance the collaborative governance capacity. J. China Party Gov. Cadres Forum 2020, 81–82. [Google Scholar] [CrossRef]
- Hiroyoshi, Y. A study on the operational problems of the use district system from the viewpoint of the change of land use: The case of industrial districts in the built up area. J. City Plan. 1983, 18, 85–90. [Google Scholar]
- Prasetyolli, B.; Jitsukumasaki, R. Population growth and land use change in tropical urban areas: A case study of jabotabek metropolitan area. Indones. J. Jpn. For. Soc. 1995, 77, 72–74. [Google Scholar]
- Walford, R. Land use changes across the century. Teach. Geogr. 2000, 25, 40–41. [Google Scholar]
- Leitch, C.; Harbor, J. Impacts of land use change on freshwater runoff into the near-coastal zone, Holetown Watershed, Barbados: Comparisons of long-term to single-storm effects. J. Soil Water Conserv. 1999, 54, 584–592. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, H.; Fu, J.; Yu, P.; Zhang, P. Spatial Analysis of Land Use and Land Cover Changes in Recent 30 Years in Manas River Basin. Procedia Environ. Sci. 2012, 12, 906–916. [Google Scholar]
- Peng, P.; Yang, G. Agricultural development and non-agriculturization of land. Nat. Resour. J. 1996, 20, 36–40. [Google Scholar]
- Zhang, K. Thoughts on China’s urbanization and urbanization. Urban Probl. J. 1995, 14, 36–38. [Google Scholar]
- Lu, M. New trend of development economics: Theoretical research on rural non-agricultural chemistry. Econ. Dyn. J. 1994, 35, 50–53. [Google Scholar]
- Liu, J.; Su, B. Empirical analysis of urbanization and rural non-agriculture in Xinjiang. Xinjiang Econ. J. 1994, 13, 12–15. [Google Scholar]
- Jiang, C. Dynamic investigation of the differentiation of farmers (farmers) in the process of rural non-agricultural chemical-Take Tianchang City, Anhui Province as an example. Chin. Rural Econ. J. 1995, 11, 50–56. [Google Scholar]
- Tang, H.; Guo, X.; Shen, M. Investigation and analysis of the current non-agricultural problems of agricultural land. Issues Agric. Econ. J. 1993, 14, 45–50. [Google Scholar]
- Zhao, Y. Comparative study on the mechanism of non-agricultural development in China-Take quantitative analysis in Liaoning and Jiangsu provinces as an example. Urban Plan. J. 1996, 40, 45–49. [Google Scholar]
- Long, Z.; Sheng, Z. On the Non-agriculturalization of Farmland in China. Ecol. Econ. J. 2004, 11, 49–51. [Google Scholar]
- Liu, Z. Comparative Analysis of Reasons for Rural Non-agriculturalization. Gansu Theory Res. J. 1997, 17, 42–44. [Google Scholar]
- Min, J.; Gao, W.; Li, X.; Zhang, A. An Analysis of Dissimilarity in Space of Cultivated Land Conversion in Jianghan Plain. Sci. Technol. Manag. Land Resour. J. 2006, 23, 11–15. [Google Scholar]
- Yan, X.; Liu, X. Analysis of rural urbanization characteristics in the Pearl River Delta. Geogr. Land Res. J. 1997, 13, 30–36. [Google Scholar]
- Liu, L. Study on the Convergence of Cultivated Land Conversion in Economic Growth. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing China, 2007. [Google Scholar]
- Yang, R. Association analysis of Chinese urbanization and non-agricultural gray. Reg. Res. Dev. 1998, 17, 18–20. [Google Scholar]
- Fan, J.; Tian, M. Relative Analysis and Provincial Differences of China′s Urbanization and Non-agricultural Development. Geogr. Sci. 2003, 23, 641–648. [Google Scholar]
- Tan, R.; Qu, F. Spatial allocation efficiency of farmland Coversion and Farmland Resource Loss in China. China Soft Sci. 2006, 21, 49–57. [Google Scholar]
- Ren, P.; Wu, T.; Zhou, J. Study on Value Loss Evaluation Model and Compensation Mechanism of Cultivated Land Conversion. Sci. Agric. Sin. 2014, 47, 786–795. [Google Scholar]
- Qu, F.; Wu, L. Kuznets curve hypothesis and verification of economic growth and nonagroalization of cultivated land. Resour. Sci. 2004, 28, 61–67. [Google Scholar]
- Yang, W.; Liu, D. Estimation Loss of Agroecosystem Service Value in Farmland Conversion land Its Provincial Difference in 2001–2016. Econ. Geogr. 2019, 39, 201–209. [Google Scholar]
- Gong, R. Agricultural High-Quality Development and New Urbanization in China: Space-Time Evolution and Interactive Relationship. Ph.D. Thesis, Chongqing University, Chongqing, China, 2022. [Google Scholar]
- Zhen, F.; Cao, Y.; Qin, X.; Wang, B. Delineation of an urban agglomeration boundary based on Sina Weibo microblog ’check-in’ data: A case study of the Yangtze River Delta. Cities 2017, 60, 180–191. [Google Scholar] [CrossRef]
- Li, H.; Tian, D.; Tan, J. Spatial-temporal Pattern Evolution and Influencing Factors of Cultivated Land Non-agriculturalization in Yanan City. Bull. Soil Water Conserv. 2022, 42, 330–337. [Google Scholar]
- Xing, L.; Fang, B. Study on So-temporal Pattern and Coordinated Development of Urbanization and Ecological Environment in Jiangsu Province. J. Nanjing Norm. Univ. (Nat. Sci. Ed.) 2018, 41, 131–137. [Google Scholar]
- Li, X.; Wu, Q.; Liu, D. Spatial Distribution and Influential Factor of Agricultural Tourism Destinations in Wuhan Metropolitan Area. Trop. Geogr. 2014, 34, 422–428. [Google Scholar]
- Li, X.; Wu, L.; Wu, Q.; Zhang, M. The Space-Temporal Pattern Evolution of China’s National Ecological Demonstration Areas. Econ. Geogr. 2015, 35, 149–156. [Google Scholar]
- Liang, Y.; Guan, Y.; Huang, Z.; Jiao, X. Spatial-Temporal Heterogeneity of Coupling and Coordination Between Green Land Use and E-conomic Growth in Beijing-Tianjin-Hebei Area. J. Ecol. Rural Environ. 2020, 36, 1522–1531. [Google Scholar]
- Zhang, Y.; Wang, L.; Zhang, H.; Li, X. An Analysis on Land Use Changes and Their Driving Factors in Shule River: An Example From Anxi County. Prog. Geogr. 2003, 22, 170–178. [Google Scholar]
- Zhu, Z. Study on the Spatial-Temporal Characteristics, Driving Mechanisms, and Optimization Regulation of Cultivated Land Use Transformation in China’s Main Grain-Producing Areas. Ph.D. Thesis, Northwest A & F University, Yangling, China, 2024. [Google Scholar]
- Zhou, F.; Zhou, Y. Analysis of the factors influencing the quantity and quality of cultivated land in Xishan City, Jiangsu Province. China Land Sci. 2001, 15, 7–10. [Google Scholar]
- Cao, L.; Lang, Q.; Lei, K.; Wang, D.; Yang, K. Analysis on landscape pattern dynamics and driving force in Yongding River Basin from 1980 to 2020. J. Environ. Eng. Technol. 2023, 13, 143–153. [Google Scholar]
- Deng, L.; Yang, Z.; Su, W. Optimization Countermeasures for Crops Planting Structure in Karst Area of Guizhou. Econ. Geogr. 2017, 37, 160–166. [Google Scholar]
- Huang, L.; Zhang, J.; Lu, S.; Zhong, L.; Liu, L.; Gong, H.; Chao, L.; Huang, T.; Gan, L. Spatial-temporal Patterns and Driving Factors of Crop Planting Structure in Guangxi. Southwest China J. Agric. Sci. 2021, 34, 1682–1689. [Google Scholar]
- Ke, S.; Zhu, X.; Cui, H.; Yu, Y.; Hu, L.; Lu, X.; Gao, T. Impact of China’s overseas farmland investment on host countries’ environmental quality and itstransmission mechanisms. China Popul. Resour. Environ. 2024, 34, 75–84. [Google Scholar]
- Li, J.; Qie, R. Spatial Differentiation and Driving Factors of Rural Idle Homestead in Northeast Black Soil Region: A Case Study ofMeihekou City, Jilin Province. T. Nat. Resour. Stud. 2025, 47, 34–38. [Google Scholar]
- Wu, N.; Wei, Y.; Li, L.; Yang, H. Spatial distribution of non-grain crops and formation mechanism: Empirical analysis of Ningling County, Henan Province. Prog. Geogr. 2023, 42, 1298–1310. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y.; Mao, X. The current situation and countermeasures of “non-agricultural” and “non-food” cultivated land in China. JAC Forum 2022, 65, 13–21. [Google Scholar]
- Jiao, Y.; Xiao, D.; Ma, M. Spatial pattern in residential area and influencing factors in oasis landscape. Acta Ecol. Sin. 2003, 23, 2092–2100. [Google Scholar]
- Lu, Q.; Zhu, S.; Xiao, Z.; Zhu, G.; Li, J.; Gui, J.; He, W.; Sun, J. Spatiotemporal Variability and Drivers of Cropland Non-Agricultural Conversion Across Mountainous County Types: Evidence from the Qian-Gui Karst Region, China. Agriculture 2025, 15, 795. [Google Scholar] [CrossRef]
- Xijiri; Zhou, R.; Bao, B.; Burenjirigala. Spatiotemporal patterns and drivers of cultivated land conversion in Inner Mongolia Autonomous Region, northern China. J. Arid Land 2024, 16, 1197–1213. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, N.; Wang, Y.; Zhang, L.; Wang, W.; Liu, Y. Cropland non-agriculturalization caused by the expansion of built-up areas in China during 1990–2020. Land Use Policy 2024, 146, 107312. [Google Scholar] [CrossRef]
- Yan, H.; Chen, H.; Wang, F.; Qiu, L. Dynamics of Cropland Non-Agriculturalization in Shaanxi Province of China and Its Attribution Using a Machine Learning Approach. Land 2025, 14, 190. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, H. Analysis on the Cultivated Land Quantity Change and Its Driving Forces in Chengdu Plain. J. Anhui Agric. Sci. 2010, 38, 843–845. [Google Scholar]
- Yuan, S.; Yang, L.; Yang, G.; Yao, S. The Spatial Heterogeneity of Socio-economic Driving Factors of Cultivated Land Conversion:A Case Based on STIRPAT and GWR models. Econ. Geogr. 2013, 33, 137–143. [Google Scholar]
- Zhang, Z.; Ghazali, S.; Miceikienė, A.; Zejak, D.; Choobchian, S.; Pietrzykowski, M.; Azadi, H. Socio-economic impacts of agricultural land conversion: A meta-analysis. Land Use Policy 2023, 132, 106831. [Google Scholar] [CrossRef]
Driving Factors | Driver Factor | Source of Indicators/ Calculation Method | Index Interpretation |
---|---|---|---|
Natural Factors of Cultivated Land | Arable Land Quality | Arable land quality data | Reflect the natural productivity of arable land |
Precipitation | Calculate the regional average based on meteorological station data | Reflect the actual utilization of arable land | |
Elevation | Calculate elevation values based on DEM (Digital Elevation Model) | Reflect the basic characteristics of the terrain | |
Per Capita Cultivated Land Area | Statistical data (cultivated land area/population) × 1000 | Reflect the arable land resource potential for crop cultivation | |
Socio-economic Development | Total Agricultural Machinery Power | Statistical data | Reflect the degree of mechanization in crop cultivation |
Gross Domestic Product | Statistical data | Reflect the level of economic development in the region | |
Per Capita Net Income of Rural Residents | Statistical data | Reflect the per capita net income level of rural residents in the region | |
Gross Value of the Secondary Industry | Statistical data | Reflect the level of industrial development in the regional industrial structure | |
Gross Value of the Tertiary Industry | Statistical data | Reflect the level of service industry development in the regional industrial structure | |
Population Density | Urban population/total population | Reflect the pressure of population on land use |
Districts | Grassland | Construction Land | Arable Land | Forest Land | Water Area | Unused Land | Total Arable Land Area | Non-Agriculturization Land Area | Non-Agriculturization Rate |
---|---|---|---|---|---|---|---|---|---|
Baiyun | 4.87 | 3645.89 | 18,821.15 | 402.65 | 813.22 | 23,687.77 | 4866.62 | 20.54 | |
Conghua | 150.22 | 1947.27 | 47,243.03 | 1711.18 | 388.07 | 2.01 | 51,441.79 | 4198.76 | 8.16 |
Panyu | 7.95 | 2705.48 | 15,067.48 | 82.00 | 904.10 | 18,767.02 | 3699.54 | 19.71 | |
Haizhu | 117.86 | 182.66 | 4.05 | 15.70 | 320.27 | 137.61 | 42.97 | ||
Huadu | 79.37 | 3782.25 | 29,244.31 | 525.92 | 625.61 | 3.22 | 34,260.68 | 5016.37 | 14.64 |
Huangpu | 3.00 | 1163.48 | 7207.74 | 603.13 | 22.35 | 8999.70 | 1791.95 | 19.91 | |
Liwan | 793.77 | 210.28 | 16.50 | 1020.56 | 810.28 | 79.40 | |||
Nansha | 15.23 | 2775.78 | 31,405.59 | 215.54 | 3908.27 | 38,320.42 | 6914.82 | 18.04 | |
Tianhe | 1077.48 | 1290.46 | 68.83 | 6.84 | 2443.61 | 1153.15 | 47.19 | ||
Zengcheng | 15.39 | 2665.49 | 45,155.59 | 1845.41 | 476.12 | 50,157.99 | 5002.40 | 9.97 |
Districts | Grass Land | Construction Land | Arable Land | Forest Land | Water Area | Unused Land | Total Arable Land Area | Non-Agriculturization Land Area | Non-Agriculturization Rate |
---|---|---|---|---|---|---|---|---|---|
Baiyun | 0.45 | 667.58 | 19,346.03 | 44.82 | 37.52 | 20,096.41 | 750.38 | 3.73 | |
Conghua | 21.77 | 572.32 | 49,062.05 | 315.46 | 15.65 | 0.54 | 49,987.79 | 925.74 | 1.85 |
Panyu | 9.54 | 634.73 | 16,218.39 | 47.10 | 183.33 | 17,093.09 | 874.70 | 5.12 | |
Haizhu | 85.20 | 134.78 | 6.75 | 2.25 | 228.98 | 94.20 | 41.14 | ||
Huadu | 11.79 | 731.20 | 30,515.82 | 75.45 | 51.82 | 0.63 | 31,386.70 | 870.88 | 2.77 |
Huangpu | 0.36 | 538.00 | 8524.24 | 71.15 | 3.97 | 9137.73 | 613.49 | 6.71 | |
Liwan | 80.34 | 161.83 | 2.42 | 244.59 | 82.76 | 33.83 | |||
Nansha | 0.18 | 953.33 | 34,012.67 | 10.08 | 81.43 | 35,057.69 | 1045.02 | 2.98 | |
Tianhe | 33.73 | 1419.72 | 4.77 | 0.63 | 1458.84 | 39.13 | 2.68 | ||
Zengcheng | 4.77 | 1289.56 | 46,488.04 | 400.09 | 49.40 | 48,231.86 | 1743.82 | 3.62 |
Districts | Grass Land | Construction Land | Arable Land | Forest Land | Water Area | Unused Land | Total Arable Land Area | Non-Agriculturization Land Area | Non-Agriculturization Rate |
---|---|---|---|---|---|---|---|---|---|
Baiyun | 18.08 | 540.22 | 18,389.94 | 260.40 | 302.42 | 19,511.07 | 1121.13 | 5.75 | |
Conghua | 166.09 | 539.49 | 46,978.78 | 1656.76 | 111.16 | 0.09 | 49,452.36 | 2473.58 | 5.00 |
Panyu | 3.96 | 470.82 | 15,961.81 | 45.99 | 174.21 | 16,656.78 | 694.97 | 4.17 | |
Haizhu | 5.76 | 140.89 | 2.43 | 2.43 | 151.51 | 10.62 | 7.01 | ||
Huadu | 76.39 | 1422.17 | 28,403.81 | 482.98 | 348.10 | 5.67 | 30,739.12 | 2335.31 | 7.60 |
Huangpu | 3.69 | 695.70 | 7561.38 | 348.36 | 18.16 | 8627.30 | 1065.91 | 12.36 | |
Liwan | 6.98 | 165.48 | 1.00 | 173.45 | 7.97 | 4.60 | |||
Nansha | 1.17 | 381.84 | 35,119.02 | 33.92 | 358.20 | 35,894.14 | 775.12 | 2.16 | |
Tianhe | 553.36 | 847.65 | 33.10 | 4.95 | 1439.06 | 591.41 | 41.10 | ||
Zengcheng | 18.71 | 1217.94 | 43,795.01 | 1782.23 | 259.79 | 47,073.69 | 3278.68 | 6.96 |
Standard Deviation Ellipse | Centroid Position | Migration Distance (km) | Long Axis (km) | Short Axis (km) | Long-to-Short Axis Ratio | Azimuth (°) | Ellipse Area (ha) |
---|---|---|---|---|---|---|---|
2005–2010 non-agriculturization Rate | 113°30.12′ E 23°20.557′ N | - | 3.72 | 3.42 | 1.10 | 29.18 | 4.00 |
2010–2015 non-agriculturization Rate | 113°30.802′ E 23°17.454′ N | 5.81 | 4.40 | 2.97 | 1.48 | 19.44 | 4.10 |
2015–2018 non-agriculturization Rate | 113°31.167′ E 23°19.424′ N | 3.67 | 4.37 | 3.21 | 1.36 | 14.93 | 4.40 |
Stage | Driver Factor | Regression Coefficient | 95% CI | Collinearity Diagnostics | R2 | F Value | |
---|---|---|---|---|---|---|---|
VIF | Tolerance | ||||||
2005–2010 | Constant | −6.392 | −21.704~8.920 | - | - | 0.871 | F (2,8) = 26.919 p = 0.000 |
(−0.818) | |||||||
Population Density (Person/km2) | 0.003 ** | 0.002~0.004 | 1.053 | 0.95 | |||
−7.264 | |||||||
Per Capita Annual Net Income of Rural Residents (Yuan) | 0.001 * | 0.000~0.002 | 1.053 | 0.95 | |||
−2.635 | |||||||
2010–2015 | Constant | 1.172 | 0.267~2.077 | - | - | 0.895 | F (1,5) = 42.491 p = 0.001 |
−2.537 | |||||||
Gross Domestic Product (Billion Yuan) | 0.000 ** | 0.000~0.000 | 1 | 1 | |||
−6.519 | |||||||
2015–2018 | Constant | −9.137 * | −15.624~−2.649 | - | - | 0.927 | F (3,6) = 25.437 p = 0.001 |
(−2.760) | |||||||
Gross Domestic Product (Billion Yuan) | 0.011 ** | 0.008~0.013 | 1.594 | 0.627 | |||
−8.492 | |||||||
Tertiary Industry (Billion Yuan) | −0.008 * | −0.013~−0.003 | 1.173 | 0.852 | |||
(−3.294) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Q.; Hu, Y.; Wang, W.; Mao, X. Analysis of the Evolution of Non-Agriculturization Arable Land Use Pattern and Its Driving Mechanisms. Land 2025, 14, 968. https://doi.org/10.3390/land14050968
Zhang Y, Wang Q, Hu Y, Wang W, Mao X. Analysis of the Evolution of Non-Agriculturization Arable Land Use Pattern and Its Driving Mechanisms. Land. 2025; 14(5):968. https://doi.org/10.3390/land14050968
Chicago/Turabian StyleZhang, Ying, Qiang Wang, Yueming Hu, Wei Wang, and Xiaoyun Mao. 2025. "Analysis of the Evolution of Non-Agriculturization Arable Land Use Pattern and Its Driving Mechanisms" Land 14, no. 5: 968. https://doi.org/10.3390/land14050968
APA StyleZhang, Y., Wang, Q., Hu, Y., Wang, W., & Mao, X. (2025). Analysis of the Evolution of Non-Agriculturization Arable Land Use Pattern and Its Driving Mechanisms. Land, 14(5), 968. https://doi.org/10.3390/land14050968