Reduce Speed Limits to Minimize Potential Harm and Maximize the Health Benefits of Street Trees
Abstract
:1. Introduction
2. Methods
2.1. Traffic Crash Data
2.2. Street Tree Canopy Cover Within the Road Area Where Crashes Occurred
2.3. Statistical Analysis
3. Results
3.1. Raw Frequencies of Injuries/Crashes per Category of Variables
3.2. Co-Variates and Injuries/Crashes
3.3. Modeling: Exploratory Analysis 1
3.4. Modeling: Exploratory Analysis 2
3.5. Modeling: Final Analysis
3.6. A. Street Tree Percentage Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, S.; Pitman, A.; Hart, M.; Evans, J.P.; Haghdadi, N.; MacGill, I. The impact of an urban canopy and anthropogenic heat fluxes on Sydney’s climate. Int. J. Climatol. 2017, 37, 255–270. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Feng, X.; Toms, R.; Astell-Burt, T. Association between green space, outdoor leisure time and physical activity. Urban For. Urban Green. 2021, 66, 127349. [Google Scholar] [CrossRef]
- Roscoe, C.; Sheridan, C.; Geneshka, M.; Hodgson, S.; Vineis, P.; Gulliver, J.; Fecht, D. Green walkability and physical activity in UK Biobank: A cross-sectional analysis of adults in Greater London. Int. J. Environ. Res. Public Health 2022, 19, 4247. [Google Scholar] [CrossRef]
- Frumkin, H. Urban sprawl and public health. Public Health Rep. 2002, 117, 201–217. [Google Scholar] [CrossRef]
- Rissel, C.E. Active travel: A climate change mitigation strategy with co-benefits for health. N. South Wales Public Health Bull. 2009, 20, 10–13. [Google Scholar] [CrossRef]
- City of Sydney. Greening Sydney Strategy. Available online: https://www.cityofsydney.nsw.gov.au/strategies-action-plans/greening-sydney-strategy (accessed on 12 October 2021).
- City of Barcelona. Trees for Life: Master Plan for Barcelona’s Trees 2017–2037. Available online: https://www.c40knowledgehub.org/s/article/Trees-for-Life-Master-Plan-for-Barcelona-s-Trees-2017-2037?language=en_US (accessed on 13 March 2021).
- City of Vancouver. Park Board Achieves Target to Plant 150,000 Trees by 2020. Available online: https://vancouver.ca/news-calendar/park-board-achieves-target-to-plant-150000-trees-by-2020.aspx (accessed on 13 March 2021).
- City of Seattle. Trees For Seattle. Available online: https://www.seattle.gov/trees/management/canopy-cover (accessed on 13 March 2021).
- Van Treese, J.W., II; Koeser, A.K.; Fitzpatrick, G.E.; Olexa, M.T.; Allen, E.J. A review of the impact of roadway vegetation on drivers’ health and well-being and the risks associated with single-vehicle crashes. Arboric. J. 2017, 39, 179–193. [Google Scholar] [CrossRef]
- Theofilatos, A.; Yannis, G. A review of the effect of traffic and weather characteristics on road safety. Accid. Anal. Prev. 2014, 72, 244–256. [Google Scholar] [CrossRef]
- Aarts, L.; Van Schagen, I. Driving speed and the risk of road crashes: A review. Accid. Anal. Prev. 2006, 38, 215–224. [Google Scholar] [CrossRef]
- Zhang, G.; Yau, K.K.; Zhang, X.; Li, Y. Traffic accidents involving fatigue driving and their extent of casualties. Accid. Anal. Prev. 2016, 87, 34–42. [Google Scholar] [CrossRef]
- Moradi, A.; Nazari, S.S.H.; Rahmani, K. Sleepiness and the risk of road traffic accidents: A systematic review and meta-analysis of previous studies. Transp. Res. Part F Traffic Psychol. Behav. 2019, 65, 620–629. [Google Scholar] [CrossRef]
- Glucksman, E. Alcohol and accidents. Br. Med. Bull. 1994, 50, 76–84. [Google Scholar] [CrossRef]
- Ewing, R.; Dumbaugh, E. The built environment and traffic safety: A review of empirical evidence. J. Plan. Lit. 2009, 23, 347–367. [Google Scholar] [CrossRef]
- Calvi, A. Does roadside vegetation affect driving performance? Driving simulator study on the effects of trees on drivers’ speed and lateral position. Transp. Res. Rec. 2015, 2518, 1–8. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Feng, X. Urban green space, tree canopy and prevention of cardiometabolic diseases: A multilevel longitudinal study of 46 786 Australians. Int. J. Epidemiol. 2020, 49, 926–933. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Feng, X. Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM Popul. Health 2020, 10, 100497. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Feng, X. Association of Urban Green Space with Mental Health and General Health Among Adults in Australia. JAMA Netw. Open 2019, 2, e198209. [Google Scholar] [CrossRef]
- Feng, X.; Toms, R.; Navakatikyan, M.; Astell-Burt, T. The nexus between urban green space, housing type, and mental health. Soc. Psychiatry Psychiatr. Epidemiol. 2022, 57, 1917–1923. [Google Scholar] [CrossRef]
- Kardan, O.; Gozdyra, P.; Misic, B.; Moola, F.; Palmer, L.J. Neighborhood greenspace and health in a large urban center. Sci. Rep. 2015, 5, 11610. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.C.; Mueller, N.; Locke, D.H.; Roman, L.A.; Rojas-Rueda, D.; Schinasi, L.H.; Gascon, M.; Nieuwenhuijsen, M.J. Health impact assessment of Philadelphia’s 2025 tree canopy cover goals. Lancet Planet. Health 2020, 4, e149–e157. [Google Scholar] [CrossRef] [PubMed]
- Browning, M.H.; Lee, K.; Wolf, K.L. Tree cover shows an inverse relationship with depressive symptoms in elderly residents living in US nursing homes. Urban For. Urban Green. 2019, 41, 23–32. [Google Scholar] [CrossRef]
- Marselle, M.R.; Bowler, D.E.; Watzema, J.; Eichenberg, D.; Kirsten, T.; Bonn, A. Urban street tree biodiversity and antidepressant prescriptions. Sci. Rep. 2020, 10, 22445. [Google Scholar] [CrossRef]
- Giacinto, J.J.; Fricker, G.A.; Ritter, M.; Yost, J.; Doremus, J. Urban forest biodiversity and cardiovascular disease: Potential health benefits from California’s street trees. PLoS ONE 2021, 16, e0254973. [Google Scholar] [CrossRef]
- Rasbash, J.; Steele, F.; Browne, W.J.; Goldstein, H. A User’s Guide to MLwiN; Version 3.05; Centre for Multilevel Modelling, University of Bristol: Bristol, UK, 2020. [Google Scholar]
- Browne, W.J. MCMC Estimation in MLwiN, v3.03; Centre for Multilevel Modelling, University of Bristol: Bristol, UK, 2019.
- Steele, F. Module 6: Regression Models for Binary Responses Concepts; Centre for Multilevel Modelling, University of Bristol: Bristol, UK, 2009. [Google Scholar]
- Harvey, C.; Aultman-Hall, L. Urban Streetscape Design and Crash Severity; Transportation Research Board: Washington, DC, USA, 2015; pp. 1–8. [Google Scholar]
- Friedman, L.S. Dose–response relationship between in-hospital mortality and alcohol following acute injury. Alcohol 2012, 46, 769–775. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Su, L.-T.; Wang, Y.-C.; Fu, C.-Y.; Lo, H.-C.; Lin, C.-H. Does alcohol intoxication protect patients from severe injury and reduce hospital mortality? The association of alcohol consumption with the severity of injury and survival in trauma patients. Am. Surg. 2013, 79, 1289–1294. [Google Scholar] [CrossRef]
- Plurad, D. Motor vehicle crashes: The association of alcohol consumption with the type and severity of injuries and outcomes. J. Emerg. Med. 2010, 38, 12–17. [Google Scholar] [CrossRef]
Variable/Categories | N | % | Name/Categories | N | % |
---|---|---|---|---|---|
Sources for outputs variables | |||||
Degree of crash (detailed) | Hits (1st or 2nd) of objects | ||||
Non-casualty (tow-away) | 17,214 | 29.9 | None | 49,895 | 86.8 |
Minor/Other Injury | 14,645 | 25.5 | Tree/bus | 1320 | 2.3 |
Moderate Injury | 14,422 | 25.1 | Other | 6262 | 10.9 |
Serious Injury | 10,805 | 18.8 | |||
Fatal | 391 | 0.7 | |||
Percentage of Street tree percentage categorical variables | |||||
Street tree percentage (%, with regular interval) | Street tree percentage (5, irregular area intervals) | ||||
0–4.9 | 35,776 | 62.2 | 0–4.9 | 35,776 | 62.2 |
5–9.9 | 6677 | 11.6 | 5–9.9 | 6677 | 11.6 |
10–14.9 | 4404 | 7.7 | 10–19.9 | 7285 | 12.7 |
15–19.9 | 2881 | 5.0 | 20–34.9 | 4482 | 7.8 |
20–24.9 | 2077 | 3.6 | 35+ | 3257 | 5.7 |
25–29.9 | 1408 | 2.4 | |||
30–34.9 | 997 | 1.7 | |||
35–39.9 | 813 | 1.4 | |||
40–44.9 | 602 | 1.0 | |||
45+ | 1842 | 3.2 | |||
Covariates | |||||
Alignment | Surface condition | ||||
Straight | 50,572 | 88.0 | Dry | 49,729 | 86.5 |
Curved | 6905 | 12.0 | Wet/other | 7748 | 13.5 |
Weather | |||||
Fine | 48,617 | 84.6 | |||
Rain/overcast/other | 8860 | 15.4 | |||
Speed limit | Type of location | ||||
10–40 km/h | 2963 | 5.2 | T-junction | 17,697 | 30.8 |
50 km/h | 21,440 | 37.3 | 2-way undivided | 14,855 | 25.8 |
60 km/h | 21,820 | 38.0 | X-intersection | 11,801 | 20.5 |
70 km/h | 7364 | 12.8 | Divided road | 7261 | 12.6 |
80–110 km/h | 3890 | 6.8 | Other | 5863 | 10.2 |
Behavioural covariates | |||||
Speeding | Fatigue | ||||
No/unknown | 52,424 | 91.2 | No/unknown | 54,205 | 94.3 |
Yes | 5053 | 8.8 | Yes | 3272 | 5.7 |
Alcohol | Behavioural count | ||||
Unknown | 39,986 | 69.6 | 0 | 48,722 | 84.8 |
No | 15,207 | 26.5 | 1 | 7027 | 12.2 |
Yes | 2284 | 4.0 | 2 | 1602 | 2.8 |
3 | 126 | 0.2 |
Injuries (The Severest Injury Type in Crash) | Hits of Objects | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fatal | Serious | Moderate | Minor | Fatal/Serious | Fatal/All Injuries | Hits Tree/Bush | Hit Other | ||||||||||
Variable/Category | N Total | N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % |
Total | 57,477 | 391 | 0.68 | 10,805 | 18.8 | 14,422 | 25.1 | 14,645 | 25.5 | 11,196 | 19.5 | 40,263 | 70.1 | 1320 | 2.3 | 6262 | 10.9 |
Street tree percentage variable | |||||||||||||||||
Street tree percentage (%, regular intervals) | |||||||||||||||||
0–4.9 | 35,776 | 239 | 0.67 | 6518 | 18.2 | 9093 | 25.4 | 9554 | 26.7 | 6757 | 18.9 | 25,404 | 71.0 | 533 | 1.5 | 3687 | 10.3 |
5–9.9 | 6677 | 40 | 0.60 | 1252 | 18.8 | 1732 | 25.9 | 1640 | 24.6 | 1292 | 19.4 | 4664 | 69.9 | 150 | 2.3 | 738 | 11.1 |
10–14.9 | 4404 | 32 | 0.73 | 906 | 20.6 | 1048 | 23.8 | 1065 | 24.2 | 938 | 21.3 | 3051 | 69.3 | 112 | 2.5 | 518 | 11.8 |
15–19.9 | 2881 | 18 | 0.62 | 575 | 20.0 | 704 | 24.4 | 693 | 24.1 | 593 | 20.6 | 1990 | 69.1 | 119 | 4.1 | 325 | 11.3 |
20–24.9 | 2077 | 20 | 0.96 | 379 | 18.3 | 487 | 23.5 | 468 | 22.5 | 399 | 19.2 | 1354 | 65.2 | 81 | 3.9 | 251 | 12.1 |
25–29.9 | 1408 | 6 | 0.43 | 277 | 19.7 | 353 | 25.1 | 333 | 23.7 | 283 | 20.1 | 969 | 68.8 | 52 | 3.7 | 174 | 12.4 |
30–34.9 | 997 | 2 | 0.20 | 190 | 19.1 | 236 | 23.7 | 246 | 24.7 | 192 | 19.3 | 674 | 67.6 | 46 | 4.6 | 129 | 12.9 |
35–39.9 | 813 | 7 | 0.86 | 184 | 22.6 | 199 | 24.5 | 170 | 20.9 | 191 | 23.5 | 560 | 68.9 | 49 | 6.0 | 104 | 12.8 |
40–44.9 | 602 | 6 | 1.00 | 127 | 21.1 | 126 | 20.9 | 125 | 20.8 | 133 | 22.1 | 384 | 63.8 | 40 | 6.6 | 86 | 14.3 |
45+ | 1842 | 21 | 1.14 | 397 | 21.6 | 444 | 24.1 | 351 | 19.1 | 418 | 22.7 | 1213 | 65.9 | 138 | 7.5 | 250 | 13.6 |
Chi-square (p-value) | 15.2 | 39.7 | ≤0.001 | 19.9 | ≤0.05 | 106.6 | ≤0.001 | 43.2 | ≤0.001 | 72.8 | ≤0.001 | 531 | ≤0.001 | 51 | ≤0.001 | ||
Co-variates | |||||||||||||||||
Alignment | |||||||||||||||||
Straight | 50,572 | 307 | 0.61 | 9294 | 18.4 | 12,785 | 25.3 | 13,207 | 26.1 | 9601 | 19.0 | 35,593 | 70.4 | 925 | 1.8 | 4838 | 9.6 |
Curved | 6905 | 84 | 1.22 | 1511 | 21.9 | 1637 | 23.7 | 1438 | 20.8 | 1595 | 23.1 | 4670 | 67.6 | 395 | 5.7 | 1424 | 20.6 |
Chi-square (p-value) | 33.4 | ≤0.001 | 49 | ≤0.001 | 8 | ≤0.01 | 90 | ≤0.001 | 66 | ≤0.001 | 22 | ≤0.001 | 410 | ≤0.001 | 765 | ≤0.001 | |
Surface condition | |||||||||||||||||
Dry | 49,729 | 348 | 0.70 | 9428 | 19.0 | 12,566 | 25.3 | 12,913 | 26.0 | 9776 | 19.7 | 35,255 | 70.9 | 1042 | 2.1 | 5008 | 10.1 |
Wet/other | 7748 | 43 | 0.55 | 1377 | 17.8 | 1856 | 24.0 | 1732 | 22.4 | 1420 | 18.3 | 5008 | 64.6 | 278 | 3.6 | 1254 | 16.2 |
Chi-square (p-value) | 2.1 | 6 | ≤0.05 | 6 | ≤0.05 | 46 | ≤0.001 | 8 | ≤0.01 | 125 | ≤0.001 | 67 | ≤0.001 | 258 | ≤0.001 | ||
Speed limit | |||||||||||||||||
10–40 km/h | 2963 | 23 | 0.78 | 592 | 20.0 | 825 | 27.8 | 832 | 28.1 | 615 | 20.8 | 2272 | 76.7 | 34 | 1.2 | 174 | 5.9 |
50 km/h | 21,440 | 135 | 0.63 | 4152 | 19.4 | 5302 | 24.7 | 4654 | 21.7 | 4287 | 20.0 | 14,243 | 66.4 | 711 | 3.3 | 2580 | 12.0 |
60 km/h | 21,820 | 148 | 0.68 | 4124 | 18.9 | 5628 | 25.8 | 5884 | 27.0 | 4272 | 19.6 | 15,784 | 72.3 | 387 | 1.8 | 2174 | 10.0 |
70 km/h | 7364 | 46 | 0.62 | 1254 | 17.0 | 1771 | 24.1 | 2228 | 30.3 | 1300 | 17.7 | 5299 | 72.0 | 105 | 1.4 | 764 | 10.4 |
80–110 km/h | 3890 | 39 | 1.00 | 683 | 17.6 | 896 | 23.0 | 1047 | 26.9 | 722 | 18.6 | 2665 | 68.5 | 83 | 2.1 | 570 | 14.7 |
Chi-square (p-value) | 7.5 | 26 | ≤0.001 | 32 | ≤0.001 | 289 | ≤0.001 | 25 | ≤0.001 | 267 | ≤0.001 | 169 | ≤0.001 | 184 | ≤0.001 | ||
Type of location | |||||||||||||||||
T-junction | 17,697 | 102 | 0.58 | 3342 | 18.9 | 4537 | 25.6 | 4727 | 26.7 | 3444 | 19.5 | 12,708 | 71.8 | 275 | 1.6 | 1541 | 8.7 |
2-way undivided | 14,855 | 128 | 0.86 | 3015 | 20.3 | 3511 | 23.6 | 2813 | 18.9 | 3143 | 21.2 | 9467 | 63.7 | 620 | 4.2 | 2031 | 13.7 |
X-intersection | 11,801 | 60 | 0.51 | 2161 | 18.3 | 3203 | 27.1 | 3456 | 29.3 | 2221 | 18.8 | 8880 | 75.3 | 74 | 0.6 | 731 | 6.2 |
Divided road | 7261 | 70 | 0.96 | 1309 | 18.0 | 1720 | 23.7 | 2019 | 27.8 | 1379 | 19.0 | 5118 | 70.5 | 213 | 2.9 | 1074 | 14.8 |
Other | 5863 | 31 | 0.53 | 978 | 16.7 | 1451 | 24.8 | 1630 | 27.8 | 1009 | 17.2 | 4090 | 69.8 | 138 | 2.4 | 885 | 15.1 |
Chi-square (p-value) | 25.9 | ≤0.001 | 44 | ≤0.001 | 54 | ≤0.001 | 477 | ≤0.001 | 50 | ≤0.001 | 462 | ≤0.001 | 437 | ≤0.001 | 694 | ≤0.001 | |
Behavioral co-variates | |||||||||||||||||
Speeding | |||||||||||||||||
No/unknown | 52,424 | 275 | 0.52 | 9461 | 18.1 | 13,178 | 25.1 | 14,207 | 27.1 | 9736 | 18.6 | 37,121 | 70.8 | 803 | 1.5 | 4252 | 8.1 |
Yes | 5053 | 116 | 2.30 | 1344 | 26.6 | 1244 | 24.6 | 438 | 8.7 | 1460 | 28.9 | 3142 | 62.2 | 517 | 10.2 | 2010 | 39.8 |
Chi-square (p-value) | 214 | ≤0.001 | 221 | ≤0.001 | 1 | 825 | ≤0.001 | 313 | ≤0.001 | 164 | ≤0.001 | 1555 | ≤0.001 | 4761 | ≤0.001 | ||
Fatigue | |||||||||||||||||
No/unknown | 54,205 | 373 | 0.69 | 10,083 | 18.6 | 13,610 | 25.1 | 14,434 | 26.6 | 10,456 | 19.3 | 38,500 | 71.0 | 1060 | 2.0 | 5300 | 9.8 |
Yes | 3272 | 18 | 0.55 | 722 | 22.1 | 812 | 24.8 | 211 | 6.5 | 740 | 22.6 | 1763 | 53.9 | 260 | 8.0 | 962 | 29.4 |
Chi-square (p-value) | 0.9 | 24 | ≤0.001 | 0 | 662 | ≤0.001 | 22 | ≤0.001 | 432 | ≤0.001 | 494 | ≤0.001 | 1224 | ≤0.001 |
Output Variables | Full Set and Subsets by Speed Limits | |||||
---|---|---|---|---|---|---|
Full set | 10–40 km/h | 50 km/h | 60 km/h | 70 km/h | 80–110 km/h | |
n = 57,477 | n = 2963 | n = 21,440 | n = 21,820 | n = 7364 | n = 3890 | |
Odds ratio (95% credible Interval) | ||||||
A. Continuous Street tree percentage variable (unit = 10%). | ||||||
1 Models with only Street tree percentage as co-variate (without other co-variates) | ||||||
Fatal injuries | 1.05 (0.98, 1.12) | 0.85 (0.58, 1.16) | 0.99 (0.89, 1.10) | 1.03 (0.90, 1.17) | 1.40 (1.16, 1.65) x | 1.21 (1.02, 1.41) + |
Fatal and Serious Injuries | 1.04 (1.03, 1.06) * | 1.00 (0.94, 1.06) | 1.02 (0.99, 1.04) | 1.05 (1.02, 1.08) x | 1.14 (1.07, 1.21) * | 1.11 (1.05, 1.17) * |
All injuries (including Fatal) | 0.95 (0.94, 0.96) * | 0.94 (0.89, 0.99) + | 0.96 (0.94, 0.97) * | 0.97 (0.95, 1.00) + | 1.01 (0.95, 1.07) | 1.03 (0.98, 1.09) |
Hit 1st/2nd of tree/bush | 1.33 (1.29, 1.36) * | 1.23 (1.05, 1.42) + | 1.23 (1.19, 1.27) * | 1.42 (1.35, 1.49) * | 1.55 (1.38, 1.73) * | 1.31 (1.19, 1.45) * |
2 Models with co-variates (without speed limit) | ||||||
Fatal injuries | 1.00 (0.93, 1.07) | 0.85 (0.57, 1.17) | 0.96 (0.86, 1.07) | 0.94 (0.81, 1.08) | 1.25 (1.01, 1.53) + | 1.04 (0.86, 1.24) |
Fatal and Serious Injuries | 1.03 (1.01, 1.04) * | 0.99 (0.93, 1.05) | 1.02 (0.99, 1.04) | 1.02 (0.99, 1.05) | 1.08 (1.01, 1.15) + | 1.04 (0.98, 1.10) |
All injuries (including Fatal) | 1.00 (0.98, 1.01) | 0.97 (0.92, 1.03) | 0.99 (0.98, 1.01) | 1.01 (0.98, 1.03) | 1.05 (0.99, 1.12) | 1.04 (0.99, 1.10) |
Hit 1st/2nd of tree/bush | 1.20 (1.17, 1.24) * | 1.14 (0.96, 1.34) | 1.19 (1.14, 1.23) * | 1.23 (1.17, 1.30) * | 1.24 (1.09, 1.41) x | 1.13 (0.99, 1.28) |
3. Five-category Street tree percentage variable (ref = 0–4.9%) | ||||||
Fatal injuries | ||||||
5–9.9 | 0.86 (0.60, 1.20) | 0.91 (0.20, 3.03) | 0.59 (0.31, 1.05) | 1.00 (0.59, 1.61) | 0.40 (0.06, 1.58) | 1.84 (0.58, 5.22) |
10–19.9 | 0.94 (0.67, 1.26) | 0.51 (0.07, 2.12) | 0.80 (0.47, 1.31) | 0.85 (0.49, 1.45) | 1.64 (0.66, 3.58) | 1.31 (0.40, 3.61) |
20–34.9 | 0.78 (0.52, 1.16) | 0.27 (0.01, 1.92) | 0.77 (0.41, 1.37) | 0.62 (0.27, 1.27) | 1.64 (0.48, 4.78) | 0.51 (0.08, 2.18) |
35+ | 1.20 (0.81, 1.74) | 0.32 (0.01, 2.34) | 0.95 (0.52, 1.63) | 0.93 (0.38, 2.02) | 3.41 (0.92, 10.20) | 1.95 (0.67, 5.26) |
Fatal and Serious Injuries | ||||||
5–9.9 | 1.02 (0.96, 1.09) | 0.87 (0.64, 1.17) | 0.95 (0.86, 1.06) | 1.10 (0.99, 1.23) | 0.95 (0.77, 1.17) | 1.09 (0.79, 1.48) |
10–19.9 | 1.12 (1.05, 1.19) * | 0.96 (0.71, 1.30) | 1.08 (0.98, 1.19) | 1.14 (1.02, 1.27) + | 1.13 (0.92, 1.37) | 1.17 (0.89, 1.52) |
20–34.9 | 1.00 (0.92, 1.08) | 0.91 (0.66, 1.28) | 0.89 (0.79, 1.00) | 1.08 (0.94, 1.23) | 1.24 (0.92, 1.65) | 0.95 (0.69, 1.29) |
35+ | 1.17 (1.07, 1.28) * | 0.99 (0.69, 1.39) | 1.17 (1.04, 1.32) x | 1.01 (0.84, 1.23) | 1.40 (0.92, 2.09) | 1.36 (0.96, 1.90) |
All injuries (including Fatal) | ||||||
5–9.9 | 1.00 (0.94, 1.06) | 1.02 (0.77, 1.36) | 0.95 (0.87, 1.04) | 1.03 (0.94, 1.14) | 1.09 (0.91, 1.30) | 1.06 (0.82, 1.36) |
10–19.9 | 0.99 (0.94, 1.05) | 0.98 (0.74, 1.30) | 0.95 (0.87, 1.03) | 1.14 (1.03, 1.26) x | 0.93 (0.78, 1.10) | 0.91 (0.74, 1.14) |
20–34.9 | 0.94 (0.88, 1.01) | 0.95 (0.71, 1.31) | 0.88 (0.80, 0.97) x | 0.96 (0.85, 1.08) | 1.08 (0.83, 1.41) | 1.23 (0.94, 1.64) |
35+ | 1.00 (0.92, 1.08) | 0.78 (0.56, 1.09) | 1.02 (0.92, 1.14) | 0.95 (0.81, 1.13) | 1.37 (0.92, 2.07) | 1.18 (0.86, 1.63) |
Hit 1st or hit 2nd of tree/bush during the crash | ||||||
5–9.9 | 1.32 (1.09, 1.59) x | 0.55 (0.09, 2.33) | 0.96 (0.73, 1.25) | 1.81 (1.55, 2.38) * | 2.02 (1.10, 3.59) + | 1.34 (0.51, 3.09) |
10–19.9 | 1.78 (1.52, 2.08) * | 1.40 (0.43, 3.91) | 1.43 (1.14, 1.78) x | 2.30 (1.97, 2.77) * | 1.55 (0.82, 2.75) | 2.45 (1.28, 4.54) x |
20–34.9 | 1.93 (1.61, 2.31) * | 2.11 (0.72, 5.58) | 1.49 (1.16, 1.90) x | 2.15 (1.57, 2.75) * | 1.78 (0.87, 3.45) | 2.46 (1.18, 4.92) + |
35+ | 2.88 (2.43, 3.44) * | 2.28 (0.76, 6.13) | 2.53 (2.05, 3.13) * | 3.41 (2.50, 4.76) * | 2.04 (0.83, 4.61) | 2.07 (0.94, 4.41) |
Injuries | |||||||||
---|---|---|---|---|---|---|---|---|---|
Subsets | Fatal | Fatal/Serious | Injuries all | Hitting tree/bush | |||||
Street tree percentage % | N total | N | % | N | % | N | % | N | % |
Full set | |||||||||
Total | 57,477 | 391 | 0.7 | 11,196 | 19.5 | 40,263 | 70.1 | 1320 | 2.3 |
0–4.9 | 35,776 | 239 | 0.7 | 6757 | 18.9 | 25,404 | 71.0 | 533 | 1.5 |
5–9.9 | 6677 | 40 | 0.6 | 1292 | 19.4 | 4664 | 69.9 | 150 | 2.3 |
10–19.9 | 7285 | 50 | 0.7 | 1531 | 21.0 | 5041 | 69.2 | 231 | 3.2 |
20–34.9 | 4482 | 28 | 0.6 | 874 | 19.5 | 2997 | 66.9 | 179 | 4.0 |
35 plus | 3257 | 34 | 1.0 | 742 | 22.8 | 2157 | 66.2 | 227 | 7.0 |
Chi-square (p-value) | 7.3 | 41.7 | ≤0.001 | 62.7 | ≤0.001 | 503.2 | ≤0.001 | ||
10–40 km/h | |||||||||
Total | 2963 | 23 | 0.8 | 615 | 20.8 | 2272 | 76.7 | 34 | 1.1 |
0–4.9 | 1839 | 16 | 0.9 | 387 | 21.0 | 1429 | 77.7 | 15 | 0.8 |
5–9.9 | 335 | 3 | 0.9 | 63 | 18.8 | 259 | 77.3 | 2 | 0.6 |
10–19.9 | 315 | 2 | 0.6 | 66 | 21.0 | 239 | 75.9 | 5 | 1.6 |
20–34.9 | 259 | 1 | 0.4 | 52 | 20.1 | 194 | 74.9 | 6 | 2.3 |
35 plus | 215 | 1 | 0.5 | 47 | 21.9 | 151 | 70.2 | 6 | 2.8 |
Chi-square (p-value) | 1.1 | 1.1 | 6.7 | 11.5 | ≤0.05 | ||||
50 km/h | |||||||||
Total | 21,440 | 135 | 0.6 | 4287 | 20.0 | 14,243 | 66.4 | 711 | 3.3 |
0–4.9 | 10,948 | 76 | 0.7 | 2175 | 19.9 | 7433 | 67.9 | 275 | 2.5 |
5–9.9 | 2920 | 12 | 0.4 | 554 | 19.0 | 1938 | 66.4 | 71 | 2.4 |
10–19.9 | 3360 | 19 | 0.6 | 708 | 21.1 | 2205 | 65.6 | 123 | 3.7 |
20–34.9 | 2243 | 13 | 0.6 | 406 | 18.1 | 1411 | 62.9 | 92 | 4.1 |
35 plus | 1969 | 15 | 0.8 | 444 | 22.6 | 1256 | 63.8 | 150 | 7.6 |
Chi-square (p-value) | 3.8 | 17.5 | ≤0.01 | 30.1 | ≤0.001 | 148.4 | ≤0.001 | ||
60 km/h | |||||||||
Total | 21,820 | 148 | 0.7 | 4272 | 19.6 | 15,784 | 72.3 | 387 | 1.8 |
0–4.9 | 14,920 | 99 | 0.7 | 2817 | 18.9 | 10,818 | 72.5 | 158 | 1.1 |
5–9.9 | 2408 | 18 | 0.8 | 497 | 20.6 | 1741 | 72.3 | 53 | 2.2 |
10–19.9 | 2413 | 16 | 0.7 | 516 | 21.4 | 1786 | 74.0 | 70 | 2.9 |
20–34.9 | 1370 | 8 | 0.6 | 290 | 21.2 | 955 | 69.7 | 56 | 4.1 |
35 plus | 709 | 7 | 1.0 | 152 | 21.4 | 484 | 68.3 | 50 | 7.1 |
Chi-square (p-value) | 1.4 | 15.1 | ≤0.01 | 14.2 | ≤0.01 | 219.4 | ≤0.001 | ||
70 km/h | |||||||||
Total | 7364 | 46 | 0.6 | 1300 | 17.7 | 5299 | 72.0 | 105 | 1.4 |
0–4.9 | 5471 | 28 | 0.5 | 928 | 17.0 | 3948 | 72.2 | 51 | 0.9 |
5–9.9 | 699 | 2 | 0.3 | 117 | 16.7 | 511 | 73.1 | 17 | 2.4 |
10–19.9 | 753 | 8 | 1.1 | 150 | 19.9 | 520 | 69.1 | 17 | 2.3 |
20–34.9 | 304 | 4 | 1.3 | 69 | 22.7 | 216 | 71.1 | 12 | 4.0 |
35 plus | 137 | 4 | 2.9 | 36 | 26.3 | 104 | 75.9 | 8 | 5.8 |
Chi-square (p-value) | 18.7 | ≤0.001 | 17.2 | ≤0.01 | 4.9 | 51 | ≤0.001 | ||
80–110 km/h | |||||||||
Total | 3890 | 39 | 1.0 | 722 | 18.6 | 2665 | 68.5 | 83 | 2.1 |
0–4.9 | 2598 | 20 | 0.8 | 450 | 17.3 | 1776 | 68.4 | 34 | 1.3 |
5–9.9 | 315 | 5 | 1.6 | 61 | 19.4 | 215 | 68.3 | 7 | 2.2 |
10–19.9 | 444 | 5 | 1.1 | 91 | 20.5 | 291 | 65.5 | 16 | 3.6 |
20–34.9 | 306 | 2 | 0.7 | 57 | 18.6 | 221 | 72.2 | 13 | 4.3 |
35 plus | 227 | 7 | 3.1 | 63 | 27.8 | 162 | 71.4 | 13 | 5.7 |
Chi-square (p-value) | 12.9 | ≤0.05 | 16.6 | ≤0.01 | 4.7 | 33.7 | ≤0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Navakatikyan, M.; Astell-Burt, T. Reduce Speed Limits to Minimize Potential Harm and Maximize the Health Benefits of Street Trees. Land 2024, 13, 1815. https://doi.org/10.3390/land13111815
Feng X, Navakatikyan M, Astell-Burt T. Reduce Speed Limits to Minimize Potential Harm and Maximize the Health Benefits of Street Trees. Land. 2024; 13(11):1815. https://doi.org/10.3390/land13111815
Chicago/Turabian StyleFeng, Xiaoqi, Michael Navakatikyan, and Thomas Astell-Burt. 2024. "Reduce Speed Limits to Minimize Potential Harm and Maximize the Health Benefits of Street Trees" Land 13, no. 11: 1815. https://doi.org/10.3390/land13111815
APA StyleFeng, X., Navakatikyan, M., & Astell-Burt, T. (2024). Reduce Speed Limits to Minimize Potential Harm and Maximize the Health Benefits of Street Trees. Land, 13(11), 1815. https://doi.org/10.3390/land13111815