Carbon Storage and Land Use Dynamics in Ghanaian University Campuses: A Scenario-Based Assessment Using the InVEST Model
Abstract
1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Spatial Data Acquisition and Processing
2.3. Land Use Change Detection and Carbon Storage Assessment
2.3.1. Economic Valuation Methodology
2.3.2. Scenario Development and Analysis
- InfraDev: This scenario simulates continued campus expansion through the conversion of natural areas to built infrastructure, a common pressure on Ghanaian universities. Forest and rangeland areas were designated as convertible land uses, with built areas as the replacement. Existing built areas were set as the focal land use. Maximum conversion was set at 10% of the existing built area coverage to reflect typical institutional expansion rates. Conversion followed the “nearest to edge” algorithm, simulating development sprawling outward from existing infrastructure.
- AgroFor: This scenario models the integration of trees into existing agricultural areas to enhance sustainability. Cropland was designated as both the focal and convertible land use, with forest as the replacement. A maximum of 10% of total cropland was set for conversion. Conversion followed the “furthest from edge” algorithm with 10 conversion steps to create intentionally fragmented patterns typical of real-world agroforestry systems where trees are dispersed within crop fields.
- TreeExp: This scenario represents a moderate, targeted effort to increase tree cover. A total of 5% of the combined area of cropland and rangeland was set for conversion. These land uses were designated as convertible, with forest as the replacement. Conversion followed the “nearest to edge” algorithm to simulate natural forest expansion patterns and the consolidation of green spaces.
- ExtTreeExp: This scenario implements an ambitious tree cover expansion policy, doubling the effort of the TreeExp scenario. A total of 10% of the combined crop and rangeland areas were set for conversion to forest. The configuration (convertible land use, replacement, algorithm) otherwise follows the TreeExp methodology to represent a more intensive restoration effort.
- AgroPlus: This combined scenario integrates both agroforestry and general tree expansion strategies to represent a comprehensive green infrastructure policy. It simultaneously implements the conversions defined in both the AgroFor (10% of cropland to forest) and TreeExp (5% of combined crop/rangeland to forest) scenarios. This approach tests the potential synergistic benefits of applying multiple restoration strategies across the campus landscape.
3. Results
3.1. Historical Land Use Changes and Carbon Storage Dynamics (2017–2023)
3.2. Land Use Changes Under Scenario Projections
3.3. Changes in Carbon Storage, Actual Land Use and Scenario-Based Projections
3.4. Economic Valuation of Carbon Sequestration Services
3.5. Cross-Campus Performance and Institutional Factors
4. Discussion
4.1. Drivers and Patterns of Land Use Change on Campuses
4.2. Carbon Losses and Climate Mitigation Potential
4.3. The Economic Case for Carbon-Conscious Planning
4.4. Lessons from Cross-Campus Comparisons for Institutional Management
4.5. A Framework for Sustainable Campus Planning and Policy
4.6. Study Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; et al. Global carbon budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Lorenz, K. Ecosystem carbon sequestration. In Ecosystem Services and Carbon Sequestration in the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 39–62. [Google Scholar]
- Anjum, J.; Sheikh, M.A.; Tiwari, A.; Sharma, S.; Kumari, B. Carbon sequestration: An approach to sustainable environment. In Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation; Malik, J.A., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 425–444. [Google Scholar]
- Singh, S.K.; Thawale, P.R.; Sharma, J.K.; Gautam, R.K.; Kundargi, G.P.; Juwarkar, A.A. Carbon sequestration in terrestrial ecosystems. In Hydrogen Production and Remediation of Carbon and Pollutants; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 99–131. [Google Scholar]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Li, D.; Huang, X.; Li, Y.; Altan, O.; Wu, S. Impact of global urban expansion on the terrestrial vegetation carbon sequestration capacity. Sci. Total Environ. 2023, 879, 163074. [Google Scholar] [CrossRef]
- Pendrill, F.; Gardner, T.A.; Meyfroidt, P.; Persson, U.M.; Adams, J.; Azevedo, T.; Lima, M.G.B.; Baumann, M.; Curtis, P.G.; De Sy, V.; et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 2022, 377, eabm9267. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Brando, P.M.; Morton, D.C.; Lawrence, D.M.; Yang, H.; Randerson, J.T. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 2022, 13, 1964. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Agriculture, forestry and other land uses (afolu). In Climate Change 2022—Mitigation of Climate Change: Working Group iii Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; C. Intergovernmental Panel on Climate; Cambridge University Press: Cambridge, UK, 2023; pp. 747–860. [Google Scholar]
- Assunção da Silva, C.F.; Santos, A.M.D.; Rudke, A.P.; Nunes, F.G.; Alvarado, S.T. Insights from remote sensing for the study of deforestation drivers in savannas. J. Nat. Conserv. 2025, 86, 126918. [Google Scholar] [CrossRef]
- De Jong, J.; Poorter, L.; de Jong, W.; Bongers, F.; Lohbeck, M.; Veenendaal, E.; Meave, J.A.; Jakovac, C.C.; Brancalion, P.H.S.; Amissah, L.; et al. Dissecting forest transition: Contribution of mature forests, second-growth forests and tree plantations to tree cover dynamics in the tropics. Land Use Policy 2025, 153, 107545. [Google Scholar] [CrossRef]
- Gondwe, M.F.; Azong, C.M.; Wanangwa, C.P.; Geldenhuys, C.J. Land use land cover change and the comparative impact of co-management and government-management on the forest cover in malawi (1999–2018). J. Land Use Sci. 2019, 14, 281–305. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020—Key Findings; FAO: Rome, Italy, 2020. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- De Vos, K.; Janssens, C.; Jacobs, L.; Campforts, B.; Boere, E.; Kozicka, M.; Leclère, D.; Havlík, P.; Hemerijckx, L.-M.; Van Rompaey, A.; et al. African food system and biodiversity mainly affected by urbanization via dietary shifts. Nat. Sustain. 2024, 7, 869–878. [Google Scholar] [CrossRef]
- Global Forest Watch. Ghana Deforestation Rates & Statistics|Global Forest Watch Dashboard; World Resources Institute: Washington, DC, USA, 2024. [Google Scholar]
- Nero, B.F. Woody species and trait diversity-functional relations of green spaces in kumasi, ghana. Urban Ecosyst. 2019, 22, 593–607. [Google Scholar] [CrossRef]
- Becker, A.; Wegner, J.D.; Dawoe, E.; Schindler, K.; Thompson, W.J.; Bunn, C.; Garrett, R.D.; Castro-Llanos, F.; Hart, S.P.; Blaser-Hart, W.J. The unrealized potential of agroforestry for an emissions-intensive agricultural commodity. Nat. Sustain. 2025, 8, 994–1003. [Google Scholar] [CrossRef]
- Dangulla, M.; Manaf, L.A.; Ramli, M.F.; Yacob, M.R.; Namadi, S. Exploring urban tree diversity and carbon stocks in zaria metropolis, north western nigeria. Appl. Geogr. 2021, 127, 102385. [Google Scholar] [CrossRef]
- Soulé, M.; Kyereh, B.; Kuyah, S.; Tougiani, A.; Saadou, M. Azadirachta indica A. Juss. a multi-purpose tree as a leading species in carbon stocking in two sahelian cities of niger. Urban Ecosyst. 2022, 25, 51–64. [Google Scholar] [CrossRef]
- Ramyar, R.; Ackerman, A.; Johnston, D.M. Adapting cities for climate change through urban green infrastructure planning. Cities 2021, 117, 103316. [Google Scholar] [CrossRef]
- Anantsuksomsri, S.; Positlimpakul, K.; Chatakul, P.; Janpathompong, D.; Chen, G.; Tontisirin, N. Carbon sequestration analysis of the university campuses in the bangkok metropolitan region. J. Infrastruct. Policy Dev. 2024, 2024, 3385. [Google Scholar] [CrossRef]
- Leal Filho, W.; Luetz, J.M.; Dinis, M.A.P. University forests and carbon sequestration: An untapped potential. Discov. Sustain. 2024, 5, 362. [Google Scholar] [CrossRef]
- Sharma, R.; Pradhan, L.; Kumari, M.; Bhattacharya, P.; Mishra, V.N.; Kumar, D. Spatio-temporal assessment of urban carbon storage and its dynamics using invest model. Land 2024, 13, 1387. [Google Scholar] [CrossRef]
- Rachid, L.; Elmostafa, A.; Mehdi, M.; Hassan, R. Assessing carbon storage and sequestration benefits of urban greening in nador city, morocco, utilizing gis and the invest model. Sustain. Futures 2024, 7, 100171. [Google Scholar] [CrossRef]
- Kohestani, N.; Rastgar, S.; Heydari, G.; Jouibary, S.S.; Amirnejad, H. Spatiotemporal modeling of the value of carbon sequestration under changing land use/land cover using invest model: A case study of nour-rud watershed, northern iran. Environ. Dev. Sustain. 2024, 26, 14477–14505. [Google Scholar] [CrossRef]
- Dey, S.; Niyogi, J.G.; Das, D. Scenario-based modelling of carbon storage and sequestration using invest model in kolkata, india, and its environs. Arab. J. Geosci. 2025, 18, 68. [Google Scholar] [CrossRef]
- Pache, R.-G.; Abrudan, I.V.; Niță, M.-D. Economic valuation of carbon storage and sequestration in retezat national park, romania. Forests 2021, 12, 43. [Google Scholar] [CrossRef]
- Adetoye, A.M.; Okojie, L.O.; Akerele, D. Forest carbon sequestration supply function for african countries: An econometric modelling approach. For. Policy Econ. 2018, 90, 59–66. [Google Scholar] [CrossRef]
- Luedeling, E.; Sileshi, G.; Beedy, T.; Dietz, J. Carbon sequestration potential of agroforestry systems in africa. In Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges; Kumar, B.M., Nair, P.K.R., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 61–83. [Google Scholar]
- Verma, P.; Ghosh, P.K. The economics of forest carbon sequestration: A bibliometric analysis. Environ. Dev. Sustain. 2024, 26, 2989–3019. [Google Scholar] [CrossRef]
- Anokye, J.; Logah, V.; Opoku, A. Soil carbon stock and emission: Estimates from three land-use systems in ghana. Ecol. Process. 2021, 10, 11. [Google Scholar] [CrossRef]
- Ghana Statistical Service. Population of Regions and Districts; Ghana Statistical Service: Accra, Ghana, 2021; Volume 3A, pp. 1–112.
- Cudjoe, E.; Gbedemah, S.F. The new roles of legon botanical garden as visitor destination in ghana. J. Sustain. Tour. Entrep. 2020, 1, 23–35. [Google Scholar] [CrossRef]
- Acheampong, E.B.; Manu, G.; Asante, W.A.; Kyere, B. The role of urban tropical botanic gardens in biodiversity conservation: An example from the knust botanic garden in kumasi, ghana. Biotropica 2021, 53, 1109–1120. [Google Scholar] [CrossRef]
- KNUST. The Campus. n.d. Available online: https://www.knust.edu.gh/about/knust/campus (accessed on 15 January 2025).
- UCC. Our Campus. Cape Coast: UCC, n.d. Available online: https://ucc.edu.gh/main/explore-ucc/our-campus (accessed on 5 January 2025).
- Times Higher Education. World University Rankings; Times Higher Education: London, UK, 2022; Available online: https://www.timeshighereducation.com/world-university-rankings/university-cape-coast (accessed on 5 January 2025).
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with sentinel 2 and deep learning. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; Electric Network. IEEE: New York, NY, USA, 2021; pp. 4704–4707. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in west africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Ricke, K.; Drouet, L.; Caldeira, K.; Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 2018, 8, 895–900. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, W.D.; Olwero, N.; Vigerstol, K.; et al. Invest 3.8.3.Post0+ug.Gaa9aaf0.D20201118 User’s Guide; The Natural Capital Project: Palo Alto, CA, USA, 2020. [Google Scholar]
- Tol, R.S.J. A social cost of carbon for (almost) every country. Energy Econ. 2019, 83, 555–566. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Revisiting the social cost of carbon. Proc. Natl. Acad. Sci. USA 2017, 114, 1518–1523. [Google Scholar] [CrossRef]
- Ramsey, F.P. A mathematical theory of saving. Econ. J. 1928, 38, 543–559. [Google Scholar] [CrossRef]
- Portney, P.R.; Weyant, J.P. Discounting and Intergenerational Equity; Routledge: London, UK, 2013. [Google Scholar]
- Li, Q.; Pizer, W.A. Use of the consumption discount rate for public policy over the distant future. J. Environ. Econ. Manag. 2021, 107, 102428. [Google Scholar] [CrossRef]
- Moore, M.; Vining, A. The Social Rate of Time Preference and the Social Discount Rate; Mercatus Research Paper, 6; Mercatus Center: Arlington, VA, USA, 2018. [Google Scholar]
- U.S. EPA. Guidelines for Preparing Economic Analyses, 3rd ed.; EPA: Washington, DC, USA, 2024.
- Newell, R.G.; Pizer, W.A.; Prest, B.C. A discounting rule for the social cost of carbon. J. Assoc. Environ. Resour. Econ. 2022, 9, 1017–1046. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Gurav, C.; Rai, A.; Sharma, A.; Matli, C.; Biniwale, R. Quantification of heat mitigation by urban green spaces using invest model—A scenario analysis of nagpur city, india. Arab. J. Geosci. 2021, 14, 82. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Dhyani, S.; Purohit, V.; Dasgupta, R.; Kumar, P.; Hashimoto, S.; Pujari, P.; Biniwale, R. Scenario-based quantification of land-use changes and its impacts on ecosystem services: A case of bhitarkanika mangrove area, odisha, india. J. Coast. Conserv. 2022, 26, 30. [Google Scholar] [CrossRef]
- Mohammed, A.M.S.; Ukai, T. University campuses as agents for urban change. Environ. Socio-Econ. Stud. 2022, 10, 22–37. [Google Scholar] [CrossRef]
- Akubia, J.; Bruns, A. Unravelling the frontiers of urban growth: Spatio-temporal dynamics of land-use change and urban expansion in greater accra metropolitan area, ghana. Land 2019, 8, 131. [Google Scholar] [CrossRef]
- Bilintoh, T.M.; Korah, A.; Opuni, A.; Akansobe, A. Comparing the trajectory of urban impervious surface in two cities: The case of accra and kumasi, ghana. Land 2023, 12, 927. [Google Scholar] [CrossRef]
- Zambrano, L.; Aronson, M.F.J.; Fernandez, T. The consequences of landscape fragmentation on socio-ecological patterns in a rapidly developing urban area: A case study of the national autonomous university of mexico. Front. Environ. Sci. 2019, 7, 152. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Si, X.; Feng, G.; Slik, F.; Zhang, J. University campuses as valuable resources for urban biodiversity research and conservation. Urban For. Urban Green. 2021, 64, 127255. [Google Scholar] [CrossRef]
- Cox, H.M. A sustainability initiative to quantify carbon sequestration by campus trees. J. Geogr. 2012, 111, 173–183. [Google Scholar] [CrossRef]
- Martin, N.A.; Chappelka, A.H.; Loewenstein, E.F.; Keever, G.J. Comparison of carbon storage, carbon sequestration, and air pollution removal by protected and maintained urban forests in alabama, USA. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 265–272. [Google Scholar] [CrossRef]
- Malunguja, G.K.; Aligonza, S.; Chowdhury, R.; Kilonzo, M.B.; Thakur, B.; Devi, A. Carbon stocks and sequestration potential in urban reserve forests: Insights for climate change mitigation. Next Sustain. 2025, 6, 100161. [Google Scholar] [CrossRef]
- Sahoo, G.; Dash, A.C.; Prusty, M.; Sharma, A. Implications of deforestation on carbon sequestration potential of tropical forests. In Food Systems and Biodiversity in the Context of Environmental and Climate Risks: Dynamics and Evolving Solution; Behnassi, M., Baig, M.B., Gupta, H., Sabbahi, R., Gill, G.N., El Haiba, M., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 213–236. [Google Scholar]
- Nero, B.F.; Callo-Concha, D.; Denich, M. Structure, diversity, and carbon stocks of the tree community of kumasi, ghana. Forests 2018, 9, 519. [Google Scholar] [CrossRef]
- Nero, B.F.; Kuusaana, E.D.; Ahmed, A.; Campion, B.B. Carbon storage and tree species diversity of urban parks in kumasi, ghana. City Environ. Interact. 2024, 24, 100156. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Guariguata, M.R. Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica 2016, 48, 716–730. [Google Scholar] [CrossRef]
- Agyapong, E.B.; Ashiagbor, G.; Nsor, C.A.; van Leeuwen, L.M. Urban land transformations and its implication on tree abundance distribution and richness in Kumasi, Ghana. J. Urban Ecol. 2018, 4, juy019. [Google Scholar] [CrossRef]
Data Type | Source | Temporal Coverage | Spatial Resolution | Accuracy | Access |
---|---|---|---|---|---|
Campus Boundaries | OpenStreetMap Contributors (2023) | Current | Vector polygons | User-validated | https://www.openstreetmap.org |
Land Cover Maps | ESRI 10 m Annual Land Cover (Karra et al., 2021 [40]) | 2017, 2023 | 10 m | >75% | https://livingatlas.arcgis.com/landcover (accessed on 20 January 2025) |
Carbon Pool Values | Leh et al. (2013) [41] | - | Ecosystem-specific | Literature-derived | https://doi.org/10.1016/j.agee.2012.12.001 |
Social Cost of Carbon | Ricke et al. (2018) [42] | Country-specific | National | Model-based | https://country-level-scc.github.io (accessed on 20 January 2025) |
Land Use Type | Above Ground-Biomass | Below-Ground Biomass | Soil Organic Carbon |
---|---|---|---|
Water | 0 | 0 | 0 |
Trees | 162.9 | 31.4 | 14.2 |
Croplands | 62.4 | 20.6 | 13.2 |
Built areas | 3.0 | 0.6 | 13.5 |
Bare grounds | 2.3 | 0.5 | 21.7 |
Rangelands | 23.9 | 1.0 | 18.1 |
Campus | Land Use Type | InfraDev | AgroFor | TreeExp | ExtTreeExp | AgroPlus |
---|---|---|---|---|---|---|
UG | Trees | −9.1 | 1.4 | 5 | 10 | 6.4 |
Crops | 0 | −10.1 | −8.5 | −17.5 | −25.4 | |
Built areas | 10 | 0 | 0 | 0 | 0 | |
Rangelands | −19.7 | 0 | −7.1 | −14 | −5.3 | |
KNUST | Trees | −15.2 | 4.2 | 5 | 10 | 9.2 |
Crops | 0 | −9.9 | −3.2 | −5.5 | −15.2 | |
Built areas | 10 | 0 | 0 | 0 | 0 | |
Rangelands | −19 | 0 | −17 | −3.6 | −1.3 | |
UCC | Trees | −13.9 | 0.3 | 5 | 10 | 5.3 |
Crops | 0 | −9.7 | 35 | −58.4 | −65 | |
Built areas | 9.9 | 0 | 0 | 0 | 0 | |
Rangelands | −24.9 | 0 | −15.1 | −32 | −12.3 |
Campus | 2017 | 2023 | InfraDev | AgroFor | TreeExp | ExtTreeExp | AgroPlus |
---|---|---|---|---|---|---|---|
UG | 115,019 | 95,325 | 88,434 | 95,853 | 97,945 | 100,551 | 98,303 |
KNUST | 67,990 | 47,927 | 43,561 | 48,444 | 48,759 | 49,613 | 49,224 |
UCC | 41,589 | 38,297 | 34,086 | 38,354 | 39,426 | 40,604 | 39,427 |
Change from 2023 | |||||||
UG | −6891 | +528 | +2620 | +5227 | +2978 | ||
KNUST | −4366 | +517 | +832 | +1686 | +1296 | ||
UCC | −4211 | +56 | +1129 | +2307 | +1130 |
Metric | UG | KNUST | UCC |
---|---|---|---|
Campus Area (total ha) | 1255.6 | 1000.5 | 493.9 |
Historical Carbon Loss (2017–2023) | |||
Total loss (Mg C) | −19,695 | −20,063 | −3292 |
Annual loss rate (Mg C/year) | −3282 | −3344 | −549 |
Loss rate (% per year) | −2.9% | −4.9% | −1.3% |
Restoration Potential | |||
Best scenario gain (Mg C) | +5227 | +1686 | +2307 |
% improvement over 2023 | +5.5% | +3.5% | +6.0% |
Economic Performance (0% discount rate) | |||
Best scenario NPV (USD) | +5070 | +1630 | +2240 |
Worst scenario NPV (USD) | −6690 | −4240 | −4080 |
Economic range (USD) | 11,750 | 5870 | 6320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocloo, D.M.; Mizunoya, T. Carbon Storage and Land Use Dynamics in Ghanaian University Campuses: A Scenario-Based Assessment Using the InVEST Model. Land 2025, 14, 1987. https://doi.org/10.3390/land14101987
Ocloo DM, Mizunoya T. Carbon Storage and Land Use Dynamics in Ghanaian University Campuses: A Scenario-Based Assessment Using the InVEST Model. Land. 2025; 14(10):1987. https://doi.org/10.3390/land14101987
Chicago/Turabian StyleOcloo, Daniel Mawuko, and Takeshi Mizunoya. 2025. "Carbon Storage and Land Use Dynamics in Ghanaian University Campuses: A Scenario-Based Assessment Using the InVEST Model" Land 14, no. 10: 1987. https://doi.org/10.3390/land14101987
APA StyleOcloo, D. M., & Mizunoya, T. (2025). Carbon Storage and Land Use Dynamics in Ghanaian University Campuses: A Scenario-Based Assessment Using the InVEST Model. Land, 14(10), 1987. https://doi.org/10.3390/land14101987