Dry Deposition of Fine Particulate Matter by City-Owned Street Trees in a City Defined by Urban Sprawl
Abstract
1. Introduction
2. Methods
2.1. City-Owned Street Trees in Mississauga
2.2. Dry Deposition Velocity by Tree
2.3. Satellite Estimates and Field Validation of Leaf Area Index
2.4. Ambient PM2.5 Surrounding Individual Trees
2.5. Area of Deposition
2.6. Study Period
2.7. Quantifying Dry Deposition of PM2.5
3. Results
3.1. Descriptive Statistics
3.2. Dry Deposition of PM2.5 by City-Owned Street Trees
3.3. Species-Specific Deposition Rates
4. Discussion
4.1. Advancing Approaches to Quantify PM2.5 Deposition by City-Owned Street Trees
4.2. Species-Specific Contribution to PM2.5 Mitigation
4.3. Refining the Theoretical Framework for Ecosystem Services by City-Owned Street Trees
4.4. Practical Implications Through a Data-Driven Framework for Species Selection to Maximize PM2.5 Removal
4.5. Limitations and Suggestions for Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PM2.5 | fine particulate matter |
References
- Pourali, M.; Townsend, C.; Kross, A.; Guindon, A.; Jaeger, J.A.G. Urban sprawl in Canada: Values in all 33 Census Metropolitan Areas and corresponding 469 Census Subdivisions between 1991 and 2011. Data Brief 2022, 41, 107941. [Google Scholar] [CrossRef]
- Chettry, V. A Critical Review of Urban Sprawl Studies. J. Geovis. Spat. Anal. 2023, 7, 28. [Google Scholar] [CrossRef]
- Murray, A.T.; Davis, R.; Stimson, R.J.; Ferreira, L. Public Transportation Access. Transp. Res. D Transp. Environ. 1998, 3, 319–328. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, J.; Zeng, Y.; Sun, N.; Liu, C.; Yin, S. Individual effects of trichomes and leaf morphology on PM2.5 dry deposition velocity: A variable-control approach using species from the same family or genus. Environ. Pollut. 2021, 272, 116385. [Google Scholar] [CrossRef]
- Xie, C.; Guo, J.; Yan, L.; Jiang, R.; Liang, A.; Che, S. The influence of plant morphological structure characteristics on PM2.5 retention of leaves under different wind speeds. Urban For. Urban Green. 2022, 71, 127556. [Google Scholar] [CrossRef]
- Wathanavasin, W.; Banjongjit, A.; Phannajit, J.; Eiam-Ong, S.; Susantitaphong, P. Association of fine particulate matter (PM2.5) exposure and chronic kidney disease outcomes: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, S.; Fan, C.; Bai, Z.; Yang, K. The impact of PM2.5 on asthma emergency department visits: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2016, 23, 843–850. [Google Scholar] [CrossRef]
- Maji, K.J.; Dikshit, A.K.; Arora, M.; Deshpande, A. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Sci. Total Environ. 2018, 612, 683–693. [Google Scholar] [CrossRef]
- Moreno, T.; Querol, X.; Alastuey, A.; Ballester, F.; Gibbons, W. Airborne particulate matter and premature deaths in urban Europe: The new WHO guidelines and the challenge ahead as illustrated by Spain. Eur. J. Epidemiol. 2007, 22, 1–5. [Google Scholar] [CrossRef]
- Al-Kindi, S.G.; Brook, R.D.; Biswal, S.; Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 2020, 17, 656–672. [Google Scholar] [CrossRef]
- Ng, C.F.S.; Hashizume, M.; Obase, Y.; Doi, M.; Tamura, K.; Tomari, S.; Kawano, T.; Fukushima, C.; Matsuse, H.; Chung, Y.; et al. Associations of chemical composition and sources of PM2.5 with lung function of severe asthmatic adults in a low air pollution environment of urban Nagasaki, Japan. Environ. Pollut. 2019, 252, 599–606. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, S.; Xing, J.; Chang, X.; Ding, D.; Zheng, H. Regional transport in Beijing-Tianjin-Hebei region and its changes during 2014–2017: The impacts of meteorology and emission reduction. Sci. Total Environ. 2020, 737, 139792. [Google Scholar] [CrossRef]
- Hasheminassab, S.; Daher, N.; Ostro, B.D.; Sioutas, C. Long-term source apportionment of ambient fine particulate matter (PM2.5) in the Los Angeles Basin: A focus on emissions reduction from vehicular sources. Environ. Pollut. 2014, 193, 54–64. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Goel, R.; Pant, P. Nature of air pollution, emission sources, and management in the Indian cities. Atmos. Environ. 2014, 95, 501–510. [Google Scholar] [CrossRef]
- Sofia, D.; Gioiella, F.; Lotrecchiano, N.; Giuliano, A. Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res. 2020, 27, 19226–19235. [Google Scholar] [CrossRef] [PubMed]
- Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Green infrastructure practices for improvement of urban air quality. Urban For. Urban Green. 2017, 21, 34–47. [Google Scholar] [CrossRef]
- Muresan, A.N.; Sebastiani, A.; Gaglio, M.; Fano, E.A.; Manes, F. Assessment of air pollutants removal by green infrastructure and urban and peri-urban forests management for a greening plan in the Municipality of Ferrara (Po river plain, Italy). Ecol. Indic. 2022, 135, 108554. [Google Scholar] [CrossRef]
- Shen, J.; Peng, Z.; Wang, Y. From GI, UGI to UAGI: Ecosystem service types and indicators of green infrastructure in response to ecological risks and human needs in global metropolitan areas. Cities 2023, 134, 104176. [Google Scholar] [CrossRef]
- Wang, A.; Wang, J.; Zhang, R.; Cao, S.-J. Mitigating urban heat and air pollution considering green and transportation infrastructure. Transp. Res. A Policy Pract. 2024, 184, 104079. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Particulate pollution capture by urban trees: Effect of species and windspeed. Glob. Change Biol. 2000, 6, 995–1003. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.; Taylor, G. Effective Tree Species for Local Airquality Management. Arboric. Urban For. 2000, 26, 12–19. [Google Scholar] [CrossRef]
- Freer-Smith, P.H.; Beckett, K.P.; Taylor, G. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides × trichocarpa ‘Beaupré’, Pinus nigra and × Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut. 2005, 133, 157–167. [Google Scholar] [CrossRef]
- Freer-Smith, P.H.; El-Khatib, A.A.; Taylor, G. Capture of Particulate Pollution by Trees: A Comparison of Species Typical of Semi-Arid Areas (Ficus Nitida and Eucalyptus Globulus) with European and North American Species. Water Air Soil Pollut. 2004, 155, 173–187. [Google Scholar] [CrossRef]
- Barwise, Y.; Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. Npj Clim. Atmos. Sci. 2020, 3, 12. [Google Scholar] [CrossRef]
- Chen, D.; Yan, J.; Sun, N.; Sun, W.; Zhang, W.; Long, Y.; Yin, S. Selective capture of PM2.5 by urban trees: The role of leaf wax composition and physiological traits in air quality enhancement. J. Hazard. Mater. 2024, 478, 135428. [Google Scholar] [CrossRef]
- Gaglio, M.; Pace, R.; Muresan, A.N.; Grote, R.; Castaldelli, G.; Calfapietra, C.; Fano, E.A. Species-specific efficiency in PM2.5 removal by urban trees: From leaf measurements to improved modeling estimates. Sci. Total Environ. 2022, 844, 157131. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, J.; Han, Y.; Sun, N.; Sun, W.; Li, J.; Liu, C.; Yin, S. Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM2.5 dry deposition velocities. Environ. Pollut. 2020, 265, 114845. [Google Scholar] [CrossRef]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremed. 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Chen, D.; Yin, S.; Zhang, X.; Lyu, J.; Zhang, Y.; Zhu, Y.; Yan, J. A high-resolution study of PM2.5 accumulation inside leaves in leaf stomata compared with non-stomatal areas using three-dimensional X-ray microscopy. Sci. Total Environ. 2022, 852, 158543. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, C.; Zhang, L.; Zou, R.; Zhang, Z. Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5). Sci. Rep. 2017, 7, 3206. [Google Scholar] [CrossRef]
- Choi, Y.-K.; Song, H.-J.; Jo, J.-W.; Bang, S.-W.; Park, B.-H.; Kim, H.-H.; Kim, K.-J.; Jeong, N.-R.; Kim, J.-H.; Kim, H.-J. Morphological and Chemical Evaluations of Leaf Surface on Particulate Matter2.5 (PM2.5) Removal in a Botanical Plant-Based Biofilter System. Plants 2021, 10, 2761. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J.; Endreny, T.A. i-Tree Eco Dry Deposition Model Descriptions (Version 1.5); i-Tree Tools: Syracuse, NY, USA, 2022; Available online: https://www.itreetools.org/documents/60/i-Tree_Eco_Dry_Deposition_Model_Descriptions_V1.5.pdf (accessed on 1 June 2024).
- Wesely, M.L.; Hicks, B.B. A review of the current status of knowledge on dry deposition. Atmos. Environ. 2000, 34, 2261–2282. [Google Scholar] [CrossRef]
- Pace, R.; Guidolotti, G.; Baldacchini, C.; Pallozzi, E.; Grote, R.; Nowak, D.J.; Calfapietra, C. Comparing i-Tree Eco Estimates of Particulate Matter Deposition with Leaf and Canopy Measurements in an Urban Mediterranean Holm Oak Forest. Environ. Sci. Technol. 2021, 55, 6613–6622. [Google Scholar] [CrossRef]
- Riondato, E.; Pilla, F.; Sarkar Basu, A.; Basu, B. Investigating the effect of trees on urban quality in Dublin by combining air monitoring with i-Tree Eco model. Sustain. Cities Soc. 2020, 61, 102356. [Google Scholar] [CrossRef]
- Roy, A.; Mandal, M.; Das, S.; Popek, R.; Rakwal, R.; Agrawal, G.K.; Awasthi, A.; Sarkar, A. The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function. Sci. Total Environ. 2024, 914, 169763. [Google Scholar] [CrossRef]
- Soares, A.L.; Rego, F.C.; McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Xiao, Q. Benefits and costs of street trees in Lisbon, Portugal. Urban For. Urban Green. 2011, 10, 69–78. [Google Scholar] [CrossRef]
- Wu, X.; Yang, X.; Qi, J.; Feng, C.; Liang, S. Effects of economic structural transition on PM2.5-Related Human Health Impacts in China. J. Clean. Prod. 2021, 298, 126793. [Google Scholar] [CrossRef]
- Rasoolzadeh, R.; Mobarghaee Dinan, N.; Esmaeilzadeh, H.; Rashidi, Y.; Sadeghi, S.M.M. Assessment of air pollution removal by urban trees based on the i-Tree Eco Model: The case of Tehran, Iran. Integr. Environ. Assess. Manag. 2024, 20, 2142–2152. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Kroll, C.N.; Nowak, D.J. Ecosystem service-based sensitivity analyses of i-Tree Eco. Arboric. Urban For. 2020, 46, 287–306. [Google Scholar] [CrossRef]
- Kroeger, T.; McDonald, R.I.; Boucher, T.; Zhang, P.; Wang, L. Where the people are: Current trends and future potential targeted investments in urban trees for PM10 and temperature mitigation in 27 US cities. Landsc. Urban Plan. 2018, 177, 227–240. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, S36. [Google Scholar] [CrossRef]
- Peng, H.; Shao, S.; Xu, F.; Dong, W.; Qiu, Y.; Qin, M.; Ma, D.; Shi, Y.; Chen, J.; Zhou, T.; et al. Dry Deposition in Urban Green Spaces: Insights from Beijing and Shanghai. Forests 2024, 15, 1286. [Google Scholar] [CrossRef]
- Miao, C.; Yu, S.; Hu, Y.; Liu, M.; Yao, J.; Zhang, Y.; He, X.; Chen, W. Seasonal effects of street trees on particulate matter concentration in an urban street canyon. Sustain. Cities Soc. 2021, 73, 103095. [Google Scholar] [CrossRef]
- Kim, Y.U.; Lee, S.B.; Kim, C.H.; Lee, S.; Kwak, K.H. Aerodynamic and Dry Deposition Effects of Roadside Trees on NOx Concentration Changes on Roadways and Sidewalks. Atmosphere 2025, 16, 344. [Google Scholar] [CrossRef]
- Statistics Canada. 2021 Census of Population: Profile Table—Mississauga, City (CY) [Census Subdivision], Ontario. Government of Canada. 2021. Available online: https://www12.statcan.gc.ca/census-recensement/2021/dp-pd/prof/details/page.cfm?Lang=E&GENDERlist=1&STATISTIClist=1&HEADERlist=0&DGUIDlist=2021A00053521005&SearchText=mississauga (accessed on 1 May 2024).
- Climate Data. Climate Mississauga (Ontario, Canada): Temperature, Climate Graph, Climate Table for Mississauga. 2024. Available online: https://en.climate-data.org/north-america/canada/ontario/mississauga-1676/ (accessed on 3 May 2025).
- City of Mississauga. City-Owned Tree Inventory. 2019. Available online: https://data.mississauga.ca/datasets/mississauga::city-owned-tree-inventory/about (accessed on 30 October 2023).
- Wang, R.; Chen, J.M.; Luo, X.; Black, A.; Arain, A. Seasonality of leaf area index and photosynthetic capacity for better estimation of carbon and water fluxes in evergreen conifer forests. Agric. For. Meteorol. 2019, 279, 107708. [Google Scholar] [CrossRef]
- Miller, P. The Gardener’s Dictionary, 8th ed.; John and Francis Rivington: London, UK, 1768. [Google Scholar]
- Wróblewska, K.; Jeong, B.R. Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. Environ. Sci. Eur. 2021, 33, 110. [Google Scholar] [CrossRef] [PubMed]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Measuring leaf area index of plant canopies with branch architecture. Agric. For. Meteorol. 1991, 57, 1–12. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Heskel, M.; Sun, S.; Tang, J. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Sci. Rep. 2017, 7, 1267. [Google Scholar] [CrossRef]
- Feng, R.; Zhang, Y.; Yu, W.; Hu, W.; Wu, J.; Ji, R.; Wang, H.; Zhao, X. Analysis of the relationship between the spectral characteristics of maize canopy and leaf area index under drought stress. Acta Ecol. Sin. 2013, 33, 301–307. [Google Scholar] [CrossRef]
- Planet. Planet Explorer Dataset. 2023. Available online: https://www.planet.com/explorer (accessed on 30 October 2023).
- Gao, Z.; Chen, Y.; Zhang, Z.; Duan, T.; Chen, J.; Li, A. Continuous Leaf Area Index (LAI) Observation in Forests: Validation, Application, and Improvement of LAI-NOS. Forests 2024, 15, 868. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M. A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agric. For. Meteorol. 2001, 110, 125–139. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef] [PubMed]
- Shimano, K. Analysis of the Relationship between DBH and Crown Projection Area Using a New Model. J. For. Res. 1997, 2, 237–242. [Google Scholar] [CrossRef]
- Morani, A.; Nowak, D.J.; Hirabayashi, S.; Calfapietra, C. How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative. Environ. Pollut. 2011, 159, 1040–1047. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Baró, F.; Calderón-Argelich, A.; Langemeyer, J.; Connolly, J.J.T. Under one canopy? Assessing the distributional environmental justice implications of street tree benefits in Barcelona. Environ. Sci. Policy 2019, 102, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Brimblecombe, P. Trees and parks as “the lungs of cities”. Urban For. Urban Green. 2020, 48, 126552. [Google Scholar] [CrossRef]
- Su, T.-H.; Lin, C.-S.; Lu, S.-Y.; Lin, J.-C.; Wang, H.-H.; Liu, C.-P. Effect of air quality improvement by urban parks on mitigating PM2.5 and its associated heavy metals: A mobile-monitoring field study. J. Environ. Manag. 2022, 323, 116283. [Google Scholar] [CrossRef]
- Tan, X.; Shibata, S. Factors influencing street tree health in constrained planting spaces: Evidence from Kyoto City, Japan. Urban For. Urban Green. 2022, 67, 127416. [Google Scholar] [CrossRef]
- Roman, L.A.; Eisenman, T.S. Drivers of street tree species selection: The case of London planetrees in Philadelphia. In The Politics of Street Trees; Routledge: London, UK, 2022. [Google Scholar]
- Lin, X.; Chamecki, M.; Yu, X. Aerodynamic and deposition effects of street trees on PM2.5 concentration: From street to neighborhood scale. Build. Environ. 2020, 185, 107291. [Google Scholar] [CrossRef]
- Roman, L.A.; Conway, T.M.; Eisenman, T.S.; Koeser, A.K.; Barona, C.O.; Locke, D.H.; Jenerette, G.D.; Östberg, J.; Vogt, J. Beyond ‘Trees Are Good’: Disservices, Management Costs, and Tradeoffs in Urban Forestry. Ambio 2021, 50, 615–630. [Google Scholar] [CrossRef]
- Pataki, D.E.; Alberti, M.; Cadenasso, M.L.; Felson, A.J.; McDonnell, M.J.; Pincetl, S.; Pouyat, R.V.; Setälä, H.; Whitlow, T.H. The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Front. Ecol. Evol. 2021, 9, 603757. [Google Scholar] [CrossRef]
- de Guzman, E.B.; Escobedo, F.J.; O’Leary, R. A socio-ecological approach to align tree stewardship programs with public health benefits in marginalized neighborhoods in Los Angeles, USA. Front. Sustain. Cities 2022, 4, 944182. [Google Scholar] [CrossRef]
- Gregory, K.; Ajibade, I. Participatory mapping of tree equity, preferences, and environmental justice in Portland, Oregon. Urban For. Urban Green. 2024, 97, 128374. [Google Scholar] [CrossRef]
- Russo, A.; Cirella, G.T. Urban Ecosystem Services in a Rapidly Urbanizing World: Scaling up Nature’s Benefits from Single Trees to Thriving Urban Forests. Land 2024, 13, 786. [Google Scholar] [CrossRef]
- Ribeiro, A.P.; Bollmann, H.A.; de Oliveira, A.; Rakauskas, F.; Cortese, T.T.P.; Rodrigues, M.S.C.; Ferreira, M.L. The role of tree landscape to reduce effects of urban heat islands: A study in two Brazilian cities. Trees 2023, 37, 17–30. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Draaijers, G. Deposition to forests in Europe: Most important factors influencing dry deposition and models used for generalisation. Environ. Pollut. 2003, 124, 379–388. [Google Scholar] [CrossRef]
- Zhao, J.; Davies, C.; Veal, C.; Xu, C.; Zhang, X.; Yu, F. Review on the Application of Nature-Based Solutions in Urban Forest Planning and Sustainable Management. Forests 2024, 15, 727. [Google Scholar] [CrossRef]
- Askariyeh, M.H.; Venugopal, M.; Khreis, H.; Birt, A.; Zietsman, J. Near-Road Traffic-Related Air Pollution: Resuspended PM2.5 from Highways and Arterials. Int. J. Environ. Res. Public Health 2020, 17, 2851. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Bai, J.; Zhu, S.; Yang, B.; Dai, F. The influence of neighborhood-level urban morphology on PM2. 5 variation based on random forest regression. Atmos. Pollut. Res. 2021, 12, 101147. [Google Scholar] [CrossRef]
- Tan, X.; Zhou, Z.; Wang, W. Relationships between urban form and PM2.5 concentrations from the spatial pattern and process perspective. Build. Environ. 2023, 234, 110147. [Google Scholar] [CrossRef]
- Jin, X.; Yang, L.; Du, X.; Yang, Y. Transport characteristics of PM2. 5 inside urban street canyons: The effects of trees and vehicles. In Building Simulation; Tsinghua University Press: Beijing, China, 2017; No. 3; Volume 10, pp. 337–350. [Google Scholar]
- Hong, B.; Lin, B.; Qin, H. Numerical investigation on the effect of avenue trees on PM2. 5 dispersion in urban street canyons. Atmosphere 2017, 8, 129. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, B. A simulation study on the influence of street tree configuration on fine particulate matter (PM2.5) concentration in street canyons. Forests 2023, 14, 1550. [Google Scholar] [CrossRef]
Tree Type | Total PM2.5 Deposited (g) | Percentage of Total PM2.5 Deposition (%) | Total Number of Trees | Percentage of Total Trees (%) |
---|---|---|---|---|
Coniferous | 25,618,149.74 | 92.15 | 28,827 | 14.37 |
Deciduous | 2,180,926.57 | 7.85 | 171,733 | 85.63 |
Total | 27,799,076.31 | 100.00 | 200,560 | 100.00 |
Scientific Name | Amount of PM2.5 Deposited Per Species (g) | Percent of Total Deposition Per Species (%) | Number of Trees Per Species | Percent of Total Trees (%) | Amount of PM2.5 Deposition Per Tree (g) |
---|---|---|---|---|---|
Picea pungens | 18,329,696 | 65.94 | 10,248 | 5.11 | 1788 |
Pinus nigra | 3,286,017 | 11.82 | 5004 | 2.5 | 656 |
Picea abies | 1,498,729 | 5.39 | 1535 | 0.77 | 976 |
Pinus sylvestris | 598,184 | 2.15 | 1389 | 0.69 | 430 |
Picea glauca | 535,588 | 1.93 | 2322 | 1.16 | 230 |
Pinus strobus | 507,412 | 1.83 | 702 | 0.35 | 722 |
Picea pungens | 420,318 | 1.51 | 2632 | 1.31 | 159 |
Tilia | 337,173 | 1.21 | 12,324 | 6.14 | 27 |
Quercus rubra | 247,104 | 0.89 | 3285 | 1.64 | 75 |
Acer platanoides | 236,688 | 0.85 | 35,690 | 17.8 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Adams, M. Dry Deposition of Fine Particulate Matter by City-Owned Street Trees in a City Defined by Urban Sprawl. Land 2025, 14, 1969. https://doi.org/10.3390/land14101969
Cui S, Adams M. Dry Deposition of Fine Particulate Matter by City-Owned Street Trees in a City Defined by Urban Sprawl. Land. 2025; 14(10):1969. https://doi.org/10.3390/land14101969
Chicago/Turabian StyleCui, Siliang, and Matthew Adams. 2025. "Dry Deposition of Fine Particulate Matter by City-Owned Street Trees in a City Defined by Urban Sprawl" Land 14, no. 10: 1969. https://doi.org/10.3390/land14101969
APA StyleCui, S., & Adams, M. (2025). Dry Deposition of Fine Particulate Matter by City-Owned Street Trees in a City Defined by Urban Sprawl. Land, 14(10), 1969. https://doi.org/10.3390/land14101969